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To maximize brain plasticity after stroke, a plethora of rehabilitation strategies have been
explored. These include the use of intensive motor training, motor-imagery (MI), and
action-observation (AO). Growing evidence of the positive impact of virtual reality (VR)
techniques on recovery following stroke has been shown. However, most VR tools
are designed to exploit active movement, and hence patients with low level of motor
control cannot fully benefit from them. Consequently, the idea of directly training the
central nervous system has been promoted by utilizing MI with electroencephalography
(EEG)-based brain-computer interfaces (BCIs). To date, detailed information on which
VR strategies lead to successful functional recovery is still largely missing and very
little is known on how to optimally integrate EEG-based BCIs and VR paradigms for
stroke rehabilitation. The purpose of this study was to examine the efficacy of an EEG-
based BCI-VR system using a MI paradigm for post-stroke upper limb rehabilitation
on functional assessments, and related changes in MI ability and brain imaging. To
achieve this, a 60 years old male chronic stroke patient was recruited. The patient
underwent a 3-week intervention in a clinical environment, resulting in 10 BCI-VR training
sessions. The patient was assessed before and after intervention, as well as on a
one-month follow-up, in terms of clinical scales and brain imaging using functional
MRI (fMRI). Consistent with prior research, we found important improvements in upper
extremity scores (Fugl-Meyer) and identified increases in brain activation measured by
fMRI that suggest neuroplastic changes in brain motor networks. This study expands
on the current body of evidence, as more data are needed on the effect of this type of
interventions not only on functional improvement but also on the effect of the intervention
on plasticity through brain imaging.
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INTRODUCTION

Worldwide, stroke is a leading cause of adult long-term
disability (Mozaffarian et al., 2015). From those who survive,
an increased number is suffering with severe cognitive and
motor impairments, resulting in loss of independence in
their daily life such as self-care tasks and participation in
social activities (Miller et al., 2010). Rehabilitation following
stroke is a multidisciplinary approach to disability which
focuses on recovery of independence. There is increasing
evidence that chronic stoke patients maintain brain plasticity,
meaning that there is still potential for additional recovery
(Page et al., 2004). Traditional motor rehabilitation is applied
through physical therapy and/or occupational therapy. Current
approaches of motor rehabilitation include functional training,
strengthening exercises, and range of movement exercises.
In addition, techniques based on postural control, stages of
motor learning, and movement patterns have been proposed
such as in the Bobath concept and Bunnstrom approach
(amongst others) (Bobath, 1990). After patients complete
subacute rehabilitation programs, many still show significant
upper limb motor impairment. This has important functional
implications that ultimately reduce their quality of life. Therefore,
alternative methods to maximize brain plasticity after stroke need
to be developed.

So far, there is growing evidence that action observation (AO)
(Celnik et al., 2008) and motor imagery (MI) improve motor
function (Mizuguchi and Kanosue, 2017) but techniques based
on this paradigm are not widespread in clinical settings. As motor
recovery is a learning process, the potential of MI as a training
paradigm relies on the availability of an efficient feedback system.
To date, a number of studies have demonstrated the positive
impact of virtual-reality (VR) based on neuroscientific grounds
on recovery, with proven effectiveness in the stroke population
(Bermúdez i Badia et al., 2016). However, patients with no active
movement cannot benefit from current VR tools due to low
range of motion, pain, fatigue, etc. (Trompetto et al., 2014).
Consequently, the idea of directly training the central nervous
system was promoted by establishing an alternative pathway
between the user’s brain and a computer system.

This is possible by using electroencephalography (EEG)-
based Brain-Computer Interfaces (BCIs), since they can provide
an alternative non-muscular channel for communication and
control to the external world (Wolpaw et al., 2002), while
they could also provide a cost-effective solution for training
(Vourvopoulos and Bermúdez, 2016b). In rehabilitation, BCIs
could offer a unique tool for rehabilitation since they can
stimulate neural networks through the activation of mirror
neurons (Rizzolatti and Craighero, 2004) by means of action-
observation (Kim et al., 2016), motor-intent and motor-imagery
(Neuper et al., 2009), that could potentially lead to post-stroke
motor recovery. Thus, BCIs could provide a backdoor to the
activation of motor neural circuits that are not stimulated
through traditional rehabilitation techniques.

In EEG-based BCI systems for motor rehabilitation, Alpha
(8–12 Hz) and Beta (12–30 Hz) EEG rhythms are utilized since
they are related to motor planning and execution (McFarland

et al., 2000). During a motor attempt or motor imagery,
the temporal pattern of the Alpha rhythms desynchronizes.
This rhythm is also named Rolandic Mu-rhythm or the
sensorimotor rhythm (SMR) because of its localization over
the sensorimotor cortices. Mu-rhythms are considered indirect
indications of functioning of the mirror neuron system and
general sensorimotor activity (Kropotov, 2016). These are often
detected together with Beta rhythm changes in the form of an
event-related desynchronization (ERD) when a motor action is
executed (Pfurtscheller and Lopes da Silva, 1999). These EEG
patterns are primarily detected during task-based EEG (e.g., when
the participant is actively moving or imagining movement) and
they are of high importance in MI-BCIs for motor rehabilitation.

