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When people process language, they can use context to predict upcoming information,
influencing processing and comprehension as seen in both behavioral and neural
measures. Although numerous studies have shown immediate facilitative effects
of confirmed predictions, the downstream consequences of prediction have been
less explored. In the current study, we examined those consequences by probing
participants’ recognition memory for words after they read sets of sentences.
Participants read strongly and weakly constraining sentences with expected or
unexpected endings (‘I added my name to the list/basket”), and later were tested on
their memory for the sentence endings while EEG was recorded. Critically, the memory
test contained words that were predictable (“list”) but were never read (participants
saw “basket”). Behaviorally, participants showed successful discrimination between old
and new items, but false alarmed to the expected-item lures more often than to new
items, showing that predicted words or concepts can linger, even when predictions
are disconfirmed. Although false alarm rates did not differ by constraint, event-related
potentials (ERPs) differed between false alarms to strongly and weakly predictable words.
Additionally, previously unexpected (compared to previously expected) endings that
appeared on the memory test elicited larger N1 and LPC amplitudes, suggesting greater
attention and episodic recollection. In contrast, highly predictable sentence endings that
had been read elicited reduced LPC amplitudes during the memory test. Thus, prediction
can facilitate processing in the moment, but can also lead to false memory and reduced
recollection for predictable information.
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INTRODUCTION

The process of prediction has been suggested to play a
role in many areas of cognition and behavior, with some
arguing that one of the core functions of the brain is to
use previously learned associations and top-down control
to predict future events (Bar, 2007, 2009; Bubic et al,
2010; Clark, 2013). This function of predicting upcoming
information may play a particularly important role in
language comprehension (Federmeier, 2007; Kuperberg
and Jaeger, 2016), as incoming linguistic information must
be processed rapidly. Essentially, by using the bottom-up
sensory information provided by written and spoken words,
combined with previously learned world knowledge, semantic,
and syntactic information, the brain can quickly create and
continuously update a representation of likely upcoming
linguistic information, which facilitates processing when this
information is encountered.

As evidence of the impact of predictability on language
comprehension, behavioral work has shown that words that are
highly predictable and fit into the ongoing sentence context
are processed more rapidly than less predictable words (West
and Stanovich, 1978; Fischler and Bloom, 1979; Schuberth
et al., 1981; Schwanenflugel and LaCount, 1988; Duffy et al,
1989; Simpson et al.,, 1989; Hess et al., 1995). Similarly, eye-
tracking studies have demonstrated that predictable words
are anticipated and read more quickly than unpredictable
words (Ehrlich and Rayner, 1981; Altmann and Kamide, 1999;
Frisson et al., 2005; Kamide, 2008). Research using event-related
potentials (ERPs) has identified that the predictability of words
affects the amplitude of the N400, a centroparietal negativity
peaking around 400 ms that is thought to index access of
semantic memory (Kutas and Hillyard, 1984; Federmeier and
Kutas, 1999; Wlotko and Federmeier, 2007, 2012; Kutas and
Federmeier, 2011; DeLong et al., 2014). Additionally, unexpected
but plausible words that disconfirm a prediction elicit a late,
frontally-distributed positivity, which has been hypothesized
to index a revision process of some kind (Federmeier et al,
2007; Otten and Van Berkum, 2008; DeLong et al., 2011, 2014;
Thornhill and Van Petten, 2012).

There is thus substantial evidence that predictability can
lead to facilitated processing of expected information when
it is encountered. There are also consequences of processing
inputs that violate predictions, as indexed by the late frontal
positivity. Do these consequences that are evident in ERPs
have corresponding behavioral costs? In early work using
lexical decision tasks, identification of predictable words was
consistently faster than unpredictable words, but prediction
violations did not always lead to response slowing when
compared to “baseline” conditions, which varied across the
literature (Schuberth and Eimas, 1977; Fischler and Bloom, 1979;
Schwanenflugel and Shoben, 1985). Other recent work, in which
subjects read sentences at their own pace while eye movements
were tracked, reported no evidence of slowing or an increase
in re-reading for unexpected words (Luke and Christianson,
2016; Frisson et al., 2017). Therefore, across multiple behavioral
paradigms of language processing, convincing evidence of

behavioral costs associated with prediction violations has
been lacking.

In addition, behavioral and electrophysiological effects of
prediction have predominantly been measured at the time of
encountering the predicted or unexpected stimulus. Although
this has been useful for identifying the immediate effects of
prediction, it leaves open what downstream effects confirmed or
disconfirmed predictions might have on later cognition. In order
to investigate these potential downstream effects, the present
study tested participants’ episodic memory for sentence final
words of sentences that varied in contextual constraint. The
memory test contained words that had been highly predictable,
weakly predictable, or unexpected. This allowed for a comparison
of the downstream effects of having predictions confirmed or
disconfirmed. Critically, the test also included words that were
likely to have been predicted but were never actually observed
during reading (because the sentence instead had ended with an
unexpected word); we will refer to these items as lures.

