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A premise monotonicity effect during category-based induction is a robust effect, in
which participants are more likely to generalize properties shared by many instances
rather than those shared by few instances. Previous studies have shown the event-
related potentials (ERPs) elicited by this effect. However, the neural oscillations in the
brain underlying this effect are not well known, and such oscillations can convey
task-related cognitive processing information which is lost in traditional ERP analysis. In
the present study, the phase-locked and non-phase-locked power of neural oscillations
related to this effect were measured by manipulating the premise sample size [single
(S) vs. two (T)] in a semantic category-based induction task. For phase-locked
power, the results illustrated that the premise monotonicity effect was revealed by
anterior delta power, suggesting differences in working memory updating. The results
also illustrated that T arguments evoked larger posterior theta-alpha power than
S arguments, suggesting that T arguments led to enhanced subjectively perceived
inductive confidence than S arguments. For non-phase-locked power, the results
illustrated that the premise monotonicity effect was indicated by anterior theta power,
suggesting that the differences in sample size were related to a change in the need
for cognitive control and the implementation of adaptive cognitive control. Moreover,
the results illustrated that the premise monotonicity effect was revealed by alpha-beta
power, which suggested the unification of sentence and inference-driven information.
Therefore, the neural oscillation profiles of the premise monotonicity effect during
semantic category-based induction were elucidated, and supported the connectionist
models of category-based induction.

Keywords: category-based induction, non-phase-locked power, phase-locked power, premise monotonicity
effect, connectionist models, time-frequency analysis

INTRODUCTION

Category-based induction plays a significant role in human learning and adaptation (Anderson,
1991; Heit and Hayes, 2011), and involves exploiting knowledge about a property of the premise
categories to infer the same property about the members of a conclusion category (Kemp and Jern,
2014; Hayes and Heit, 2018). For example, if we know all tigers (premise category) have gene M,
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we could infer that all mammals (conclusion category) have
gene M, since we know that tigers are members of the category
of mammals.

One of the typical psychological effects during category-based
induction is the premise monotonicity effect. This effect reflects
the observation that individuals are more likely to generalize
properties shared by many instances than those shared by few
instances (Osherson et al., 1990; Feeney, 2007). For instance, it
might be easier to generalize that all mammals have geneM based
on the premise that both tigers and lions have gene M than based
on the premise that only lions have gene M, because the former
argument has a larger sample size than the latter. This effect is
robust, and can be observed in children (Gutheil and Gelman,
1997; Li et al., 2009; Lawson, 2014; Rhodes and Liebenson, 2015),
healthy adults (Osherson et al., 1990; Rotello and Heit, 2009;
Feeney and Heit, 2011), and adults with obsessive-compulsive
disorder (Liew et al., 2018).

Cui et al. (2018) measured the event-related potentials (ERPs)
elicited by the premise monotonicity effect during category-
based induction to explore the timing of brain activity underlying
this effect. In their study, they manipulated the types of premise
categories via displaying one (S arguments, e.g., tigers) or two
types of premise categories (T arguments, e.g., tigers and lions)
with a novel property (e.g., X1) in the arguments. Their results
suggested that the cognitive processes underlying the premise
monotonicity effect during category-based induction involved
familiarity, which produced FN400 (a negative deflection with
frontal-central distribution at 250–450ms), and inference-driven
information integration, which produced sustained negativity
(SN, a prolonged negative deflection that lacks a clear peak and
features a similar latency window as that of the FN400 effect).

However, some task-related cognitive processes underlying
the premisemonotonicity effect during category-based induction
would be lost in the ERP study of Cui et al. (2018), due
to the limitations of traditional ERP techniques. ERPs reflect
the summation of the postsynaptic potentials involving a
large ensemble of active neurons (Cohen, 2014; Cavanagh,
2019). In traditional ERP analysis, time-locked and phase-
locked activity are averaged as event-related EEG signals, while
the time-locked and non-phase-locked activity, which provide
important information related to cognitive processing, are lost
(Cohen, 2014). Thus, some task-related cognitive processes
underlying the premise monotonicity effect during category-
based induction would be not revealed in the ERP study
of Cui et al. (2018).