A meta-analysis of nine studies (combined N = 235, sample
size variation 14 to 47) evaluated the clinical effectiveness
of BCI-based rehabilitation of patients with post-stroke
hemiparesis/hemiplegia and concluded that BCI technology
could be effective compared to conventional treatment (Cervera
et al., 2018). This included ischemic and hemorrhagic stroke in
both subacute and chronic stages of stoke, between 2 to 8 weeks.
Moreover, there is evidence that BCI-based rehabilitation
promotes long-lasting improvements in motor function of
chronic stroke patients with severe paresis (Ramos-Murguialday
et al., 2019), while overall BCI’s are starting to prove their efficacy
as rehabilitative technologies in patients with severe motor
impairments (Chaudhary et al., 2016).

The feedback modalities used for BCI motor rehabilitation
include: non-embodied simple two-dimensional tariffs on a
screen (Prasad et al., 2010; Mihara et al., 2013), embodied avatar
representation of the patient on a screen or with augmented
reality (Holper et al., 2010; Pichiorri et al., 2015), neuromuscular
electrical stimulation (NMES) (Kim et al., 2016; Biasiucci et al.,
2018). and robotic exoskeletal orthotic movement facilitation
(Ramos-Murguialday et al., 2013; Várkuti et al., 2013; Ang
et al., 2015). In addition, it has been shown that multimodal
feedback lead to a significantly better performance in motor-
imagery (Sollfrank et al., 2016) but also multimodal feedback
combined with motor-priming, (Vourvopoulos and Bermúdez,
2016a). However, there is no evidence which modalities are more
efficient in stroke rehabilitation are.

Taking into account all previous findings in the effects
of multimodal feedback in MI training, the purpose of this
case study is to examine the effect of the MI paradigm as a
treatment for post-stroke upper limb motor dysfunction using
the NeuRow BCI-VR system. This is achieved through the
acquisition of clinical scales, dynamics of EEG during the BCI
treatment, and brain activation as measured by functional MRI
(fMRI). NeuRow is an immersive VR environment for MI-
BCI training that uses an embodied avatar representation of
the patient arms and haptic feedback. The combination of MI-
BCIs with VR can reinforce activation of motor brain areas, by
promoting the illusion of physical movement and the sense of
embodiment in VR (Slater, 2017), and hence further engaging
specific neural networks and mobilizing the desired neuroplastic
changes. Virtual representation of body parts paves the way to
include action observation during treatment. Moreover, haptic
feedback is added since a combination of feedback modalities
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could prove to be more effective in terms of motor-learning
(Sigrist et al., 2013). Therefore, the target of this system is to be
used by patients with low or no levels of motor control. With
this integrated BCI-VR approach, severe cases of stroke survivors
may be admitted to a VR rehabilitation program, complementing
traditional treatment.

METHODOLOGY

Patient Profile
In this pilot study we recruited a 60 years old male patient
with left hemiparesis following cerebral infarct in the right
temporoparietal region 10 months before. The participant
had corrected vision through eyewear, he had 4 years of
schooling and his experience with computers was reported as
low. Moreover, the patient was on a low dose of diazepam
(5 mg at night to help sleep), dual antiplatelet therapy, anti-
hypertensive drug and metformin. Hemiparesis was associated
with reduced dexterity and fine motor function; however,
sensitivity was not affected. Other sequelae of the stroke
included hemiparetic gait and dysarthria. Moreover, a mild
cognitive impairment was identified which did not interfere
with his ability to perform the BCI-VR training. The patient
had no other relevant comorbidities. Finally, the patient was
undergoing physiotherapy and occupational therapy at the
time of recruitment and had been treated with botulinum
toxin infiltration 2 months before due to focal spasticity of
the biceps brachii.

Intervention Protocol
The patient underwent a 3-weeks intervention with NeuRow,
resulting in 10 BCI sessions of a 15 min of exposure in VR
training per session. Clinical scales, motor imagery capability
assessment, and functional -together with structural- MRI data
had been gathered in three time-periods: (1) before (serving
as baseline), (2) shortly after the intervention and (3) one-
month after the intervention (to assess the presence of long-term
changes). Finally, electroencephalographic (EEG) data had been
gathered during all sessions, resulting in more than 20 datasets of
brain electrical activity.

The experimental protocol was designed in collaboration with
the local healthcare system of Madeira, Portugal (SESARAM) and
approved by the scientific and ethic committees of the Central
Hospital of Funchal. Finally, written informed consent was
obtained from the participant upon recruitment for participating
to the study but also for the publication of the case report in
accordance with the 1964 Declaration of Helsinki.

Assessment Tools
A set of clinical scales were acquired including the following:

1. Montreal Cognitive Assessment (MoCA). MoCA is a
cognitive screening tool, with a score range between 0
and 30 (a score greater than 26 is considered to be
normal) validated also for the Portuguese population,
(Nasreddine et al., 2005).

2. Modified Ashworth scale (MAS). MAS is a 6-point rating
scale for measuring spasticity. The score range is 0, 1, 1+,
2, 3, and 4 (Ansari et al., 2008).

3. Fugl-Meyer Assessment (FMA). FMA is a stroke specific
scale that assesses motor function, sensation, balance,
joint range of motion and joint pain. The motor
domain for the upper limb has a maximum score of 66
(Fugl-Meyer et al., 1975).

4. Stroke Impact Scale (SIS). SIS is a subjective scale of the
perceived stroke impact and recovery as reported by the
patient, validated for the Portuguese population. The score
of each domain of the questionnaire ranges from 0 to 100
(Duncan et al., 1999).

5. Vividness of Movement Imagery Questionnaire (VMIQ2).
VMIQ2 is an instrument that assess the capability of
the participant to perform imagined movements from
external perspective (EVI), internal perspective imagined
movements (IVI) and finally, kinesthetic imagery (KI)
(Roberts et al., 2008).