In addition to behavioral memory measures, the present study
recorded EEG to further probe how predictability influences
memory processes. Examining ERPs during the memory test
allowed us to draw inferences about the neurocognitive
processes involved in successfully recognizing, or false alarming
to, predictable and unexpected words. Previous studies have
identified two major components associated with recognition
memory (Rugg and Curran, 2007)—the N400, which has been
linked to conceptual fluency or familiarity (Paller and Kutas,
1992; Curran, 2000, 2004; Voss and Federmeier, 2011), with
greater familiarity leading to smaller N400s, and the LPC, a
left-lateralized posterior component temporally extending from
500 to 800 ms, which is related to recollection or retrieval of more
detailed episodic information (Ditizel et al., 1997; Rugg et al,
1998; Woodruff et al., 2006: Yu and Rugg, 2010), with greater
recollection eliciting more positive LPCs. The amplitudes of these
ERP components during the memory test may differ based on the
prior predictability of the words or the constraint of the sentences
they were presented in, which would provide information about
the state of the representations of these items.

Two main issues were of interest: first, we compared memory
for predictable words and unexpected words. Here, context-
driven prediction could influence the encoding of information
into long-term memory by modulating the level of attention
given to the predictable or unpredictable information that is
being encoded (Craik et al., 1996). Paying more attention to
certain stimuli could modulate the depth or level of processing,
leading to a more stable and persistent memory representation
(Craik and Lockhart, 1972; Craik and Tulving, 1975). In eye-
tracking experiments with natural reading, individuals spend
less time looking at and exhibit fewer regressions to predictable
words (Ehrlich and Rayner, 1981), suggesting they may, in
fact, pay less attention to them. Rommers and Federmeier
(2018a), investigating ERP repetition effects for previously
predictable and unpredictable words, also found that previously
predictable words showed reduced downstream repetition
effects, suggesting that prediction can lead to an impoverished
initial representation. In the case of unpredictable words, some
evidence points toward attentional enhancement of encoding: an

Frontiers in Human Neuroscience | www.frontiersin.org

August 2019 | Volume 13 | Article 291


https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles

Hubbard et al.

Consequences of Prediction on Recognition

item in a list of words that is physically or semantically distinct
from the others will be more likely to be recalled (Von Restorff,
1933), unexpected sentence endings draw more attention away
from and lead to disruption of serial recall (Roer et al., 2019),
and unexpected or error-related events modulate early attention-
related ERPs (Wills et al., 2007), suggesting that distinctive,
unpredictable events might be more attended to and then
more easily remembered. Indeed, studies have reported better
recognition memory performance for sentence endings that
had been unpredictable (compared with predictable endings),
supporting the idea that such words are encoded more strongly
(Corley et al., 2007; Federmeier et al., 2007). We further probed
the memory processes underlying the recognition of previously
predictable and previously unexpected words. In particular, if
previously encountered sentence endings increase conceptual
priming at test, they should show a reduced N400, whereas
if they increase recollection processes, they should elicit an
enhanced LPC.

We were also interested in the responses to the lures.
If prediction during sentence comprehension leads to
pre-activation of information associated with an upcoming
word, then participants may show greater false alarms to lures
as compared to completely new items. This would constitute a
cost of prediction, in that lingering representations can cause
false recognition. Alternatively, if the prediction disconfirmation
leads to strong revision processes that suppress previously
expected information, participants may show fewer false
alarms to lures as compared to completely new items. Previous
studies have employed an implicit memory paradigm in which
participants predict a high cloze ending, are given an unexpected
ending, and then must complete a mid-cloze sentence that
could potentially be completed by a previous high-cloze or
unexpected ending (Hartman and Hasher, 1991; Lorsbach
et al., 1996; Hasher et al., 1997). These studies have focused
mainly on inhibition and control processes; however, they
have demonstrated that individuals tend to retain the expected
but disconfirmed endings in some form. In terms of explicit
memory, classic studies using the Deese-Roediger-McDermott
(DRM) paradigm have shown that individuals will recall an
unstudied semantic associate (e.g., “sleep”) following study
of a list of related words (“dream,” “bed,” “night,” et cetera),
suggesting that the representation of the lure was activated and
erroneously selected during retrieval (Deese, 1959; Roediger and
McDermott, 1995; Steffens and Mecklenbrauker, 2007). In these
studies, false alarming is largely driven by semantic similarity of
items, and generally occurs immediately following the study. In
the current experiment, participants read sentences that were
not semantically similar, and were tested after reading several
items; thus, a finding of increased false alarming to lures would
be a powerful demonstration of prediction’s lasting effects on
recognition memory.

In addition to behavioral effects, we were also interested
in the processes involved in false recognition, as revealed
by electrophysiological responses; however, previous results of
when and how false recognition manifests in the ERP have
been mixed (Curran et al., 2001; Wolk et al., 2006; Geng et al.,
2007; Beato et al., 2012; Chen et al, 2012). A recent ERP

study showed that words that were previously expected, but
not presented, elicited a “pseudo-repetition” effect (Rommers
and Federmeier, 2018b); namely, these items showed ERP
effects similar to repeated words, suggesting they were not
fully suppressed. We hypothesized that, if similar processes also
influence end-state recognition responses, these predicted but
unobserved lures would show higher false alarms than new
items. Furthermore, we used the N400 and LPC to help clarify
the neurocognitive mechanisms involved in prediction-based
false alarms vs. correct rejections of lures, focusing on whether
these responses were associated with priming and/or recollection
during the recognition test.

MATERIALS AND METHODS

Participants

Thirty-three right-handed, native speakers of English with
normal or corrected-to-normal vision from the University of
Illinois, Urbana-Champaign participated in the experiment and
were paid $10 an hour or received course credit for their
participation. No participant had a history of neuropsychological
or psychiatric disorders. Procedures were approved by the IRB
of the University of Illinois, and all participants signed consent
forms prior to participation. Based on previous work using these
same materials to examine ERPs during sentence comprehension
(Federmeier et al., 2007), the a priori number of subjects was set
to 32; mid-way through data collection, a participant’s recorded
data was noisy, and thus an extra subject was run. Data analysis
led to the removal of another subject’s data due to high trial loss,
leading to a sample size of 31 participants in the final analyses.