The present study aims to reveal the additional cognitive
processes underlying the premise monotonicity effect during
category-based induction by extending the ERP-based results
through the measurement of neural oscillation. Neural
oscillations are decomposed using the time-frequency analysis
technique, which can identify changes in the amplitude or in
the power of the responses within different frequency bands
in both phase-locked and non-phase-locked activity, to reveal
the cognitive processes that are lost to traditional ERP analysis
(Davidson and Indefrey, 2007; Cohen, 2014). The experiment
uses the same design and materials, and a similar procedure
as Cui et al. (2018). Notably, Liang et al. (2010) performed

time-frequency analysis during category-based induction and
found that inductive decisions on congruent induction tasks
elicited a marginally larger gamma band (30–50 Hz) power
than that of incongruent induction tasks. However, they did
not explore the neural oscillation profiles of the premise
monotonicity effect during semantic category-based induction.

We predicted that the premise monotonicity effect during
category-based induction would be revealed by both phase-
locked and non-phase-locked EEG power. According to the
connectionist models of semantic cognition (Rogers and
McClelland, 2008, 2014), cognitive processing units during
category-based induction are organized in hierarchical layers,
which can include stimuli-driven and experience-based layers.
Stimuli-driven bottom-up processing would produce phase-
locked EEG power, while experience-based top-down processing
would produce non-phase-locked EEG power (Chen et al.,
2012; Mei et al., 2018). Thus, we predicted that stimuli-driven
cognitive processes would produce phase-locked EEG power,
and experience-based cognitive processes would produce non-
phase-locked EEG power.

For phase-locked power specifically, we predicted that the
premise monotonicity effect during semantic category-based
induction would lead to changes in delta and theta-alpha band
power, indexing working memory (WM) updating, subjectively
perceived confidence, and cognitive processing facilitation.
In the present study, more WM needs to be updated in
T arguments with incongruent conclusion (T−) than in S
arguments with incongruent conclusion (S−), because of the
increased conceptual confliction during T−; and less WM needs
to be updated in T arguments with congruent conclusion (T+)
than in S arguments with congruent conclusion (S+), because
of the increased conceptual fluency. WM updating is related to
increased delta power (Harmony, 2013; Rac-Lubashevsky and
Kessler, 2018), and thus we predicted that T−would evoke larger
delta power than S−, while T+ would evoke smaller delta power
than S+. In addition, cognitive processing would be facilitated
by inhibiting stimulus-based bottom-up processing demands
during T arguments compared with S arguments, thus producing
increased subjectively perceived confidence. The facilitation of
the inhibition on stimulus-based bottom-up processing demands
and subjectively perceived confidence were associated with larger
posterior alpha (e.g., Klimesch, 2012) and posterior theta power
(Wynn et al., 2019), respectively. We thus predicted that T
arguments would have larger evoked posterior theta-alpha band
power than S arguments.

For non-phase-locked power, we predicted that the premise
monotonicity effect during semantic category-based induction
would lead to changes in theta and alpha-beta power, indexing
cognitive control and unification respectively. In the present
study, T− is characterized by stronger conflict than S−
because of the double categorical membership conflict, and
S arguments involve more adaptive control because of the
increased response caution compared with T arguments. These
processes involve distinctive requirements for cognitive control
or adaptive control. Anterior theta power is related to cognitive
control (Cavanagh and Frank, 2014; Cavanagh and Shackman,
2015; Helfrich et al., 2019). We, therefore, predicted that the
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premise monotonicity effect during semantic category-based
induction could be revealed by anterior theta power in a relatively
early time window for cognitive control requirements, and in
a relatively late time window for adaptive control. In addition,
T arguments need more complicated sentence integration
than S arguments, whereas they produce less inference-driven
information unification than S arguments due to the larger
sample size providing more evidence. The increased information
unification is related to decreased alpha-beta band power
(Hagoort, 2005, 2013; Lam et al., 2016). We, therefore, predicted
that T arguments would generate lower (larger) alpha-beta power
than S arguments in a relatively early (late) period.