NeuRow BCI-VR System
EEG Acquisition
For EEG data acquisition, the Enobio 8 (Neuroelectrics,
Barcelona, Spain) system was used. Enobio is a wearable
wireless EEG sensor with 8 EEG channels for the recording
and visualization of 24-bit EEG data at 500 Hz and a
triaxial accelerometer. The spatial distribution of the electrodes
followed the 10–20 system configuration (Klem et al., 1999)
with the following electrodes over the somatosensory and
motor areas: Frontal-Central (FC5, FC6), Central (C1, C2,
C3, C4), and Central-Parietal (CP5, CP6) (Figure 1A). The
EEG system was connected via Bluetooth to a dedicated
desktop computer, responsible for the EEG signal processing
and classification, streaming the data via UDP through the
Reh@Panel (RehabNet Control Panel) for controlling the
virtual environment. The Reh@Panel is a free tool that
acts as a middleware between multiple interfaces and virtual
environments (Vourvopoulos et al., 2013).

Head Mounted Display
For delivering the visual feedback to the user, the Oculus Rift
DK1 HMD was used (Oculus VR, Irvine, CA, United States).
The HMD is made of one 7′′ 1280 × 800 60 Hz LCD display
(640 × 800 resolution per eye), one aspheric acrylic lens per eye,
110o Field of View (FOV), internal tracking through a gyroscope,
accelerometer, and magnetometer, with a tracking frequency of
1000 Hz (Figure 1B).

Haptic Feedback
For delivering vibrotactile feedback, a custom module was used
with out-of-the-box components including an Arduino Mega
2560 board and vibrating motors. The vibrating motors (10 mm
diameter, 2.7 mm thick) performed at 11000 RPM at 5 V and were
mounted inside cylindrical tubes -using 3D printed casing- which
act as grasping objects for inducing the illusion of movement
during the BCI task. In our setup, a pair of tubes with 12 cm

Frontiers in Human Neuroscience | www.frontiersin.org 3 July 2019 | Volume 13 | Article 244

https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-13-00244 July 10, 2019 Time: 17:16 # 4

Vourvopoulos et al. BCI-Driven VR System for Stroke

FIGURE 1 | Experimental setup, including: (A) the wireless EEG system; (B) the Oculus HMD, together with headphones reproducing the ambient sound from the
virtual environment; (C) the vibrotactile modules supported by a custom-made table-tray, similar to the wheelchair trays used for support; (D) the visual feedback
with NeuRow game. A written informed consent was obtained for the publication of this image.

(4.7 inches) of length and 3 cm (1.2 inches) diameter were
used (Figure 1C).

VR Feedback
The BCI-VR task involved the use of NeuRow, a first-person BCI
game (or neurogame). NeuRow uses a self-paced BCI paradigm
and not a cue-based in order to increase the ecological validity
of the training task. The actions are triggered whenever the
user intends to move, like one would do in a real-life scenario.
The BCI-VR task involves a boat rowing task through mental
imagery with the goal of collecting as many flags as possible
in a fixed amount of time. The auditory feedback involved two
types of sounds. (1) background and ambient sounds of the water
including rowing movement for increased realism and (2) event
sounds for when the player was achieving a score by capturing a
flag. NeuRow is a multiplatform virtual environment developed
in Unity game engine (Unity Technologies, San Francisco, CA,
United States). Finally, NeuRow was used under Windows OS,
although it is optimized also for Android and Web browser by
using the Reh@Panel (Vourvopoulos et al., 2016b).

The in-game interface includes time indication, score,
navigational aids and first-person perspective of a virtual
avatar representation of upper limbs rowing. NeuRow can
be customized with different settings, depending on the
experimental setup, BCI paradigm and running platform.
NeuRow has two operating modes: (1) MI training and (2) online
control. During training, the navigational arrow and the targets
are removed to focus user’s attention only on the MI BCI-VR task.
During online mode, the behavior of the boat can be changed by
setting the heading speed, turn speed and cut-off angle of 45◦. The

cut-off angle is the allowed angle that the boat can be off-course
with respect to the target flag before stopping. This serves as an
additional safety feature to ensure that the user does not deviate
from the target since the virtual environment is procedurally
generated (Figure 1D).

NeuRow BCI-VR Protocol
Training Session
The first step of the training consisted on the acquisition of
the raw EEG data to train a linear classifier to distinguish
between Right and Left imagined hand movements. Throughout
the training session, the user performed mental imagery of the
corresponding hand rowing (left or right) at the same pace
as the movement presented in VR. For each hand, the user
is stimulated visually (VR action observation), auditorily, and
haptically through the vibration on the corresponding hand. The
training session was configured to acquire data in 24 blocks
(epochs) per class (left or right hand imagery) in a randomized
order (Figure 2).

