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A major challenge in neuroscience is to understand what happens to a brain as it ages.
Such insights could make it possible to distinguish between individuals who will undergo
typical aging and those at risk for neurodegenerative disease. Over the last quarter
century, thousands of human brain imaging studies have probed the neural basis of
age-related cognitive decline. “Aging” studies generally enroll adults over the age of
65, a historical precedent rooted in the average age of retirement. A consequence of
this research tradition is that it overlooks one of the most significant neuroendocrine
changes in a woman’s life: the transition to menopause. The menopausal transition is
marked by an overall decline in ovarian sex steroid production—up to 90% in the case
of estradiol—a dramatic endocrine change that impacts multiple biological systems,
including the brain. Despite sex differences in the risk for dementia, the influence that
biological sex and sex hormones have on the aging brain is historically understudied,
leaving a critical gap in our understanding of the aging process. In this Perspective
article, we highlight the influence that endocrine factors have on the aging brain. We
devote particular attention to the neural and cognitive changes that unfold in the middle
decade of life, as a function of reproductive aging. We then consider emerging evidence
from animal and human studies that other endocrine factors occurring earlier in life
(e.g., pregnancy, hormonal birth control use) also shape the aging process. Applying
a women’s health lens to the study of the aging brain will advance knowledge of the
neuroendocrine basis of cognitive aging and ensure that men and women get the full
benefit of our research efforts.

Keywords: cognitive aging, neuroimaging, women’s health, sex steroid hormones, estradiol, menopause,
reproductive aging, memory

INTRODUCTION

An overarching goal of cognitive neuroscience is to understand the complexities of human brain
function across the lifespan. To make sense of cognition and behavior, scientists test hypotheses on
a ‘‘representative’’ sample of individuals that are assumed to generalize to a larger population. Here,
we argue that it is imperative for scientists to reconsider what constitutes a representative sample.

A pressing problem in the biomedical sciences is the under-representation of females in
experimental designs. For the past half-century, the convention in preclinical research has been
to study male animals, at the near-exclusion of females. Females were considered ‘‘too variable’’
(Beery and Zucker, 2011) despite empirical evidence that variability within each sex is the same
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across a broad range of phenotypes (Prendergast et al., 2014).
In 2016 in the US, this sex bias in biomedical research was
addressed at the national level when Janine Clayton (Director,
Office of Women’s Health Research) pioneered the National
Institute of Health’s mandate requiring the inclusion of female
and male animals in preclinical science (Clayton and Collins,
2014). The goal of the mandate is to ensure that future
studies are balanced by sex, a key step to bolstering our
understanding of sex similarities and sex differences across the
biomedical sciences.

In human neuroscience, the problem is more subtle. While
the majority of studies enroll both men and women, women
do not benefit equally from our research efforts. Scientists often
overlook sex-specific variables, a bias that seeps into our study
design and analyses and impedes our basic understanding of
the brain. In this Perspective article, we address one domain
that is often unaccounted for in human neuroscience: the
influence of sex steroid hormones on the brain. This is
surprising, given that the brain is an endocrine organ and
in animal studies, the effects of sex hormones on the central
nervous system are extensive, ranging from changes in gene
expression to alterations in behavior (McEwen, 2001). Across a
typical menstrual cycle (occurring every 25–30 days), naturally
cycling women experience a ∼12-fold increase in estrogen and
an ∼800-fold increase in progesterone. Later in life, women
experience a more abrupt change in sex steroid hormone
production as they transition through menopause. Further, sex
hormone production is chronically suppressed in the 100 million
women worldwide using oral hormonal contraceptives (OCs).
For men, testosterone production shows a gradual, protracted
decline beginning in the mid-30s and continuing throughout
life. How do these shifts in hormone production shape the
brain? Do endocrine factors influence how the brain ages? The
field of human neuroscience has not adequately addressed these
questions and women may be disproportionately disadvantaged
by this oversight.

Below, we describe animal and human evidence that sex
hormones regulate the structure and function of brain regions
critical to learning and memory. We focus on the implications
of this work for understanding the neurobiological mechanisms
of cognitive aging. Moving forward, the field of human cognitive
neuroscience must consider features (e.g., the menstrual cycle,
menopause, pregnancy, and OC use) that are relevant to half of
our study population. If not, we will be left with an inadequate
understanding of the aging brain and will risk the health of half
of the world’s population.