MATERIALS AND METHODS

Ethical Statements
This study was approved by the ethics review board of the
Faculty of Psychology, Southwest University, Chongqing, China.
Written informed consent was obtained from all participants.
All procedures involved were performed in accordance with the
Declaration of Helsinki (World Medical Association, 2013).

Participants
The participants in the present experiment do not overlap those
of the study by Cui et al. (2018). Forty-two undergraduate
students [mean (M) age: 20.21 years; standard deviation (SD):
1.44; range: 18–24 years, 28 females] were recruited. All
participants were self-reported as right-handed, native Mandarin
Chinese speakers, had a normal or corrected-to-normal vision,
and no neurological impairment.

Experimental Materials, Design, and
Procedure
The experimental materials and design are the same as in the
study of Cui et al. (2018), to which we refer for more detailed
information. Briefly, in the present study, to explore the premise
monotonicity effect during semantic category-based induction,
the experiment was conducted with two premise conditions
[single premise category argument (S), two premise category
arguments (T)] and two conclusion conditions [congruent (+)
or incongruent conclusion (−)] as within-subject factors. The
properties used in the present study are a series of molecular
structures (e.g., E5, X1). In the formal experiment, each
sub-condition included 50 trials. The experimental procedure
is similar to the study of Cui et al. (2018), except that the
random duration of the blank screen before the conclusion was
1,000–1,200 ms.

Each trial started with a 500 ms black fixation cross (‘‘+’’)
at the center of the screen. After that, the premises appeared
in a random order. In each S argument trial, a single premise
was displayed for 800 ms, while in T argument trials a pair
of premises (each lasting 800 ms) appeared consecutively,
with an 800–1,000 ms random length interval after the first
premise. Following a blank screen lasting randomly from 1,000 to
1,200 ms, the conclusion was displayed. Once the conclusion
appeared, participants were required to infer the inductive
strength of the conclusion based on the premise(s), by choosing

one of four degrees (‘‘definitely weak’’, ‘‘possibly weak’’, ‘‘possibly
strong’’, and ‘‘definitely strong’’). The conclusion disappeared
after participants made a response or after 2,000 ms had
elapsed. After a blank screen lasting randomly 1,500–2,000 ms,
the ‘‘+’’ signal was presented to start a new trial. The
experimental trials were divided into four blocks. Sixty seconds
of rest was allowed between two consecutive blocks to avoid
fatigue effects.

EEG Recording
Continuous electrophysiological (EEG) signals were recorded
via an electrode cap (Neuroscan, Herndon, VA, USA),
with 64 Ag/AgCl scalp sites according to the International
10/20 system. The ground electrode was placed between FPz
and Fz. The online reference electrode was located between Cz
and CPz. The vertical electrooculograms (EOGs) were recorded
supra-orbitally and infra-orbitally relative to the left eye; and the
horizontal EOG was recorded as the difference in activity of the
right vs. the left orbital rim. The impedance of all electrodes
was kept below 5 KΩ. The EEG and EOGs were amplified by a
SynAmps2 amplifier (Neuroscan) and digitized at a sampling rate
of 500 Hz. The signals were recorded in DC mode and amplified
with a low-pass filter at 200 Hz with no high-pass filters applied.