Materials

The stimuli were comprised of 192 English sentences, a subset
of the sentences used in Federmeier et al. (2007). The cloze
probabilities of the endings of the sentences were previously
determined in a norming study in which the subjects filled in
the final word of the sentence frame with the word they “would
generally expect to find completing the sentence fragment.”
In the current experiment, half of the stimuli (96 sentences)
were strongly constraining, while the other half were weakly
constraining. A sentence was considered strongly constraining
if the cloze probability of the most commonly completed word
was 0.68 or higher, and was considered weakly constraining
if the cloze probability was 0.42 or lower. Additionally, half
of the strongly constraining sentences (48 sentences) ended
with the expected word, while the other half ended with an
unexpected word; this was also true of the weakly constraining
sentences. Unexpected words all had a cloze probability close to
0 (max = 0.088). Thus, participants read 48 strongly constraining
sentences with expected endings (SCE; mean cloze = 0.83),
48 with unexpected endings (SCU), 48 weakly constraining
sentences with expected endings (WCE; mean cloze = 0.28),
and 48 with unexpected endings (WCU). These stimuli were
evenly split into eight blocks (six of each condition in each
block). Table 1 provides the lexical properties (word frequency,
concreteness, imageability, familiarity, word length) of the
sentence ending words. Target words averaged 5-6 letters
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TABLE 1 | Lexical properties of sentence ending words.

Condition Frequency Concreteness Imageability Familiarity Word length
SCE 4.16 506.10 527.31 574.00 4.98
SCU 3.06 502.45 520.82 554.67 6.29
WCE 3.96 501.10 518.38 575.94 5.562
WCU 3.22 485.83 520.19 554.027 5.85

Values represent means across items. Frequency values are log transformed and obtained from Kucera and Francis (1967). Concreteness, imageability, and familiarity values obtained

from the MRC psycholinguistic database.

TABLE 2 | Examples of experimental materials.

SC Tim threw a rock and broke the E window (Match) window
V] camera (Match) camera
(Lure) window
WC His ring fell into a hole in the E sink (Match) sink
U couch (Match) couch
(Lure) sink
SC, strong constraint; WC, weak constraint; E, expected; U, unexpected. Match and Lure refer to the items that appear during the memory test.
TABLE 3 | Lexical properties of test words.
Condition Frequency Concreteness Imageability Familiarity Word length
SCE Match 4.21 526.58 539.95 573.63 5.04
SCU Match 2.94 477.00 503.84 546.33 6.21
SC Lure 4.13 507.45 527.86 571.77 5.29
WCE Match 4.04 503.87 525.00 582.44 5.38
WCU Match 2.99 476.22 509.67 552.94 6.08
WC Lure 3.43 509.81 527.18 580.94 5.29
New 3.70 497.77 525.31 560.15 5.77

Values represent means across items. Frequency values are log transformed and obtained from Kucera and Francis (1967). Concreteness, imageability, and familiarity values obtained

from the MRC psycholinguistic database.

in length and were fairly concrete, imageable, and familiar;
unexpected endings tended to be of lower frequency on average
than expected endings but were similar across constraint.

After each block of sentence reading, participants took a
memory test. For the recognition memory test, participants
were presented with single words, the majority of which
were words that had ended the previously read sentences.
“Matches” were words that had previously been seen as sentence
endings (either expected or unexpected). “Lures” were words
that might have been expected (they were the most likely
completion of a sentence from the prior block) but were
never actually presented (because the sentence had ended with
an unexpected word instead). As an example of a “Lure”
item, during the encoding phase a participant might read the
sentence “I added my name to the basket,” where basket is
an unexpected ending, and in the test phase read the word
“list,” the expected ending of the sentence. “New” words had
never been presented in the block. The test also contained some
sentence-medial words, to ensure that participants would be
motivated to pay attention to and encode the entire sentence.
Half of the test items that were previously sentence ending
words were from strongly constraining sentences while the other
half were from weakly constraining sentences. Table 2 provides
examples of the different types of test items. There was an
equal number of items presented in each of the conditions
during each test block (totaling 24 in each condition, along
with 48 new items, over the course of the experiment), as

well as an equal number of “old” and “new” items each test,
so as not to bias responses. As with the sentence endings,
lexical properties of the test items (see Table 3 for details) were
similar across conditions, with some variation in frequency; we
aimed to test the impact of the frequency variability in our
statistical models.

The memory test constrained the stimuli used and the order
of presentation, in that each test item had to be unique, as well
as not repeat. For example, participants might read the sentence
“he played with the dog,” see the word “dog” during the memory
test, and later read the sentence “the dog ate the food.” To
avoid participants reading both sentences before being tested,
the stimulus list was pseudo-randomized, such that any sentence
containing a critical test item in the middle of it was presented
only after the item had already been tested. All participants
read the same list of stimuli; although the order of presentation
of each stimulus within blocks was randomized, the order of
presentation of the blocks was not.