THE NEUROENDOCRINE BASIS OF
COGNITIVE AGING

Amajor challenge in neuroscience is to understandwhat happens
to a brain as it ages. Distinguishing between individuals who
undergo typical aging from those at risk for neurodegenerative
disease is critical for targeting early interventions to high-risk
individuals. Over the last quarter century, thousands of
human brain imaging studies have probed the neural basis
of age-related cognitive decline. These studies generally enroll

adults over the age of 65, a historical precedent rooted in
the average age of retirement. A consequence of this research
tradition is that it overlooks one of the most significant
neuroendocrine changes in a woman’s life: the transition
to menopause. The menopausal transition is marked by an
overall decline in ovarian sex steroid production—up to
90% in the case of estradiol—a dramatic endocrine change
that impacts multiple biological systems, including the brain
(Morrison et al., 2006).

In the context of cognitive aging, female reproductive
aging presents a critical yet understudied factor (Figure 1)
that is likely essential for understanding the early processes
that contribute to age-related cognitive decline and ultimately
dementia risk. Indeed, growing evidence from animal studies
indicates that sex steroids including estradiol, progesterone, and
testosterone, play a substantial role in supporting the structure
and function of brain regions relevant to cognitive aging
(Jacobs and Goldstein, 2018).

Sex Hormone Action in Memory Circuitry
The actions of estrogen in the brain are in large part dependent
on the location of estrogen receptors (ERs; McEwen and Alves,
1999). At the cellular level, estrogen, primarily in the form
of 17β-estradiol, facilitates synaptogenesis, protects against
oxidative stress, and regulates neuromodulators including
serotonin, norepinephrine, dopamine, and acetylcholine
(Becker, 1990; Thompson and Moss, 1994; McEwen and Alves,
1999; McEwen et al., 1997; McEwen and Alves, 1999; Walf
and Frye, 2006; Wang et al., 2010; Chisholm and Juraska,
2012; Bean et al., 2014; Galvin and Ninan, 2014; Almey
et al., 2015; Hara et al., 2015, 2016; Rossetti et al., 2016;
Frick et al., 2018).

FIGURE 1 | Publication count of cognitive neuroscience studies of aging,
beginning in the mid-1990s with the widespread adoption of functional brain
imaging techniques. The number of brain imaging publications that consider
the effects of reproductive or “neuroendocrine” aging during the midlife
transition to menopause is dwarfed by the number of chronological aging
studies, which compare men and women >65 to young adults. Over the past
23 years there have been only 82 brain imaging publications on reproductive
aging. Of those, only 49% used endocrine assessments to verify menopausal
stage (see Supplementary Material).
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Estradiol signaling is a critical component of cell survival
and plasticity, and its effects can be measured across multiple
spatial and temporal scales (Frick et al., 2018). Many of these
effects occur in brain regions that are critical to higher level
cognitive function and cognitive aging. In non-human primates,
at the cellular level, nearly 50% of prefrontal cortex (PFC)
pyramidal neurons express the ERα subtype (Wang et al.,
2010), and greater ERα expression is associated with better
short-term memory performance (Wang et al., 2010). Further,
the suppression of ovarian hormones decreases spine density
in PFC neurons (Hao et al., 2006), and impairs working
memory performance (Rapp et al., 2003). In rodents, in the
hippocampus, dendritic spine density in CA1 neurons varies over
the course of the estrous cycle (Woolley et al., 1990; Woolley
and McEwen, 1993). At the macroscopic level, hippocampal
volume is regulated by sex hormones (Galea et al., 1999)
and fluctuates across the estrous cycle (Qiu et al., 2013).
These basic science findings provide converging evidence that
the manipulation of estrogen levels leads to structural and
functional changes in the ER-enriched regions that comprise
memory circuitry.

Human studies further implicate sex steroids in the regulation
of memory circuitry (Berman et al., 1997; Shaywitz et al.,
1999; Jacobs and D’Esposito, 2011; Epperson et al., 2012;
Hampson and Morley, 2013; Shanmugan and Epperson, 2014;
Jacobs et al., 2015, 2016, 2017; Albert et al., 2017; Girard
et al., 2017; Zeydan et al., 2019), yet despite this evidence the
neuroendocrine basis of cognitive aging remains understudied in
human neuroscience.