Online EEG Data Processing
Following training, the acquired signals were processed with a
bandpass filter (8–30 Hz), epoched into 4 s chunks following
a stimulation event and used to compute a Common Spatial
Patterns (CSP) filter. CSP was used in order to maximize the
difference between the signals of the two classes (left vs right) for
increased performance, and has become a standard tool in the use
of MI-based BCIs (Lotte, 2014). Further, the training EEG data
through the spatial filter feature vector were used to train a Linear
Discriminant Analysis (LDA) classifier. LDA computed a vector
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FIGURE 2 | BCI Protocol: (A) Intervention stages including the setup, training, resting period and finally the BCI task. (B) The training stages. (C) Training feedback
distributed in 24 epochs per class (left|right)

which best discriminates between the two classes (left or right
motor-imagery). Finally, the LDA output (hyperplane distance)
was used as an input to the Adaptive Performance Engine (APE)
(Ferreira et al., 2015). The APE module is composed a Bayesian
Inference Layer (BIL) and a Finite State Machine (FSM) and
it was added to smoothen binary decisions in a self-paced BCI
scenario. BIL was computed as the likelihood of a specific LDA
output belonging to each MI class with the following formula:

P(i|LDA · output =
MIi(LDA · output, µi,σi)

∗Pi∑
j MIj(LDA · output, µj,σj)

(1)

where Pi indicates the prior probability of action i (0.5 for left
vs. right MI). µ and σ are updated at each iteration, taking into
account all previous history of the user for the given i MI action.
LDA output indicates the output value of the LDA classifier.

Next, the posterior probabilities of each class (left or right MI)
were sent to the FSM. Each state in the FSM represents the class,
but also the confidence level associated to them.

EEG Offline Analysis
For the offline analysis, EEG signals were processed in MATLAB R©

(The MathWorks, Natick, MA, United States) with the EEGLAB
toolbox (Delorme and Makeig, 2004). After importing the data
together with the channel info, a high-pass filter at 1 Hz
was used to remove the “baseline drift” followed by line-
noise and harmonics removal at 50 Hz. Furthermore, bad
channels were rejected, and the data were subsequently re-
referenced to average. Any potential missing channels had been
interpolated to minimize a potential bias in the re-referencing
stage through the pop_interp() function of EEGLAB which
uses the spherical spline algorithm (Perrin et al., 1989). Next,
an Independent Component Analysis (ICA) was performed
for removing eye blinking, and movement artifacts (Makeig
et al., 1996). For the independent components (IC) labeling, we
performed manual artifact recognition by inspecting the different

components both in the time and frequency domain but using
also the ICLabel plugin from EEGLAB. The ICLabel plugin
includes a trained classifier for EEG independent component
which provides us with the probabilities that a component
is being in any of the seven categories: brain; muscle; eye;
heart; line noise; channel noise; other. The ICLabel classifier is
trained by using crowd sourced data labeling or crowd labeling
(Pion-Tonachini et al., 2017).

EEG Spectral Power
The Welch’s method for Power Spectral Density (PSD) of the
power spectrum (Welch, 1967) was used for computing the
average spectral power across the following frequency bands
during the training task: Alpha (8–12 Hz), Beta (12–30 Hz), Theta
(4–7 Hz), and Gamma (35–90 Hz). In addition, Alpha PSD was
computed during resting-state before the trials.

Event-Related Desynchronization
In addition, the event-related
synchronization/desynchronization (ERS/ERD) was extracted
following the standard ERS/ERD method (Pfurtscheller and
Aranibar, 1979) across the Mu band (8–12 Hz) and the Beta
band (12–30 Hz). Both Mu and Beta power were extracted over
C3 and C4 electrode locations. ERD was calculated by using the
following formula:

ERDC3|C4 = (PowerC3|C4MotorActivity − PowerC3|C4Baseline)

/PowerC3|C4Baseline × 100 (2)

With positive numbers indicating ERS and negative
numbers indicating ERD.

Moreover, ERDS maps were extracted as a time/frequency
representation of ERD/ERS between 8 and 30 Hz (Graimann
et al., 2002). ERDS maps are also known as ERSP (event-related
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spectral perturbation) and act as a generalization of the ERS/ERD
(Makeig, 1993).

Lateralization Index
Lateralization between hemispheres is generally assessed by
a lateralization index (LI), commonly used to describe the
asymmetry of neural activation intensity. In this study, LI was
computed on the basis of the relative power values detected over
C3 and C4 electrodes (Doyle et al., 2005). In order to quantify
lateralization, the spectral power at electrodes, contralateral to the
movement side, was subtracted from that at ipsilateral electrodes.
Moreover, we have extracted the LI for both Mu ERD and
Beta ERD during training in terms of relative power, with its
sign indicating contralateral ERS (negative) or ERD (positive)
dominance (Doyle et al., 2005). For example, if the contralateral
value is smaller than the ipsilateral value, then LI value is positive,
indicating contralaterally desynchronized status in the evoked
ERD during MI. Finally, the LI was computed as the average of
the right and left side differences using the following formula:

LI = [(ERDC3Left movement − ERDC4Left movement)

+ (ERDC4Right movement − ERDC3Right movement)]/2 (3)

BCI Accuracy
For measuring the BCI performance during the training phase,
the following formula was used for quantifying binary accuracy
from the classifier:

ACC = (TP+ TN)/(TP+ TN+ FP+ FN) (4)

where: TP, true positive; FP, false positive; TN, true negative;
FN, false negative.

fMRI Acquisition and Analysis
Task
The patient was submitted to five fMRI consecutive runs at
each of the three assessment periods, while executing the
following tasks: finger-tapping execution with the non-affected
hand (ME-Right), finger-tapping motor imagery with both left
and right hands, separately (MI-Left and MI-Right), and motor
imagery with NeuRow with both left and right hands, separately
(MI-NeuRow-Left and MI-NeuRow-Right). Thus, a total of
3(periods) × 5(runs) = 15 fMRI runs were performed. For all
conditions, each run consisted of 7 cycles alternating a 20 s
block of baseline (fixation cross) followed by a 20 s block of
task; yielding a total duration of each fMRI run of 5.33 min
(Pimentel et al., 2013).