Data Analysis
EEG Data Pre-processing
EEG data were analyzed in MATLAB 2014b using the EEGLAB
toolbox (Delorme and Makeig, 2004) and the ERPLAB toolbox
(Lopez-Calderon and Luck, 2014). EEG data were filtered using
second-order IIR-Butterworth filters with 1–50 Hz (half-power
cut-offs, roll-off = 12 dB/oct) band pass. A 50 Hz notch filter
was also used. Independent component analysis (ICA) was
subsequently performed to correct for components associated
with eye movements and eye-blinks. The ICA-corrected EEG
data were then re-referenced to the average of the left and right
mastoid electrodes (Luck, 2014), and segmented into epochs.
Among the responses to congruent conclusions, ‘‘definitely
strong’’ and ‘‘possibly strong’’ were identified as ‘‘correct’’
responses; ‘‘definitely weak’’ and ‘‘possibly weak’’ responses were
identified as ‘‘correct’’ for incongruent conclusions. Only the
‘‘correct’’ responses were selected and segmented into 3,000 ms
epochs, including the 1,000ms preceding the onset of conclusion.
The baseline correction was based on the pre-stimulus time
interval (−1,000 to 0 ms). Noisy trials were excluded using the
moving window peak-to-peak amplitude method (Luck, 2014)
with a window width of 200 ms, window step of 100 ms, and a
65-µV threshold. The mean number of trials for each of the four
conditions was 42.98 (SD: 3.90) for S+, 44.93 (SD: 3.65) for T+,
44.55 (SD: 3.91) for S−, and 45.60 (SD: 3.49) for T−.

Time-Domain Analysis
In ERP analysis, the single-trial data were averaged separately
for each participant and each condition. The single-participant
average waveforms were averaged to obtain group-level average
waveforms. According to Cui et al. (2018), FN400 and SN have
anterior scalp distribution, and thus the F3, F1, Fz, F2, F4,
FC3, FC1, FCz, FC2, and FC4 electrodes were selected and
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collapsed by averaging their values to give an indicator of anterior
activity. Based on the results of Cui et al. (2018), the mean
FN400 amplitude was measured during the 250–450 ms time
window, and the mean SN amplitude during the 450–1,050 ms
time window after the onset of the conclusions.

Time-Frequency-Domain Analysis
In time-frequency-domain analysis, the total EEG power was
analyzed through the following steps. First, single-trial data
were used to estimate the oscillatory power via the Morlet
continuous wavelet transform (MCWT, Mouraux and Iannetti,
2008). The parameters of central frequency (ω) and restriction
(σ) in MCWT were 5 and 0.15, respectively (Tang et al., 2013,
2015). Time-frequency representations (TFRs) were explored
in the range of 1–50 Hz in steps of 0.5 Hz. Second, single-
trial TFRs were averaged to obtain averaged TFRs of every
participant under each condition. Third, the averaged TFRs were
subsequently cut in length (−600 to 1,200 ms) to reduce the
edge effects. Fourth, the power was normalized by conversion
to a decibel (dB) scale [10 ∗ log10 (power/baseline)]. The
baseline power was computed as the average power across all
experiment conditions, from 600 to 100 ms prior to the onset of
the conclusions.

The total EEG power was decomposed into phase-locked and
non-phase-locked components. Following Cohen and Donner
(2013) and Cohen (2014), under each condition, the non-phase-
locked power was obtained by subtracting the ERP from the
time-domain EEG signals on each trial and then performing
time-frequency decomposition as described above. The phase-
locked power was computed by subtracting the non-phase-
locked power from the total power.

After obtaining the non-phase-locked and phase-locked
power of each condition, to increase statistical strength and
reduce false effects (Luck and Gaspelin, 2017), we first identified
the spatial regions of interest (S-ROIs): the F3 F1, Fz, F2, F4, FC3,
FC1, FCz, FC2, and FC4 electrodes were selected and collapsed by
averaging their values to obtain an indicator of anterior activity;
the CP3, CP1, CPz, CP2, CP4, P3, P1, Pz, P2, and P4 electrodes
were selected and collapsed by averaging their values as an
indicator of posterior activity.