MENOPAUSE AND HORMONE THERAPY

One of the most significant neuroendocrine changes in
a woman’s life is the transition to menopause, during
which circulating ovarian hormone concentrations decline
up to 90%. Many women report changes in memory and
attention (e.g., ‘‘menopause fog’’) during this transitional period
(Greendale et al., 2011). The median age of menopause is
52.4 years (Gold et al., 2001), yet the vast majority of cognitive
aging studies target adults age 65 and older, missing this
critical midlife window (Figure 1). The field has focused
almost exclusively on the neural and cognitive effects of
chronological aging, overlooking the impact of reproductive
aging. This is striking, given that most women will spend
one-third of their lives in the post-reproductive years, and
mounting evidence suggests that reproductive aging influences
brain structure, function, and cognition.

A significantmethodological and ethical challenge of studying
menopause is that to fully understand the impacts of this
major hormonal shift on the brain, our designs must parse
the parallel and interactional effects of chronological and
reproductive aging in women. In humans, the relationship
between gonadal aging and the brain has typically been studied
in two contexts: studying the effects of spontaneous menopause
and surgical menopause (e.g., bilateral salpingo-oophorectomy
prior to natural menopause). For longitudinal studies of
women experiencing spontaneous menopause, the effects of

chronological and reproductive aging cannot be separated.
However, in studying women who have undergone surgical
menopause or cross-sectional studies that pair age-matched
women who fall within different stages of the menopausal
transition, the effects of reproductive aging alone can be more
effectively characterized.

Impact of Gonadectomy and Hormone
Supplementation in Animals
While challenging in humans, animal studies more easily
decouple the effects of reproductive aging from chronological
aging via surgical menopause (gonadectomy) paradigms.
These studies demonstrate that ovarian hormone depletion
impacts hippocampal and PFC morphology and function,
independent of the established influence of chronological
aging. This body of work has made significant progress
toward characterizing the synaptic basis of menopause-
related memory decline (Morrison and Baxter, 2012;
Hara et al., 2016). For example, rodent and nonhuman
primate studies first identified estradiol’s role in modulating
structural plasticity in the hippocampus and PFC as well
as estradiol’s protective effects against cognitive decline
(Morrison and Baxter, 2012; Hara et al., 2015, 2016). In
female macaques, surgical menopause leads to a 30% loss
in spine density in hippocampal CA1 neurons, which is
reversed by estradiol replacement (Dumitriu et al., 2010).
Natural menopause in rhesus monkeys reduces the density
of perforated synapse spines in CA1 neurons, which is
correlated with lower recognition memory (Hara et al.,
2012). Cyclic estradiol administration in postmenopausal
female monkeys restores dorsolateral PFC spine density and
the frequency of multisynaptic boutons to levels comparable
to premenopausal females, and these synaptic-level changes
are accompanied by enhanced performance on PFC-dependent
memory tasks in estradiol-treated animals (Hara et al., 2016;
Kohama et al., 2016).

Impact of Menopause and Hormone
Supplementation in Humans
Epidemiological surveys indicate that many women report
increased forgetfulness and ‘‘brain fog’’ during the menopausal
transition (Greendale et al., 2011). Neuropsychological studies
have identified decrements in verbal fluency and associative
memory tied to reproductive stage (Epperson et al., 2013; Weber
et al., 2014; Rentz et al., 2017), and across women higher estradiol
levels are associated with better memory performance (Rentz
et al., 2017).