In the finger-tapping execution condition (ME), the patient
was instructed to execute a sequential finger-tapping task
(index-middle-ring-little-index-middle-ring-little) from a first-
person perspective with his non-affected arm (Figure 3a). In
the finger-tapping motor imagery condition (MI), the patient
had to imagine the kinesthetic experience of the previous
finger-tapping task for the left and right hand separately,
based on the provided stimulus/instruction (Figure 3b). Each
trial started with a fixation cross, followed by a red arrow
pointing to the left or right, indicating the beginning of a
movement execution/imagination period, known as the standard
Graz Motor Imagery protocol. In the last condition, the
motor observation (MO), patient had to observe and imagine
the kinesthetic experience of the rowing task from NeuRow

FIGURE 3 | fMRI protocol. (a) Motor-Execution feedback, (b) Motor-Imagery feedback with directional arrows, (c) Motor-Observation feedback of NeuRow.
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from the first-person perspective for the left and right hand
separately, based on the provided stimulus (Figure 3c). The
fixation cross (baseline) from the motor imagery condition
was replaced by NeuRow feedback in idle (floating without
rowing); then, the corresponding movement was initiated for left
or right rowing.

For the fMRI data acquisition, only visual and auditory
feedback was delivered. The visual feedback was delivered
through specialized MR-compatible fiber-optic goggles at a
resolution of 640 × 480 pixels, synchronized with the
console computer. The sound was delivered through MR
compatible pneumatic headphones, but no haptic feedback was
delivered during the fMRI session due to the lack of MR
compatible equipment.

Image Acquisition
Imaging was performed on a 3T GE Signa HDxt MRI
scanner (General Electrics Healthcare, Little Chalfont,
United Kingdom) using 12-channel receive head coil.
Functional images were acquired using a 2D multi-slice
gradient-echo echo-planar imaging (EPI) sequence, with
TR/TE = 2500/30 ms, flip angle = 90◦c, and FOV = 224 × 224
mm2, from 36 contiguous axial slices with interleaved
acquisition, and 3.5 × 3.5 × 3.5 mm3 voxel size (0.75 mm
slice gap), yielding whole-brain coverage. Whole-brain,
structural images were acquired using a T1-weighted
3D fast spoiled gradient-echo (FSPGR) sequence, with
1.0× 1.0× 0.6 mm3 voxel size.

Image Pre-processing
The following pre-processing steps were applied to the fMRI
data recorded at all periods and runs prior to subsequent
analyses. The first three volumes were discarded to allow the
signal to reach the steady-state, and non-brain tissue was
removed using FSL’s tool BET (Smith, 2002). Subsequently,
slice timing and motion correction were performed using FSL’s
tool MCFLIRT (Jenkinson et al., 2002), followed by high-pass
temporal filtering with a cut-off period of 100 s and spatial
smoothing using a Gaussian kernel with full width at half-
maximum (FWHM) of 5 mm.

Because of the contamination by head motion as well
as other physiological and instrumental artifacts, the pre-
processed fMRI data were further submitted to an independent
component analysis (ICA) cleaning procedure. Specifically,
the probabilistic spatial ICA decomposition was applied, as
implemented in the FSL’s tool MELODIC (Beckmann and Smith,
2004), with the default parameters, including the MELODIC’s
automatic dimensionality estimation, as recommended in Salimi-
Khorshidi et al. (2014). The purpose of ICA in this case
was to separate neuronal from non-neuronal fMRI spatially
independent components (ICs). The automatic classification
of ICs was performed using FSL’s tool FIX (Salimi-Khorshidi
et al., 2014). This tool extracts a large number of temporal
and spatial features to be fed into a core classifier previously
trained using hand-labeled components. The standard training
weights were used, as the image acquisition parameters for
our fMRI data. The non-neuronal related ICs were then

automatically classified by FIX, and subsequently removed
from the back-reconstruction step of the fMRI data, yielding
cleaned fMRI data.

Statistical Analysis
For the purpose of mapping the brain areas involved in each
fMRI run (left finger-tapping, left and right motor imagery,
and left and right motor imagery with NeuRow), a general
linear model (GLM) analysis of the pre-processed and ICA-
based cleaned fMRI data was conducted. For each of the five
fMRI runs, the explanatory variable of interest of the GLM
was defined as a boxcar function, with 0’s during the baseline
periods (fixation cross or boat floating without rowing) and
1’s during the task periods, and subsequently convolving it
with a canonical double-gamma hemodynamic response function
(Friston et al., 1995). A GLM containing the explanatory variable
of interest, as well as the six motion parameters (rotation and
translation of the head across the three main axes) estimated by
MCFLIRT as confounding explanatory variables, was fit to the
pre-processed data using FSL’s improved linear model (FILM).
A t-test was performed on the parameter estimate for the
explanatory variable of interest in each voxel and converted to
Z-score. The resulting statistical parametric maps were subjected
to cluster thresholding (voxel Z > 2.3, cluster p < 0.05) in
order to yield the brain activation maps associated with each task
(Woolrich et al., 2001).

The quantification of brain activation with each task was
performed for each cerebral hemisphere separately and was
based on the number of voxels exhibiting significant activation
(voxels surviving the statistical thresholding; Nvox), and the
maximum Z-score (Zmax). While the former approximately
reflects the extent of brain activation, the latter approximately
reflects its intensity.

RESULTS

Here we present the results from the clinical scales, the MI
capability assessment and the fMRI data, obtained in the three
time-periods (pre; post; follow-up). In addition, we present
results of the BCI performance over all sessions and the extracted
EEG data, compared between the first and the last session.