Procedure

Participants were seated in an electrically shielded EEG recording
booth approximately 100 cm from a CRT computer monitor.
Prior to starting the experiment, we verified that all participants
could easily read the presented information from this distance.
Additionally, participants were given an explanation of the
experimental procedure, as well as a short practice session to
familiarize them with the task. Words that appeared in the
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practice sentences and test items did not appear as critical test
words in the actual experiment.

The experiment was divided into eight study-test blocks, in
which participants first studied a set of sentences, and then were
tested on their memory for critical words. During the encoding
phase of each study-test block, participants were instructed to
read the sentences silently and to try to remember what they read,
as their memory would be tested. Sentences were presented word
by word on the screen, with each word appearing in the center
of the screen for 200 ms, followed by a 300 ms interstimulus
interval. After the last word of the sentence was presented, a blank
screen was presented for 500 ms, followed by a fixation cross for
1,000 ms. Participants were instructed to try not to blink when
they were reading the sentence, and to blink and rest their eyes
once the fixation cross appeared. Following the encoding phase,
participants were given math problems to complete for 30 s. The
math problems were simply given as a distractor between the
study and test phases—thus, performance on the math section
was not analyzed.

After the math section, participants started the test phase of
the block. Each trial began with a fixation cross in the center
of the screen for 1,000 ms, which was then replaced by a test
word. After 1,000 ms, a confidence scale appeared underneath
the test word, at which point participants could make their
response. Upon making a response, the trial would end and the
next trial would begin. The confidence scale consisted of four
points—“Sure New,” “Maybe New,” “Maybe Old,” and “Sure
Old.” Participants were instructed to respond with “Old” if they
thought the test word was a word they had seen during the
encoding phase and otherwise to respond “New.” Additionally,
they were told to try to use the whole scale of confidence and
to use the “Maybe” option if they felt like they were guessing or
unsure. Finally, participants were instructed to try not to blink
during the initial presentation of the word, but told that once the
confidence scale appeared and they could make their response,
as well as during the fixation cross, they could blink. The test
phase was self-paced, in that participants could take as long as
they needed to respond.

EEG Recording and Processing

EEG data were recorded from 26 Ag/AgCl electrodes embedded
into a flexible elastic cap and distributed over the scalp in an
equidistant arrangement; see icon in Figure 2. Five additional
electrodes were attached, including one on each mastoid bone
behind the ear, one adjacent to the outer canthus of each eye, used
for monitoring of the horizontal electro-oculogram (EOG), and
one below the lower eyelid of the left eye, used for monitoring of
blinks. Electrode impedances were kept below 5 k2. Signals were
amplified by a BrainVision amplifier with a 16-bit A/D converter,
an input impedance of 10 M, a bandpass filter of 0.016-100 Hz,
and a sampling rate of 1 kHz. The left mastoid electrode was used
as a reference for on-line recording; offline, the average of the left
and right mastoid electrodes was used as a reference.

Following data collection, each raw EEG time series was
passed through a 0.1-30 Hz Butterworth filter with a 12 dB/oct
roll-off. The signal was segmented into epochs from —200 to
1,000 ms relative to the onset of each sentence ending word

during encoding and each test item during the test phase.
Following subtraction of the 200 ms prestimulus baseline, and
artifact correction (described below), epochs within each bin
were averaged together to create an ERP for each subject and bin.
Prior to calculating statistics, individual subject ERPs were passed
through an additional 20 Hz lowpass filter.

To correct for ocular artifacts, a bipolar VEOG channel
was created by subtracting data in the lower eye channel from
the most frontocentral channel (MiPf), and that channel was
then scanned with a sliding window step function to detect
blinks. For subjects who had a large number of blinks, the
data were run through AMICA (Palmer et al.,, 2011), an ICA
decomposition algorithm that generalizes Infomax and multiple
mixtures approaches adaptively. Following decomposition,
the correlation between the timecourse of each component
and the VEOG channel was calculated in order to find the
component(s) containing blinks. Components with a high
correlation were removed from trials marked as containing
blinks. The remaining components were then recombined
to reconstruct the EEG data, which were then scanned with
an additional sliding window amplitude threshold (300 ms
sliding time window, 50 ms step size, 90 pV threshold),
and finally manually checked by the experimenter for any
additional artifacts. In total, an average of 8% of trials were
removed, with a range of 2% to 11% across participants.
Artifacts spread fairly evenly across conditions,
resulting in an average of 22 trials in each condition of the
memory test.

For the ERP analyses, statistical analyses were performed
on channel clusters as opposed to single channels to improve
the signal to noise ratio. Component-based analyses were done
using the signal-averaged across channel clusters and time
windows based on prior work: N400 at a central cluster (shown
in Figure 2; Federmeier et al., 2007), 300-500 ms; frontal
positivity at a frontal cluster, 700-1,000 ms (shown in Figure 2;
DeLong et al,, 2014); LPC at a left parietal cluster (shown in
Figure 3; Woroch and Gonsalves, 2010; Addante et al., 2012),
500-800 ms. For other effects, as described in the results, cluster-
based permutations with restricted time windows were used in
order to explore the data while retaining statistical power and
maintaining Type I error rate (Fields and Kuperberg, 2018).
Plotted ERPs were filtered with a 10 Hz lowpass filter for clarity
of visualization.

were

RESULTS

Behavior

Proportion “Old” responses is plotted in Figure 1. For Matches,
“Old” was a correct response, whereas for New items and
Lures, “Old” was an incorrect response. Analyses revealed
no differences in confidence across experimental conditions
and generally low trial numbers for “Maybe” responses; thus,
“Maybe” responses were combined with “Sure” responses for
behavioral and ERP analyses. Overall, participants successfully
discriminated Matches from New items. Collapsing across Match
conditions and comparing to New items, the average d' was
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FIGURE 1 | Recognition memory accuracy. Proportion “Old” responses are plotted on the Y axis. SC, strong constraint; W, weak constraint. Error bars reflect

Lure

1.41, with a range of 0.72-2.76. Recognition accuracy between
Expected and Unexpected Matches appeared similar, whereas
participants false alarmed more to Lures compared to New items.