At the level of functional brain networks, our group showed
that PFC activity and working memory performance are
modulated by endogenous estradiol concentrations (Jacobs
and D’Esposito, 2011; Jacobs et al., 2017). Using a within-
woman, repeated-measures approach that capitalizes on the
natural fluctuations in estradiol over the menstrual cycle
in premenopausal women, we found that PFC activity is
exaggerated when estradiol concentrations are low, a putative
marker of neural inefficiency (Jacobs and D’Esposito, 2011).
This ‘‘inefficient’’ PFC response is also evident in midlife
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women as ovarian estradiol production declines during
the menopausal transition (Jacobs et al., 2016). In another
population-based functional magnetic resonance imaging
(fMRI) study, midlife men and women (N = 200; age
range: 45–55) performed a verbal memory encoding task.
Task-evoked hippocampal responses differed by women’s
reproductive stage, despite minimal difference in chronological
age. Across women, lower estradiol concentrations were
related to greater alterations of hippocampal connectivity and
poorer performance on a subsequent memory retrieval task,
implicating sex steroids in the regulation of memory circuitry
(Jacobs et al., 2016, 2017). Thus, early functional changes in
memory circuitry are evident decades before the age-range
typically targeted by cognitive neuroscience studies of the
aging brain.

At the level of brain morphology, Zeydan et al. (2019) found
that abrupt hormonal changes associated with early surgical
menopause lead to structural abnormalities in the medial
temporal lobe. The parahippocampus-entorhinal cortex was
thinner in women who underwent bilateral ovariectomization
compared to an age-matched premenopausal control group,
despite the use of estrogen replacement in the surgical
menopause group. Future studies should employ high resolution
hippocampal subfield imaging to identify the impact of hormone
suppression within specific medial temporal lobe structures,
particularly subfields that may differ by cytoarchitecture and
magnitude of ERα- and ERβ-expression.

A handful of human studies have directly examined the
effect of hormone therapy (HT) on brain morphology in
peri/postmenopausal women, revealing that hippocampal
volume increases in response to certain hormone replacement
regimens (Albert et al., 2017). The macrostructural changes
evident in the hippocampus in response to estradiol
supplementation may produce cognitive benefits (for a review,
see Daniel et al., 2015). For example, Maki et al. (2011) found
that women who began HT in perimenopause had enhanced
hippocampal activity during a verbal recognition task and better
verbal memory performance relative to nonusers. When initiated
early in the menopausal transition, HT also appears to enhance
cognitive control-related dorsolateral PFC activity and improve
task-switching performance in women (Girard et al., 2017).

Together, these findings underscore the importance of
considering reproductive stage, not simply chronological age,
to identify neural and cognitive changes that unfold in the
middle decade of life. In keeping with animal evidence,
human studies demonstrate that the decline in ovarian estradiol
production during menopause plays a role in shaping the
structure and function of brain networks that support higher-
order cognitive functions.

PREGNANCY

With a global fertility rate of 2.5 births per woman (World Bank,
2017), the majority of women will experience pregnancy at least
once in their lifetime. Pregnancy is another prolonged period
of major hormonal change, during which women experience
a dramatic rise in sex steroid hormone concentrations. For

instance, in humans, estradiol and progesterone levels increase
up to 300-fold across the 40-week gestational period (Berg
and Kuss, 1992; Tal et al., 2000; Schock et al., 2016), with
progesterone levels rising from a mean of 1 ng/mL during
an average menstrual cycle to 100–300 ng/mL during the last
trimester of pregnancy (Tal et al., 2000; Schock et al., 2016).
In rodents, this sustained increase in hormone levels during
gestation has a lasting impact on the brain, particularly regarding
hippocampal plasticity (reviewed in Kinsley and Lambert, 2008;
Workman et al., 2012; Galea et al., 2014).

Impact of Pregnancy on Brain
Structure/Function in Animals
In rodents, the reproductive experience (i.e., pregnancy,
lactation, and parenting) affects hippocampal morphology
(Kinsley et al., 2006; Pawluski and Galea, 2006, 2007; Barha
et al., 2015). Hippocampal CA1 spine density is significantly
higher in late pregnancy and lactating females compared to
nulliparous female rats at any phase of the estrous cycle (Kinsley
et al., 2006). Pregnancy also affects long-term hippocampal
sensitivity to estrogen (Roes and Galea, 2016). Barha and
Galea (2011) studied hippocampal sensitivity to estrogens
(17β, 17α, and estrone) in middle-aged rats as a function
of parity (multiparous vs. nulliparous). All estrogens induced
upregulation of cell proliferation in the hippocampus in
multiparous females, however, none of the estrogens induced
proliferation in nulliparous females. Further, pregnancy’s effects
appear to be cumulative, such that the effects of pregnancy
compound with subsequent parity. In a study of spatial learning
and memory, Gatewood et al. (2005) found that multiparous
rats exhibited better spatial learning and memory retention
compared to age-matched primi- and nulliparous females when
tested at 6, 12, 18, and 24 months of age. Additionally,
immunohistochemistry within the CA1 region and dentate
gyrus of the hippocampus of these rats revealed an effect of
reproductive experience on amyloid precursor protein (APP)
immunoreactive neurons. Multiparous females had fewer APP
stained cells than primi- and nulliparous groups, and less
APP staining corresponded with better behavioral performance
at 24 months.