Then we performed an exploratory data-driven analysis
routine to identify the time-frequency regions of interest (TF-
ROIs), based on previous studies (Tang et al., 2013; Tan et al.,
2014), with the following steps:

1. Based on the defined S-ROIs, we calculated the difference
in magnitude between S arguments and T arguments in
both the congruent and incongruent conditions, and that
between incongruent and congruent conditions in both S
and T arguments, to evaluate the potential effects of premise
monotonicity and conclusion congruency.

2. For each time-frequency representation of the (non-)phase-
locked magnitude difference, we tested whether and when the
resulting (non-)phase-lockedmagnitudes in the post-stimulus
interval were significantly different from the corresponding
magnitudes in the pre-stimulus interval using a bootstrapping
method (Delorme and Makeig, 2004; Durka et al., 2004).

3. At each time-frequency point, the post-stimulus interval
was defined as the investigated population and the interval
600–100 ms before the stimulus was defined as the reference
population. The null hypothesis was that there was no
difference in mean between these two populations. The
pseudo-t-statistic between the two populations was calculated,
and its probability distribution was estimated by sampling
with replacement two populations of the same size from the
reference population. After the permutation was executed
5,000 times, the distribution of the pseudo-t-statistic from the
reference population and the bootstrap p-values for the null
hypothesis were generated.

4. This procedure yielded time-frequency distributions in which
the brain responses within the post-stimulus interval were
significantly different from the responses in the reference
interval (Hu et al., 2012; Peng et al., 2012). To address
the problem of multiple comparisons, the significance
level (p-value) was corrected using a false discovery rate
(FDR) procedure (Benjamini and Hochberg, 1995; Benjamini
and Yekutieli, 2001). In addition, to control for false-
positive observations, significant TF-ROIs were defined based
on the following three criteria: (1) the time-frequency
pixels were significantly different from the pre-stimulus
interval at p < 0.01; (2) the time-frequency pixels had to
cover more than two nearby significant frequency bands;
and (3) the time-frequency pixels had to include more
than 125 consecutive significant time points (250-ms; see
Hu et al., 2013).

5. After TF-ROIs and S-ROIs were identified, we calculated the
mean magnitude within the TF-ROIs at the corresponding
S-ROIs for each condition.

In summary, in phase-locked power, two TF-ROIs were
identified: delta band (2.5–4 Hz, 100–350 ms); and theta-alpha
band (4–12 Hz, 100–500 ms). In non-phase-locked power, four
TF-ROIs were identified: early theta band (4–7 Hz, 250–650 ms);
late theta band (4–7 Hz, 650–1,100 ms); early alpha-beta band
(10–30 Hz, 0–250 ms); and late alpha-beta band (10–30 Hz,
650–1,100 ms).

Statistical Analysis
For behavioral data, three separate two-factors repeated-
measures analysis of variances (ANOVAs) with premise
monotonicity (S, T) and conclusion congruency (+,−) as within-
subject factors were performed, respectively to analyze response
strength, ‘‘correct’’ response rates, and reaction times. Regarding
response strength, ‘‘definitely weak’’ was assigned a score of 1;
‘‘possibly weak’’, 2; ‘‘possibly strong’’, 3; and ‘‘definitely strong’’,
4. To analyze the decision threshold between S and T arguments,
paired-sample t-tests were performed on parameter c. Parameter
c is based on signal detection theory (SDT, MacMillan and
Creelman, 2005), in which the ‘‘correct’’ responses under the
congruent conclusion conditions were defined as hits, and
the ‘‘correct’’ responses under the incongruent conclusion
conditions were defined as correct rejections.

For ERP data, two separate two-factors repeated-measures
ANOVAs were performed, with premise monotonicity (S, T)
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and conclusion congruency (+,−) as within-subject factors,
to analyze the mean amplitudes of FN400 and SN. For
time-frequency domain data, six separate three-factor repeated-
measures ANOVAs were performed, with premise monotonicity
(S, T), conclusion congruency (+,−), and brain region (anterior,
posterior) as within-subject factors. The mean power of the delta
and theta-alpha bands in phase-locked power and of the early and
late theta and alpha-beta bands in non-phase-locked power were
analyzed, respectively.