To assess the pattern statistically, behavioral responses
(Old or New) on each trial were submitted to a mixed-
effects logistic regression model fit by maximum likelihood
using the Ime4 package in R (Jaeger, 2008). Random factors
included intercepts for items and slopes and intercepts for
participants for each fixed effect. Correlations between random
factors were not calculated to ease convergence of the models.
Wald’s z-scores were computed for each coefficient to test
for significance.

The first model compared responses to Lures with responses
to New items by modeling responses to those items with
Condition (Lures, New) as a fixed factor. Recognition accuracy
differed between Lures and New items (8 = 0.75, z = 3.18,
p < 0.01), but accuracy did not differ between Strong Constraint
Lures and Weak Constraint Lures (8 = 0.11, z = 0.42, p = 0.68).
Thus, participants showed greater false alarms to Lures compared
to New items.

Although we attempted to control the lexical properties of
stimuli, it could be the case that a subset of the Lures were
more frequent than other Lures or New items, and this could
have contributed to the false alarm effect. To assess this, a
second model was fit with Condition and log-transformed Word
Frequency as fixed effects. Frequency had a significant effect on
responses (f = 0.30, z = 4.72, p < 0.01), with higher Frequency
leading to a greater number of “Old” responses, but recognition

accuracy still differed between Lures and New items (8 = 0.64,
z =291, p < 0.01). Thus, word frequency did not completely
explain the false alarm effect that we observed.

The next model assessed responses for Matches by modeling
responses with Constraint, Expectedness, and the interaction
(Constraint * Expectedness) as fixed factors. None of the
coefficients, Constraint (8 < 0.01, z = 0.06, p = 0.95),
Expectedness (8 = 0.21, z = 1.26, p = 0.21), or the interaction
(B =013, z = 027, p = 0.79), returned significant z-scores.
Including word frequency in the model (C*E*F) did not change
previous results, although word frequency seemed to have a
tendency to reduce “Old” responses (8 = 0.10, z = —1.94,
p = 0.05). Thus, behavioral accuracy for Match items did not
differ based on constraint or expectedness.

Sentence Final Word ERPs

ERPs to sentence final words were analyzed to determine if prior
effects seen with these materials (e.g., Federmeier et al., 2007)
were replicated. Grand average ERPs at the sentence final word
at the frontal and central cluster are plotted in Figure 2. To
assess effects statistically, linear mixed-effects models were used
(Baayen et al., 2008), using the lme4 and ImerTest packages
in R. Random factors included intercepts for items and slopes
and intercepts for participants. As with the behavioral analyses,
correlations between random factors were not calculated to
ease convergence of the models. The reported t-tests used the
Satterthwaite approximations to calculate degrees of freedom
(Satterthwaite, 1946).
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— Strong Constraint Expected - Strong Constraint Unexpected
— Weak Constraint Expected Weak Constraint Unexpected

FIGURE 2 | Grand average event-related potential (ERP) waveforms for
expected and unexpected endings to strongly and weakly constraining
sentences at the frontal Cluster (top of figure) and central Cluster (bottom of
figure) of channels. Negative is plotted up. FP, frontal positivity.

N400 amplitudes were compared between weakly constrained
expected (WCE) endings and strongly constrained expected
(SCE) endings, as well as between WCE and unexpected (U)
endings (collapsed across constraint, as this has repeatedly been
shown not to affect N400 responses). There were significant
differences in N400 amplitude between WCE and SCE endings
(B =132, t =287 p < 001), as well as between WCE and
U endings (8 = 1.70, t = 442, p < 0.01). Thus, the graded
N400 effect was replicated in this experiment.

ERPs to sentence final words were also analyzed to determine
if the frontal positivity to Strong Constraint Unexpected endings
was replicated. The frontal positivity has been operationalized
as a difference between Strong Constraint Unexpected (SCU)
and Weak Constraint Unexpected (WCU) endings (Federmeier
et al., 2007), or a difference between expected (E) endings and
SCU endings (DeLong et al., 2014), so both of these differences
were tested. There were no significant differences in frontal
positivity amplitudes between the SCU and WCU conditions
(B =041, t = 0.95, p = 0.35); however, SCU endings elicited
larger positivities than E endings (8 = 0.84, t = 2.01, p = 0.05).
A follow-up comparison of WCU and E conditions showed no
significant differences (8 = 0.42, t = —1.04, p = 0.31). Thus, the
frontal positivity from SCU endings was more positive than other
conditions, replicating prior work, but did not differ significantly
from the WCU condition.