Impact of Pregnancy on Brain
Structure/Function in Humans
Pregnancy typically confers an enhancement of hippocampal-
dependent memory in rodents, yet human studies report
memory impairments during pregnancy. Similar to the
self-reported cognitive changes experienced by menopausal
women, pregnant women describe cognitive changes during
pregnancy that include increased forgetfulness, greater
distractibility, and word finding difficulties (reviewed in Brett
and Baxendale, 2001). In a meta-analysis, Henry and Rendell
(2007) observed that pregnant women exhibit impairments
in free and delayed recall, subjective memory (persisting
3 months post-partum), and working memory relative to
non-pregnant controls. Pregnant women did not outperform
non-pregnant women in any domain. Glynn (2012) found
that the effects on memory are cumulative with increasing

Frontiers in Human Neuroscience | www.frontiersin.org 4 July 2019 | Volume 13 | Article 224

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Taylor et al. Endocrine Basis of Brain Aging

parity. In the study, 254 women were evaluated on measures
of verbal recall memory at four points during pregnancy and
at 3 months post-partum. Beginning at 16 weeks’ gestation,
the performance of women who had given birth more than
twice was worse than the performance of women who had
given birth once, which was worse than women who had not
yet given birth (primigravid), with impairments persisting to
3 months post-partum.

Few neuroimaging studies have been conducted during
pregnancy in humans. Limited findings suggest that global
brain volume decreases during pregnancy (Oatridge et al.,
2002) with an increase in brain volume after delivery (Kim
et al., 2010), returning to pre-pregnancy levels by 24 weeks
post-partum (Oatridge et al., 2002). Hoekzema et al. (2017)
observed gray matter volume (GMV) reductions in primiparous
women scanned before and after pregnancy. Reductions were
observed across a network of regions that support social
cognition and theory of mind, including the hippocampus,
precuneus, and medial/inferior frontal gyrus. Gray matter
volume reductions persisted up to 2 years post-partum (with
some rebound in the hippocampus). The authors propose
that these gray matter changes may facilitate the transition
to motherhood, as the areas exhibiting volumetric reductions
also exhibited the strongest fMRI BOLD response to pictures
of the mothers’ infants compared to unrelated children. The
magnitude of the morphological change (e.g., in cortical
thickness, surface area, sulcal depth, etc.) in these mothers
as a result of pregnancy were on par with the changes
observed in adolescent males and females during the pubertal
transition (Carmona et al., 2019).

Association Between Pregnancy and
Cognitive Aging
Greater lifetime exposure to estrogen is considered to be
neuroprotective (Smith et al., 1999; Rasgon et al., 2005;
Ryan et al., 2009; Heys et al., 2011; Tierney et al., 2013)
and pregnancy has a lasting impact on circulating sex
steroid hormones. Pregnancy appears to reduce lifetime
estrogen exposure relative to nulliparity (summarized in
Smith et al., 1999). Circulating estrogen levels are ∼22%
lower in parous women compared to nulliparous women
(Bernstein et al., 1985). This difference persists through
menopause, with 20% lower free estradiol levels in multiparous
(≥4 children) compared to primiparous menopausal women
(Chubak et al., 2004). This parity-related difference in
hormone levels may contribute to findings that lower
parity is associated with better postmenopausal cognitive
function (McLay et al., 2003; Heys et al., 2011; but see
Ryan et al., 2009; Tierney et al., 2013). Similarly, parity
may have an effect on cognitive aging and dementia risk
(reviewed in Roes and Galea, 2016), with reports that having
children correlates with earlier onset of AD (Ptok et al.,
2002) and a greater extent of AD pathology post-mortem
(Beeri et al., 2009). Some of these effects are compounded
by successive pregnancies (Sobow and Kloszewska, 2004;
Colucci et al., 2006).