RESULTS

Behavioral Results
Table 1 shows the results of the two-way repeated-measures
ANOVAs on response strength, ‘‘correct’’ response rates,
reaction times, FN400 amplitudes, and SN amplitudes. For
response strength, the interaction between premise monotonicity
and conclusion congruency was significant (Table 1). When the
factor of premise monotonicity was entered into the post hoc
analysis, the results suggested that T arguments produced more
‘‘definitely’’ strong responses than S arguments under congruent
conditions (T+: M = 3.78, SD = 0.27; S+: M = 3.25, SD = 0.44;
F(1,41) = 56.50, p < 0.001, η2p = 0.58), while T arguments
produced more ‘‘definitely’’ weak responses than S arguments
under incongruent conditions (T−: M = 1.12, SD = 0.22; S−:
M = 1.44, SD = 0.41; F(1,41) = 27.25, p< 0.001, η2p = 0.40).

For ‘‘correct’’ response rates, the interaction between premise
monotonicity and conclusion congruency reached statistical
significance (Table 1). When the factor of premise monotonicity
was entered into the post hoc analysis, the results suggested that
T arguments featured higher ‘‘correct’’ response rates than S
arguments under both congruent (T+: M = 0.97, SD = 0.04; S+:
M = 0.93, SD = 0.06; F(1,41) = 35.39, p < 0.001, η2p = 0.46) and
incongruent conditions (T−:M = 0.99, SD = 0.02; S−:M = 0.96,
SD = 0.04; F(1,41) = 13.44, p = 0.001, η2p = 0.25).

For reaction times, the interaction between premise
monotonicity and conclusion congruency was also significant
(Table 1). When the factor of premise monotonicity was
entered into the post hoc analysis, the results suggested that T
arguments featured shorter reaction times than S arguments
under both congruent (T+: M = 726, SD = 123; S+: M = 1,078,
SD = 181; F(1,24) = 359.96, p< 0.001, η2p = 0.90) and incongruent
conditions (T−: M = 743, SD = 126; S−: M = 1,041, SD = 207;
F(1,24) = 161.28, p < 0.001, η2p = 0.80). For decision threshold,
T arguments exhibited a more liberal decision threshold than
S arguments (T: M = 0.07, SD = 0.22; S: M = 0.15, SD = 0.27;
t(41) = 2.01, p = 0.05, Cohen’s d = 0.31).

ERP Results
Figure 1 shows the ERP responses to the premise monotonicity
and their topographies under congruent (Figure 1A) and
incongruent (Figure 1B) conditions.

FN400
As shown in Table 1, the interaction between premise
monotonicity and conclusion congruency was significant. When
the factor of premise monotonicity was entered into the

TABLE 1 | Results of the two-way repeated-measures ANOVAs of the response
strength, “correct” response rate, reaction times, FN400 amplitudes and
sustained negativity (SN) amplitudes in anterior region.

Premise (P) Conclusion (C) C∗P

Response strength F(1,41) 13.52 957.99 49.948
P 0.001 <0.001 <0.001
η2

p 0.248 0.959 0.549
“Correct” response rate F(1,41) 44.58 9.08 4.70

p <0.001 0.004 0.036
η2

p 0.52 0.18 0.10
Reaction time F(1,41) 286.57 0.48 9.22

p <0.001 0.49 0.004
η2

p 0.88 0.01 0.18
FN400 F(1,41) 7.21 91.23 35.92

p 0.01 <0.001 <0.001
η2

p 0.15 0.69 0.05
SN F(1,41) 20.41 6.64 6.45

p <0.001 0.01 0.02
η2

p 0.33 0.13 0.14

post hoc analysis, the results suggested that S arguments elicited
larger FN400 amplitudes than T arguments under congruent
conditions (F(1,41) = 26.34, p < 0.001, η2p = 0.39), but elicited
amplitudes similar to those of T arguments under incongruent
conditions (F(1,41) = 0.08, p = 0.77, η2p = 0.002).