Recognition Memory ERPs: Matches
ERPs to correctly recognized test items were analyzed to assess
recognition memory processes. The grand average ERPs at

—SCE Match ("window") - SCU Match ("camera")
— WCE Match ("sink") - WCU Match ("couch")

G

FIGURE 3 | Grand average ERP waveforms to Match items during the
memory test. ERPs plotted at the Central Cluster (top of figure) and the Left
Parietal Cluster (bottom of figure). SC, strong constraint (“Tim threw a rock
and broke the. ..”); WC, weak constraint (“His ring fell into a hole in the. ..”);
E, expected; U, unexpected. In quotations are example stimuli, based on
examples from Table 1.

the central cluster to expected and unexpected Matches from
strongly and weakly constraining sentences are plotted in
Figure 3. ERPs are time-locked to the onset of the test item, and
only correct responses are included.

LPC mean amplitudes from 500 to 800 ms at the Left Parietal
cluster were submitted to a linear mixed effect model with fixed
effects of Expectancy (E vs. U) and Constraint (SC vs. WC). The
fixed effect of Expectancy was significant (8 = 1.14, t = 2.53,
p =0.01), whereas Constraint (8 = 0.51, t = —0.97, p = 0.34) and
the interaction (8 = 0.80, t = 0.94, p = 0.35) were not. A follow-up
comparison of LPCs from SCE Matches and WCE Matches
trended toward significance (8 = 0.94, t = —1.93, p = 0.06).
Unexpected Matches generated more positive LPC amplitudes
compared to Expected Matches, and SCE Matches generated the
smallest LPC amplitudes.

Visual inspection suggested an additional effect on the N1,
a component that is part of the visual evoked potential and
is sensitive to attention (Mangun and Hillyard, 1991). To
assess this effect, we performed a post hoc exploratory analysis,
using a cluster-based permutation test with a restricted time
window based on previous literature to increase statistical power
(Maris and Oostenveld, 2007; Groppe et al., 2011; Fields and
Kuperberg, 2018). In this test, t-tests were calculated at each
time-point and channel, and significant t-values that were
adjacent in space and time were clustered together. Clusters were
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characterized by taking the sum of t-values within the adjacent
points. These observed clusters were compared to a permutation
distribution, generated by shuffling the condition labels of the
data, finding clusters, and summing the ¢-values of the clusters
2,500 times. Distributions of the most extreme cluster sums were
created for comparison to the observed cluster sums. Reported
p-values represent the percentile ranking of the observed clusters
compared to the permutation distribution. Here, t-tests tested
differences between Expected Matches and Unexpected Matches
at each channel and time-point within the 50-175 ms window,
and a family-wise alpha of 0.05 was used.

The results of this analysis are displayed in Figure 4.
A significant difference between Expected and Unexpected
Matches was found (cluster-wise p < 0.05). This difference
had a temporal extent from 81 to 153 ms and a central-
posterior topography, similar to previously reported posterior
visual N1 effects, though somewhat earlier in time (Di Russo
etal, 2001; Hopfetal., 2002). Thus, Unexpected Matches elicited
more negative N1 potentials compared to Expected Matches'.
To test for the possibility of pre-stimulus activity leading to the
appearance of an N1 effect, an addition permutation test was run
on the same contrast in the 0-80 ms time window. No significant
clusters were found (p = 0.29).

Recognition Memory ERPs: Lures
Of particular interest for the analysis of ERPs to Lures was if
ERPs differed between false alarms and correct rejections, and
whether this ERP difference was affected by constraint. However,
few studies have investigated ERP differences to false alarms
and correct rejections, particularly for previously predicted
information. Thus, while we were interested in early vs. late
differences, there were not a priori predictions about particular
ERP components to target in the post-N400 time window. We
thus used time-constrained permutation tests, as described for
the N1 analyses (Fields and Kuperberg, 2018). ERPs to SC and
WC Lures were separated into Correct and Incorrect bins based
on the response given (pooled across “Maybe” and “Sure”),
and the difference between these ERPs was calculated. These
difference waves were submitted to cluster-based permutation
tests to test time-points for significant differences from 0, using a
family-wise alpha value of 0.05. Separate permutation tests were
run for Strong Constraint and Weak Constraint lures, and to
increase statistical power and focus on times of interest, separate
permutation tests were run for time windows of 300-500 ms
(N400) and 500-1,000 ms.

Results of the permutation tests and ERPs are plotted
in Figure 5. For the Strong Constraint Lure comparison, a
significant difference (cluster-wise p = 0.04) between false alarms
and correct rejections was found in the 300-500 ms time
window, while no significant differences were found in the late

A mixed effect analysis was also run on single trial N1 amplitudes derived from
significant cluster timepoints and channels, with fixed effects of expectancy and
word frequency, to control for lexical confounds. The effect of expectancy was
significant (8 = 0.21, t = 3.41, p < 0.01), while frequency was not (8 = 0.03, t = 1.53,
p = 0.13). However, since estimates were derived based on cluster analyses, this
mixed effect analysis could be considered double-dipping, and further replication
of this effect will be necessary.

window. This difference began from the onset of the analysis
window and continued to 488 ms, with a central-posterior
topography. For the Weak Constraint Lure comparison, a
significant difference (cluster-wise p < 0.01) between false alarms
and correct rejections was found in the late time window, while
no significant differences were found in the earlier window. This
cluster showed a broad right-lateralized topography, with a right
frontal maxima, and a temporal extent of 594-1,000 ms. These
results suggest that mechanisms with different timecourses led to
false alarming based on the constraint of the item?.