Clinical Scales
In terms of motor domain as extracted by the FMA scale
for the upper extremity (FMA-UE), the patient showed an
improvement of 9 points at the end of the intervention
(pre: 31, post: 40), followed by an improvement of 4 points
(follow-up: 44) after 1 month (Table 1). This improvement
is within the estimated clinically important difference (CID)
scores, ranging between 4.25 and 7.25 points (Page et al.,
2012). Moreover, by comparing the CID with the mean scores
of prior BCI studies (M = 7.5, SD = 3.6) together with
control groups (M = 4, SD = 2.2) (Mihara et al., 2013;
Ramos-Murguialday et al., 2013; Ang et al., 2014, 2015; Li
et al., 2014; Pichiorri et al., 2015; Frolov et al., 2016; Kim
et al., 2016; Leeb et al., 2016), we are able to identify a
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TABLE 1 | Clinical scales: Fugl-Meyer upper limb scale (FMA), Montreal Cognitive
Assessment (MoCA) and Modified Ashworth Scale (MAS).

Pre Post Follow-up

FMA 31 40 44

MoCA 20 21 18

MAS 1+ 2 1+

big improvement of the patient in relation to both groups
(Supplementary Figure 3).

Concerning spasticity, muscle tonus was increased but
did not interfere with range of motion. SIS showed a
conspicuous increase in the strength domain, however, the
overall subjective assessment of the patient over his recovery
remained constant (Table 2).

Motor-Imagery Capability
VMIQ Pre-Post-follow
The capability for vivid MI, was assessed through 3 sub-scales of
VMIQ-2, external visual imagery (EVI), internal visual imagery
(IVI) and finally kinesthetic imagery (KI) (Table 3). For EVI an
increased visual capability was reported after the intervention
while maintained in the follow-up (pre:19, post: 47, follow-up:
47). Further, the IVI had a small increase post-intervention but
returned to the same level after 1 month (pre:47, post: 48, follow-
up: 47). Regarding KI, while it remained stable at the pre-post
assessment, a lower level was reported at the follow-up (pre:47,
post: 47, follow-up: 39) accompanied by a slight decrease in
KI vividness. This may be explained by the fact that during
the one-month period after intervention, the patient did not
undergo any BCI training nor exercises involving kinesthetic
imagery. Nonetheless, there was still a strong use of external and
internal imagery.

TABLE 2 | Stroke impact scale SIS subscales.

Pre Post Follow-up

Strength 50 87.5 87.5

Hand function 100 95 95

Mobility 100 100 100

Memory 100 100 100

ADL and IADL 95 97.5 97.5

Communication 100 100 100

Emotion 97.2 94.4 94.4

Handicap 100 87.5 87.5

Physical domain 86.3 95 95

Stroke recovery 70 70 70

TABLE 3 | VMIQ-2 subscales of External Visual Imagery (EVI), Internal Visual
Imagery (IVI) and Kinesthetic Imagery (KI).

Pre Post Follow-up

EVI 19 47 47

IVI 47 48 47

KI 43 44 39

Comparison With Healthy Participants
Comparing the MI capability data of the VMIQ-2
questionnaire with a group of healthy participants (N = 8)
that underwent the same BCI protocol from a previous
study (Vourvopoulos et al., 2016b), we can estimate a
“healthy” range for motor-imagery capability of healthy
population as a reference (Figure 4). Concerning the
difference in EVI comparing pre-post assessments of our
patient, we can observe a pronounced leap after the BCI-VR
intervention, overpassing the average score of the healthy group
(Figure 4). In contrast, the IVI and KI scores (that showed
to be stable), are within the healthy range of the reported
motor-imagery capability.

BCI Performance
Classifier Performance
The overall classification performance during the 10 training
sessions, was kept relatively low (M = 60, SD = 5.7)
(Figure 5). Since we trained out classifier with features
originating from both beta and mu bands, we wanted to
investigate if there is a dominant frequency that could
help achieving increased classification performance. A pair-
samples t-test over C3 [t(9) = −0.9968, p = 0.34] and C4
[t(9) = 1.0878, p = 0.3049] during MI of the paretic arm,
revealed non-significant differences between beta and mu ERD
(Supplementary Figure 1).

Next, we compared the classification score across all
sessions with the mean of two groups of healthy users.
First with a group of participants (N = 8) that underwent
the same BCI protocol with NeuRow (Vourvopoulos et al.,
2016b) from a previous study (VR group) and secondly
with a group of a study (N = 12) (Vourvopoulos et al.,
2016a) that used the same feature extraction method (band
power with CSP) and classification (LDA) for two-classes

FIGURE 4 | VMIQ-2 subscales comparison of Pre, Post and Follow-up scores
with healthy data
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FIGURE 5 | (i) LDA classification performance over time within 10 sessions, (ii) distribution of performance.

(left/right hand) MI data but not with VR feedback (non-
VR group).

An independent sample t-test revealed significant differences
between the patient LDA score (M = 60, SD = 5.7) with the
VR group (M = 76, SD = 3), t(16) = −7.121. p < 0.001,
but also with the non-VR group (M = 68, SD = 7.7),
t(20) = −2.730, p < 0.05. Moreover, a significant difference
was also found between the healthy VR and non-VR groups,
t(18) = −2.720. p < 0.05 (Figure 6). Despite data showing
improved performance with VR, our patient performed close to
healthy in non-VR settings.