ORAL HORMONAL CONTRACEPTIVE USE

Tenmillion women in the US and 100 million women worldwide
use oral hormonal contraception (OC; Petitti, 2003; Christin-
Maitre, 2013; Jones et al., 2013; Daniels and Mosher, 2013;
Daniels et al., 2015). First introduced in the US in 1960,
‘‘the pill’’ revolutionized women’s reproductive health. However,
emerging evidence suggests that OCs influence aspects of brain
structure and function in young adults (for review, see Pletzer
and Kerschbaum, 2014). In two MRI studies, OC use in
women was associated with increased GMV in the amygdala,
parahippocampal gyrus (Pletzer et al., 2010; Lisofsky et al., 2016)
and ventral temporal cortex (Pletzer et al., 2010, 2015) relative
to non-users. Less robust effects have been observed in the PFC,
although this finding is inconsistent across studies (Pletzer et al.,
2010; De Bondt et al., 2013b; Petersen et al., 2015). Moving
forward, the field would benefit from a well-powered study that
can determine the influence of OC formulation, age of initiation,
and duration of use on global and regional brain morphology.

No systematic study has been conducted to investigate the
effects of chronic ovarian hormone suppression on brain regions
that are densely populated with sex steroid receptors and are
modulated by sex steroid hormones. Does long-term ovarian
hormone suppression have consequences at the macroscopic
level of regional brain morphology in humans? Are there
enduring effects even after cessation of use? Though this area
of research is understudied, retrospective studies suggest that
OC use confers a positive effect on cognitive aging (Egan
and Gleason, 2012; Karim et al., 2016). For instance, in an
epidemiological study of postmenopausal women, Karim et al.
(2016) found that hormonal contraceptive use was positively
associated with global cognition and verbal memory. However,
other studies report no relationship between OC use and
cognitive outcomes (McLay et al., 2003; Tierney et al., 2013).
The dearth of research on this topic is especially apparent
when attempts are made to explain the endocrine basis of OC’s
cognitive effects, with some studies attributing positive effects to
the supraphysiological levels of synthetic sex hormones in OC
users (Egan and Gleason, 2012; Karim et al., 2016), while other
studies refer to suppressed levels of endogenous estrogen in OC
users (Griksiene and Ruksenas, 2011; De Bondt et al., 2013a).
Careful endocrine evaluations paired with studies that control for
OC formulation are necessary to resolve these discrepancies.

In addition to OC formulation, the age of initiation of
OC use must be considered. Up to one-third of OC users
begin to use in early adolescence, yet we know relatively
little about how hormone suppression impacts the developing
brain, and this may be critical for understanding OC’s effects
throughout the lifespan. While the hippocampus and basal
ganglia typically reach adult levels in late childhood or early
adolescence (Segawa, 2000; Gogtay et al., 2006), the development
of the PFC is protracted, with cortical volumes stabilizing in
the mid-20s (Lenroot and Giedd, 2006). The neuroendocrine
changes that accompany puberty produce what has been
referred to as a second ‘‘window of opportunity’’ or sensitive
period in brain development (for review, see Fuhrmann et al.,
2015). In females, the pubertal transition typically begins at
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10–11 years of age and ends between the ages of 15–17. It
is during this pubertal period that many women begin OC
use. Among insured teenagers in the United States, 6% of
13-year-olds and 36% of 13–18-year-olds filled a prescription for
OC in 2009 (Ehrlich et al., 2011). Given the early age of first
exposure, OC use has the potential to alter the organizational
effects of endogenous estradiol in adolescents through chronic
suppression of sex steroid hormone levels. To our knowledge,
no large-scale longitudinal study has examined the impact that
age of initiation and duration of OC use have on neuronal
development. Additionally, the short- and long-term effects of
OC likely differ. In adults, short-term OC use is associated with
GMV changes (Pletzer et al., 2015; Lisofsky et al., 2016), yet
few studies have examined whether these changes persist over
time, or whether the magnitude of GMV change correlates with
total duration of use (Pletzer et al., 2010; De Bondt et al., 2013b;
Petersen et al., 2015).