The behavioral effect of interest was the comparison of
false alarm rates of Lure items compared to false alarm rates
of New items; therefore, we were also interested in how the
electrophysiological differences associated with false alarming
to Lures compared to those associated with false alarming to
New items. Figure 6 plots correct rejection and false alarm
ERPs for Weak Constraint Lures as well as New items; although
the ERPs at the same channel as before are plotted, the ERP
patterns between these conditions were fairly similar across
other channels as well. Permutation tests testing for differences
between correct rejections and false alarm ERPs to New items
in both the 300-500 ms and 500-1,000 ms windows were not
significant (early, p = 0.09; late, p = 0.11), but numerically, false
alarming to Weak Constraint Lures seemed to have engaged
similar neurocognitive processes as false alarming to New items.

DISCUSSION

In this study, participants read strong and weak constraint
sentences that ended with either an expected or unexpected-
but-plausible word and then were tested on their memory for
sentence ending words, new words, and predictable endings that
had never been seen (lures). ERP responses during sentence
reading replicated previously shown effects. We observed a
graded N400 pattern (Federmeier et al, 2007), such that
N400s were smallest to expected items in strong constraint
sentences, intermediate to expected items in weak constraint
sentences, and largest to unexpected items. We also found
a post-N400 frontal positivity, larger for unexpected than
expected words and numerically largest for unexpected words
in strongly constraining sentences (where predictions can
be correspondingly stronger). Different from the pattern in
Federmeier et al. (2007), we did not observe a significant
difference between unexpected items in strongly and weakly
constraining contexts, seemingly because there was also some
level of frontal positivity for the unexpected items in the
weakly constraining sentences. It is possible that the memory
task induced different reading strategies than the passive
comprehension task in Federmeier et al. (2007). For example,
Brothers et al. (2017) reported a larger frontal positivity to

2Mixed effect analyses were also run on single trial SC and WC lure amplitudes
derived from significant clusters, with fixed effects of correct/incorrect and word
frequency. For both analyses, the fixed effect of correctness was significant (SC:
B =0.36,1=2.64,p=0.01; WC: B =0.87, ¢t = 3.61, p < 0.01), while word frequency
was not significant (SC: g = 0.09, t = 1.45, p = 0.16; WC: B = 0.05, t = 0.72,
p = 0.48). As with the N1 effect, these results could be considered double dipping
and replication will be necessary.
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FIGURE 4 | Permutation test results and ERP plots for analyses of N1 recognition memory effect. The raster plot show channels and time-points which make up
the significant cluster found in the permutation tests. Colors represent the t-value at the time-point. The ERP topography plot shows the mean amplitude in the time
window of the significant cluster, with significant channels highlighted in white. The ERP plot shows the Expected and Unexpected Match ERPs at the channel with
the largest t-value within the cluster (MiOc). The black dashed lines indicate the time range of the permutation test.

—Unexpected Matches

unexpected words when participants were instructed to predict
upcoming information compared to when they simply read for
comprehension. Anticipating an imminent memory test may
have encouraged participants to read more attentively and devote
more resources to prediction.

The central question for this study concerned participants’
later memory for sentence-ending words they had predicted
and/or read. Behaviorally, hit rates were numerically higher
for unexpected than for expected matches, though no reliable
effect was found. A similar pattern had previously been seen
for word recognition at the end of the experiment using these
stimuli; higher hit rates were also found for expected words
that had completed weakly vs. strongly constraining sentences
(Federmeier et al., 2007; see also Corley et al., 2007). The ERPs
during the memory test in the present study, however, revealed
that LPC responses elicited by unexpected Matches were more
positive than those to expected Matches, suggesting greater
recollection for unexpected words. Additionally, LPC amplitudes
differed between strongly and weakly constrained expected
matches, with more positive LPCs for weak constraint matches.
This LPC pattern mirrors the behavioral memory performance
pattern observed in Federmeier et al. (2007). This pattern may
arise because prediction trades off with depth of encoding, such
that participants process—and hence encode—predicted words

less. In other words, the information needed to verify that an
expectation is met may require less attention and less stimulus-
driven processing than that needed to encode a stimulus that
readers could not predict. A recent ERP repetition study supports
this account (Rommers and Federmeier, 2018a). Words that
had first been encountered as expected sentence endings of
strongly constraining sentences showed reduced ERP repetition
effects (when seen again in a weakly constraining sentence)
compared to those that had first been seen in weakly constraining
sentences. Thus, predictability may have downstream costs: when
information is pre-activated, comprehension may take place in
a top-down “verification mode” (Van Berkum, 2010), in which
readers need only confirm that the stimulus matches with the
expectation. This process achieves speedier processing in the
moment by sacrificing thorough processing of the bottom-up
input, ultimately leading to impoverished representations. Future
studies investigating memory for predicted information could
assess this further by examining ERPs for misses or incorrect
responses, as trial numbers were too low to assess misses here.
Surprisingly, unexpected matches also elicited larger
(more negative) N1 amplitudes than did expected matches.
N1 amplitude modulations are not routinely reported in
electrophysiological studies of recognition memory. Although
unexpected sentence endings may have received greater depth of
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FIGURE 5 | Results and ERP plots for analyses of Lures. The top half (A)
focuses on Strong Constraint Lures, with a time window of 300-500 ms,
whereas the bottom half (B) focuses on Weak Constraint Lures, with a time
window of 500-1,000 ms. The raster plots show channels and time-points
which make up the significant cluster found in the permutation tests. Colors
represent the t-value at the time-point. The ERP topography plots show the
mean amplitude in the time window of the significant cluster, with significant
channels highlighted in white. The ERP plots show the SC and WC Lures at
the maximal channel within the observed cluster. The black dashed lines
indicate the time range of the permutation tests.