EEG
Resting state Alpha band modulation is found to be related with
cognitive and motor performance in stroke patients (Dubovik
et al., 2012, 2013). We therefore analyzed the resting state
Alpha rhythm pre and -post intervention (Supplementary

FIGURE 6 | LDA Comparison with healthy. Statistically significant differences
between Case-study, VR and non-VR groups has been observed (∗p < 0.05).

Figure 2). Our results showed an increase in modulation of
Alpha from Pre (M = 0.44, SD = 0.05) to Post (M = 0.62,
SD = 0.24) although a paired-samples t-test yielded no significant
differences (p = 0.20).

Furthermore, by comparing the evoked EEG activity during
training with a prior study with NeuRow (Vourvopoulos et al.,
2016b), we can observe a consistent trend between the first
and last session. EEG power from healthy participants using
the same experimental apparatus, can be used as a proxy for
“healthy” EEG modulation boundaries. For all EEG bands, we
found that the EEG power on the first session (Pre) is in the lower
quartile (Q1) of the distribution while on the last session the
EEG power always increases, closer approximating the Median
of the healthy distribution inside the Interquartile Range (IQR).
Current results indicate a convergence toward the healthy group
EEG power (Figure 7).

Since both movement and imagery are associated with
Mu and Beta rhythm desynchronization (McFarland et al.,
2000), by measuring ERD during the patients training, we
anticipated stronger ERD (in terms of higher negative percentage
compared to baseline) at the end of the intervention. Nonetheless,
the evoked ERD had small power in both Mu and Beta
bands (Figure 8).

The ERD activation maps were extracted as a time/frequency
representation of the first and last session during MI from the
affected hand (left). Maps illustrate a clear desynchronization in
the band 8–30 Hz -compared to baseline- from the contralesional
electrode (C3) but not the ipsilesional side (C4). Nonetheless,
in the last session, ERD is decreased but it is also more
balanced (Figure 9).

In terms of laterality, LI shows an ipsilateral ERD dominance,
evolving toward a contralateral ERD over time, balancing for
both Mu and Beta bands (Figure 10). Furthermore, a paired-
samples t-test revealed significant differences between the first
and the last session in terms of LI ERD. Specifically, Beta band
had increased ipsilateral ERD dominance in the first session
(M = −2.82, SD = 2.3), balancing for both hemispheres in
the last session (M = −0.6, SD = 0.3), t(199) = −16.921,
p < 0.001. Similar trend for Mu band between the first
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FIGURE 7 | EEG spectral power comparison Pre-Post the intervention with healthy user data.

FIGURE 8 | ERS/ERD during Left and Right MI for both Mu and Beta bands.
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FIGURE 9 | ERS/ERD activation maps during left (lesioned) hand motor-imagery. Significant ERD is illustrated with blue.

FIGURE 10 | Lateralization index for Mu and Beta bands across all sessions.
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(M = −1.8, SD = 3.1) and the last session (M = 0.41, SD = 0.5),
t(199) =−9.832, p < 0.001.

fMRI
The quantification of brain activation (Nvox and Zmax values) for
the finger-tapping motor imagery conditions without NeuRow
(MI-Left and MI-Right) and with NeuRow (MI-NeuRow-Left
and MI-NeuRow Right) is depicted in Table 4; in Figure 11,
the brain activation maps for these conditions are presented,
separately for the left and right hand.

We found that the intensity of brain activation during MI and
MI-NeuRow relative to baseline (quantified by Zmax) increased
substantially from the pre-intervention to the post-intervention
study and was sustained at the follow-up study (except for
the MI-NeuRow-Left, which decreased at the follow-up study).
Importantly, by adding the NeuRow to the MI tasks, an
increase in Zmax was observed at all study periods, thus
supporting the relevance of NeuRow to improve the capability
of the patient to perform the MI task. Moreover, an increase
in the extent of brain activation (quantified by Nvox) was
also observed when comparing the pre-intervention with the
post-intervention and follow-up studies for all conditions.
Interestingly, the lesioned (left) hemisphere was not recruited
during either left or right MI conditions, nor the right MI-
NeuRow condition, at the pre-intervention study (Nvox = 0); and
this was reversed with the intervention (MI-Left: Nvox = 277;
MI-Right: Nvox = 377; MI-NeuRow-Right: Nvox = 356) and
sustained at the follow-up study (MI-Left: Nvox = 286; MI-Right:
Nvox = 526; MI-NeuRow-Right: Nvox = 442). These activation
maps evidence the recruitment of brain regions known to
be associated with motor activation and imagery (primary
motor cortex and supplementary motor area), including those
in the lesioned hemisphere. In contrast with the intensity of
brain activation, it was not found differences in the extent of
brain activation when comparing MI and MI-NeuRow at their
respective study periods.

DISCUSSION

Our results, with an initial case study show clear improvements
and recovery regarding motor function in terms of clinical
scales, self-reported scales, electrophysiological data and
brain imaging data.

In terms of clinical scales, FMA has shown a stable increase in
motor functioning followed throughout all assessments. This so-
called carryover effect is known to involve specific mechanisms of
action based on movement prediction and sense of agency/body
ownership. Moreover, this effect influences the ability of a
patient to plan the movement and to perceive the stimulation
as a part of his/her own control loop (Gandolla et al., 2016).
That could indicate effective motor learning partially evoked by
immersive VR through NeuRow. We therefore hypothesize that a
multimodal immersive BCI-VR training could have enhanced the
carryover effect of the rehabilitation process that could eventually
be reflected in terms of improved motor function. This is in line
with recent work in BCI’s for rehabilitation in chronic stroke TA
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FIGURE 11 | fMRI activation maps of the motor imagery condition for the left and right hand, at the pre-intervention, post-intervention and follow-up recording
sessions. The Nvox and Zmax values are associated with the hemisphere contralateral to the hand. All maps have a threshold at Z > 2.3, except for the one of the
motor-imagery of the right hand at the post-intervention (Z > 4.0), because of the substantial higher Zmax.
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patients, showing the possibility of long-lasting improvements in
motor function (Ramos-Murguialday et al., 2019).