Sustained Negativity (SN)
As shown in Table 1, the interaction between premise
monotonicity and conclusion congruency was significant. When
the factor of premise monotonicity was entered into the post hoc
analysis, the results suggested that S arguments elicited larger SN
than T arguments under both congruent (F(1,41) = 4.09, p = 0.049,
η2p = 0.09), and incongruent conditions (F(1,41) = 26.70, p< 0.001,
η2p = 0.39).

Time-Frequency Domain Results
Figure 2 illustrates the phase-locked EEG power and the
corresponding topographies. Figure 3 illustrates the non-phased-
locked EEG power and the corresponding topographies. Table 2
shows the results of the three-way repeated-measures ANOVAs
of phase-locked and non-phase-locked EEG power.

The Results on Phase-Locked EEG Power
For delta band power, the interaction among premise
monotonicity, conclusion congruency, and brain region
was significant (Table 2). Thus, we performed post hoc repeated-
measures ANOVAs with premise monotonicity and conclusion
congruency as within factors in the anterior and posterior
region. In the anterior region, the interaction between premise
monotonicity and conclusion congruency was significant
(F(1,41) = 10.178, p = 0.002, η2p = 0.21). When the factor of
premise monotonicity was entered into the post hoc analysis,
the results suggested that S+ evoked larger delta power than T+
(F(1,41) = 4.39, p = 0.04, η2p = 0.10), while S− evoked smaller
delta power than T− (F(1,41) = 6.28, p = 0.02, η2p = 0.13).
When the factor of conclusion congruency was entered into the
post hoc analysis, the results showed that incongruent conditions
elicited larger delta power than congruent conditions under
both S (F(1,41) = 22.11, p < 0.001, η2p = 0.35) and T arguments
(F(1,41) = 40.24, p < 0.001, η2p = 0.50). In the posterior region,
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FIGURE 1 | Event-related potential (ERP) responses to the premise monotonicity effect. (A) Grand-averaged waveforms elicited by S+ and T+ arguments and the
difference waveform (S+ minus T+) in the anterior region (top); grand-averaged waveforms elicited by S− and T− arguments and the difference waveform (S− minus
T−) in the anterior region (bottom). (B) Topographies of the difference waveforms of FN400 in the 250–450 ms interval and sustained negativity (SN) in the
450–1,050 ms interval. (C) Statistical comparisons of premise monotonicity (S, T) and conclusion congruency (+,−) in the average amplitudes of FN400 and SN.
Error bars indicate the standard error of the mean (SEM). ∗p < 0.05; ∗∗∗p < 0.001 for the comparison of means.

the interaction between premise monotonicity and conclusion
congruency was not significant (F(1,41) = 0.42, p = 0.52,
η2p = 0.01), nor was the main effect of conclusion congruency
(F(1,41) = 1.05, p = 0.31, η2p = 0.03). However, the main effect of
premise monotonicity was significant (F(1,41) = 9.58, p = 0.004,
η2p = 0.19), T arguments evoking larger delta power than
S arguments.

Concerning theta-alpha band power, no significant
interaction was found among premise monotonicity, conclusion
congruency, and brain region (Table 2). Among all the two-way
interaction effects, only the interaction between premise
monotonicity and brain region was significant. When the factor
of premise monotonicity was entered into the post hoc analysis,
the results showed that T arguments elicited larger theta-alpha
power than S arguments at posterior (F(1,41) = 18.23, p < 0.001,
η2p = 0.31), but not anterior regions (F(1,41) = 3.71, p = 0.06,
η2p = 0.08).