ADDRESSING THE
UNDER-REPRESENTATION OF WOMEN’S
HEALTH FACTORS IN FUTURE
AGING STUDIES

The biomedical sciences are witnessing a remarkable change,
whereby researchers are recognizing the importance that sex
plays in virtually all aspects of health and disease (Cahill, 2006;
McCarthy, 2008). However, in neuroscience, the influence of
biological sex and sex hormones on the aging brain remains
understudied, leaving a critical gap in our understanding of the
aging process. Researchers in the cognitive aging field often
account for a variety of ‘‘lifespan’’ factors when characterizing
their sample population (e.g., years of education, lifetime physical
activity, history of smoking, or substance abuse), yet the
endocrine lifespan is usually overlooked.

Recently there has been an appeal for earlier identification
of individuals at risk for cognitive decline and dementia, with
increasing focus on middle age. Yet few human studies have
investigated the neurobiological and neuropsychological impact
of reproductive aging, the onset of which coincides with this
critical midlife window. Moving forward, the field should pay
greater attention to the endocrine basis of brain aging by
targeting under-represented samples of women, such as midlife
women transitioning through menopause, women undergoing
chronic hormone suppression for endocrine-related disorders
like endometriosis, and women who undergo early surgical
menopause. Enriching this area of research is sorely needed.

In addition to designing studies that address the needs
of under-served populations, researchers can take a simpler
step forward by adding a standardized reproductive health
history questionnaire to their demographic batteries. This
is particularly important for large-scale, publicly available
data repositories that collect brain imaging and cognitive
data on community-based cohorts (e.g., WU-Minn Human
Connectome Project, Harvard Brain Genomics Superstruct
Project, Philadelphia Neurodevelopmental Cohort). Few of these
databases include standardized data on parity, use of hormone-

based medications, menstrual cycle histories and/or incidence of
common endocrine disorders. The Human Connectome Project-
Agingmakes progress on this front by collecting serum and saliva
samples for hormone characterization and by using an enriched
medical history questionnaire that includes some assessments of
reproductive health (Bookheimer et al., 2019).

If the practice of collecting a standardized reproductive
health history becomes routine, the field will be better able to
incorporate hormone factors into models of the aging brain
and can then use these findings to guide tightly controlled
follow-up studies. Adopting this standard would provide a
richer characterization of the sample population being studied
and could enable meta-analyses that model the impact of
endocrine variables on brain and cognitive outcomes. For
example, do women who undergo early vs. late menopause
show worse cognitive performance and greater neuropathology
later in life? Does age of initiation or duration of OC use
alter age-related changes in brain morphology? Do common
medications that suppress sex hormone levels (e.g., Lupron
for endometriosis) have enduring effects on brain structure,
function, and cognition? Answers to these questions are
long overdue.

CONCLUSION

The biomedical sciences have treated the male as the
representative sex for half a century. As Kathleen Okruhlik
wrote in Okruhlik (1994):

‘‘. . .the treatment of menstruation, pregnancy, and childbirth as
diseases or medical emergencies may be traced to the fact that these
are not things that happen to the ideal healthy human being who
is, of course, male. The ideal healthy lab rat is also male. His body,
his hormones, and his behaviors define the norm; so he is used in
experiments. Female hormones and their effects are just nuisance
variables that muck up the works, preventing experimenters from
getting at the pure, clean, stripped-down essence of rat-hood as
instantiated by the male model. Insofar as the female of the species
is truly a rat (or truly a human being), she is covered by the
research on males. Insofar as she is not included in that research,
it is because she is not an archetypal member of her own species.
The dangerous effects of such research procedures, especially in the
biomedical sciences, are just now being documented. For far too
long, the assumption underlying these experimental designs (that
males are the norm) simply went unchallenged.’’

Science has to represent society, especially since the bulk
of academic research is publicly funded by tax-payer dollars.
Moving forward, scientists must ensure that our research
program serves men and women alike. Historically, cognitive
neuroscience has largely overlooked aspects of the human
condition (the menstrual cycle, OCs, pregnancy, menopause)
that are relevant to half of the world’s population (and half of
the US tax-base), and should correct course in order for the field
to advance.
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