Moreover, despite the low MoCA score (as most stroke
patients may show some level of cognitive impairment) –
together with the low computer knowledge and only 4 years of
schooling – the patient was able to learn and use motor imagery
as a way to interact with the BCI-VR system.

In terms of the perceived impact of stroke through the
SIS questionnaire, the results were overall ambiguous. Part of
the variation could be due to internal factors of the patient
such as his mood and optimism or level of frustration upon
answering the questionnaire. Many items of the questionnaire
require other functions such as posture, balance, proprioception
and lower limb function, which were not targeted in the BCI
intervention. The improvement in perceived muscle strength is
of interest because of its direct correlation with upper limb motor
improved, particularly in context with improved FMA scores
of the upper limb.

Further, increased MI ability as reported by VMIQ-2, but
also as captured by the EEG data through the Alpha and Beta
bands, seem to manifest the potential of motor recovery. Hence,
current methodology for motor-imagery training may provide a
valuable tool to access the motor network and improve outcome
after stroke. This is also in-line with prior research findings
illustrating better functional outcome in the BCI group, including
a significantly higher probability of achieving a clinically relevant
increase in the FMA score (Pichiorri et al., 2015). Additionally,
the comparison with healthy data, reveals a convergence toward
the healthy motor-imagery dataset in all domains (external,
interval and kinesthetic), while also maintaining a high score
in follow-up.

In terms of EEG, by comparing resting state Alpha rhythm,
between the first and the last session, we observed an increase
in power. Moreover, using as a point of reference healthy
data -undergoing the same BCI training-, we can see that
after the intervention, EEG data are closer to the distribution
of the healthy participants. Since MI roughly involves (to
a large extent) the same cortical areas that are activated
during actual motor preparation and execution (Jeannerod
and Frak, 1999), this increase is likely to be indicative
of motor recovery.

Furthermore, the evoked ERD during MI training did not
have the anticipated power in either Mu or Beta bands. This
probably explains the low LDA classification score, showing that
low performance is a direct result of the evoked EEG activation
and not due to classifier configuration.

Overall, BCI performance quantified in terms of LDA
classification score was stable throughout all sessions. In addition,
compared with two healthy groups (VR and non-VR), we
can see again that VR can result into better classification
scores compared with standard training (Vourvopoulos and
Bermúdez, 2016a; Vourvopoulos et al., 2016b), although our
patient showed a lower performance. This can highlight once
more the importance of the VR feedback and the role of agency
in BCI performance.

In terms of LI, previous studies have showed that movement-
related neural activity is lateralized, particularly those using

fMRI (Babiloni et al., 2003). Moreover, brain activation
symmetry is modified after stroke due to the resulting one-
sided lesion. Analysis of the lateralization and hemispheric
asymmetries of neural activity might provide a valuable
neurophysiological parameter in the prognosis and follow-up of
patients (Cicinelli et al., 2003).

Finally, the analysis of the fMRI data showed evidence of
plastic changes including recruitment in the primary motor
cortex and supplementary motor area, brain regions known to
be associated with motor activation and imagery, including those
in the lesioned hemisphere.

Therefore, a tailored BCI-VR training paradigm
could help preventing maladaptive plasticity -avoiding
compensatory movements- while helping to develop normal
movement patterns.

CONCLUSION

With this case study, we have been able to test our proposed
BCI-VR paradigm, acquiring information from various
sources. Clinical scales illustrated improvements in motor
function, electrophysiological data showed an increase in
brain activation -similar to healthy subjects and brain-
imaging data have showed the effect of MI training and
VR feedback, promoting plastic changes in the targeted
areas of the brain. Our findings extend prior research
that showed the efficacy of BCIs using MI for motor
rehabilitation (Silvoni et al., 2011; Pichiorri et al., 2015;
Ramos-Murguialday et al., 2019). However, the majority of
previous studies have not addressed the effect of self-paced
and ecologically valid scenarios through VR feedback. These
results suggest that this approach could be useful with chronic
stroke patients with reduced upper limb motor function.
As this is a case study, additional research is needed to
explore this hypothesis including combined brain data with
electrophysiological information during training. This will
allow us to develop a tailored BCI-VR training paradigm
that could help preventing maladaptive plasticity (e.g., by
avoiding compensatory movements) and help to develop normal
movement patterns. Finally, this will enable us also to identify the
specific benefits of brain-controlled VR training environments
for neurorehabilitation.

LIMITATIONS

Although this study collected and explored 480 trials
(240 per class) of post-stroke EEG signals, along with
pre- and post-intervention fMRI, and clinical datasets, it
is limited by its sample size. Moreover, in the absence
of a control group, it is not clear to what extent
conventional treatment lead to the improvements seen.
Our findings, therefore, are preliminary, have limited
statistical power, and should be interpreted with caution.
In addition, variability in EEG band power is rather high,
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thus conclusion based on comparing the values for the first and
the last sessions are exploratory and not confirmative.
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