processing during encoding, ERP studies examining retrieval of
words that were deeply or shallowly encoded have not reported
modulations of the N1 (Rugg et al., 1998, 2000; Allan et al,
2000). However, N1 modulations have been observed in the
context of visual attention and categorization. The N1 is sensitive
to the allocation of attentional resources (Mangun and Hillyard,
1991; Hillyard and Anllo-Vento, 1998) and may reflect an
early, attention-dependent visual discrimination process that is
sensitive to category membership (Vogel and Luck, 2000; Hopf
etal., 2002). In one study (Curran et al., 2002), participants were
trained in separating abstract blob images into two separate
categories (similar or dissimilar to a prototype) and were later
given a recognition memory test on the images. The N1 during
the recognition test was sensitive to category membership,
but not to old/new differences, similar to the current reported

— WC Lure Correct Rejection WC Lure False Alarm

— New Correct Rejection = New False Alarm

FIGURE 6 | Grand average ERP waveforms for correct rejections and false
alarms for Weak Constraint Lures and New items at the previously described
maximal channel from the WC Lure cluster analysis. The pattern of responses
for New items appears similar to the WC Lure items.

results. Differences in predictability during sentence reading
may have led to separable categories during recognition testing;
however, given the post hoc nature of the analysis of the N1 in the
current study, it will be important to replicate the effect in future
work, as well as to confirm that the results cannot be explained
by other factors (such as lexical variables).

A critical manipulation in the current study was the inclusion
of lures—items that were likely to have been predicted during
sentence reading but that were never actually presented (because
an unexpected word appeared instead). Behaviorally, individuals
were significantly more likely to false alarm to Lures than to
New items that had not been studied, suggesting increased
accessibility or fluency for these items. This pattern is consistent
with claims that words are predicted and pre-activated as a
sentence unfolds (Federmeier, 2007; Kutas et al, 2011) and
further reveals that such predictive pre-activation can have long-
lasting effects. Here, several sentences were presented in each
block, and each block was followed by interfering math problems,
and yet participants still showed increased false alarming to
these lures. This finding mirrors previously reported effects
from studies on false memory using the DRM paradigm, in
which subjects falsely recall—and are more likely to falsely
recognize (Gallo, 2010)—critical lures that are semantically
similar to studied items. However, a number of differences
between the paradigms make the current findings particularly
striking. First, in DRM experiments, the lure items are usually
closely related to an entire list of words. Here, instead, each
predicted sentence ending used as a Lure test item was related
to only one sentence in a block, and the sentences were not
semantically related to each other. Moreover, different from the
DRM paradigm, in the present study predictions were explicitly
disconfirmed, via the presentation of an unexpected word (which
was always semantically unrelated to the predicted ending).
Thus, these findings suggest that expected representations are
not fully suppressed when a prediction is disconfirmed and that
false memories can arise for such disconfirmed information.
This presents another cost of prediction during language
comprehension: individuals may falsely remember reading or
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hearing words that were not actually experienced, simply because
they were predicted in the moment, and those predictions linger.
An alternative explanation of the luring effect is that
participants could have tried to use the word presented during
the test as a cue to perform a retrospective search through
memory for a sentence that might have included it. By this
account, when a Lure was presented, subjects were able to retrieve
a likely sentence frame for that word, and thus more false
alarming occurred. Similar to Neely and Keefe’s (1989) hybrid
prospective-retrospective processing theory, this retroactive
search could be performed regardless of any pre-activation of
the test item. However, in the case of the Lures in the present
study, the associated sentence was completed by an unexpected
word. For a retroactive search strategy to work, the unexpected
word that originally completed the sentence and its effect on
the sentence-level meaning that was extracted would need to be
ignored, thus rendering the Lures as ineffective search cues.
Behaviorally, participants did not show a greater rate of
false alarms to lures from strongly constraining sentences
compared to lures from weakly constraining sentences. However,
electrophysiological analyses revealed that different underlying
patterns of brain activity were associated with false alarming
across constraint. False alarming to strong constraint lures
correlated with an earlier, N400-like effect, whereas false
alarming to weak constraint lures was associated with a later,
right-lateralized effect that was fairly broadly distributed. The
N400-like pattern to the lures from the strong constraint
sentences is consistent with the idea that false alarms to these
items were driven by an increase in conceptual fluency or
familiarity (Voss and Federmeier, 2011; Wang et al.,, 2015). A
plausible account of this effect is that when words or concepts
are strongly predicted, they linger, such that when the word
is encountered again, it is processed more fluently or is more
familiar, which behaviorally is associated with a tendency to mark
these words as “old” and electrophysiologically is associated
with a reduced N400 response. The later right-lateralized effect
observed following false alarms to weak constraint lures may be
comparable to the right frontal old/new effect in the recognition
memory literature, which is thought to index decision making,
evaluation, and post-retrieval monitoring processes (Hayama
et al., 2008; Cruse and Wilding, 2009; Hayama and Rugg, 2009)
and has been related to lure discrimination (Morcom, 2015).
Thus, despite a lack of behavioral differences in false alarming
based on constraint, it appears different processes may have
led to false alarms depending on the prior constraint of the
item: a more rapid semantic matching based process for strong
constraint lures and a slower, more top-down decision process
for weak constraint lures. Future studies could use experimental
manipulations to dissociate these effects; for instance, employing
speeded recognition decisions would likely increase false alarm
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