The Results on Non-phase-Locked EEG Power
For early theta band power, as shown in Table 2, no significant
interaction was found among premise monotonicity, conclusion
congruency, and brain region. However, the interaction
between premise monotonicity and conclusion congruency
was significant. When the factor of premise monotonicity
was entered into the post hoc analysis, the results suggested

that T+ induced theta power similar to S+ (F(1,41) = 0.14,
p = 0.71, η2p = 0.004), while T− induced larger theta power
than S− (F(1,41) = 5.37, p = 0.03, η2p = 0.12). When the factor of
conclusion congruency was entered into the post hoc analysis,
the results suggested that T− induced larger theta power than
T+ (F(1,41) = 6.58, p = 0.01, η2p = 0.14), while S+ and S− induced
similar theta power (F(1,41) = 0.85, p = 0.36, η2p = 0.02).

For late theta band power, no significant interaction was
found among premise monotonicity, conclusion congruency,
and brain region (Table 2). However, the interaction between
premise monotonicity and brain region was significant. When
the factor of premise monotonicity was entered into the post hoc
analysis, the results showed that S arguments induced larger
theta power than T arguments in both anterior (F(1,41) = 15.81,
p < 0.001, η2p = 0.28) and posterior regions (F(1,41) = 9.24,
p = 0.004, η2p = 0.18).

For early alpha-beta band power, as shown in Table 2, no
significant interaction was found among premise monotonicity,
conclusion congruency, and brain region. However, the
interaction between premise monotonicity and brain region
was significant. When the factor of premise monotonicity was
entered into the post hoc analysis, the results showed that S
arguments elicited larger alpha-beta power than T arguments in
both anterior (F(1,41) = 4.56, p = 0.04, η2p = 0.10) and posterior
regions (F(1,41) = 41.73, p< 0.001, η2p = 0.50).
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FIGURE 2 | Phase-locked electrophysiological (EEG) power responses to the premise monotonicity effect. (A) Grand-averaged power evoked by S+, T+, S−, and
T− arguments in the anterior and posterior regions. (B) The EEG power of “S+ minus T+”, “S− minus T−”, “S− minus S+”, and “T− minus T+” is shown in the
anterior and posterior regions. White outlines indicate significant [p < 0.01, false discovery rate (FDR) corrected] time–frequency pixels in the bootstrapping statistical
analysis. Black outlines indicate time-frequency regions of interest (TF-ROIs) of the delta (2.5–4 Hz) and theta-alpha (4–12 Hz) bands. (C) Power difference
topographies of the delta and theta-alpha bands.
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FIGURE 3 | Non-phased-locked EEG power responses to the premise monotonicity effect. (A) Grand-averaged power produced by S+, T+, S−, and T−
arguments in the anterior and posterior regions. (B) The EEG power of “S+ minus T+”, “S− minus T−”, “S− minus S+”, and “T− minus T+” is shown in the anterior
and posterior regions. White outlines indicate the significant (p < 0.01, FDR corrected) time–frequency pixels in the bootstrapping statistical analysis. Black outlines
indicate TF-ROIs of the theta and the alpha-beta (10–30 Hz) bands. (C) Power difference topographies of the theta (250–650 ms and 650–1,100 ms) and alpha-beta
(0–250 ms and 650–1,100 ms) bands.
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TABLE 2 | Results of the three-way repeated-measures ANOVAs of phase-locked and non-phase-locked power.

Premise (P) Conclusion (C) Region (R) P∗C P∗R C∗R P∗C∗R

Delta F(1,41) 3.27 25.35 13.71 3.94 1.35 34.39 15.58
2.5–4 Hz p 0.08 <0.001 0.001 0.05 0.25 <0.001 <0.001
100–350 ms η2

p 0.07 0.38 0.25 0.09 0.05 0.46 0.27
Theta-alpha F(1,41) 14.07 0.02 2.07 0.90 4.60 0.80 1.64
4–12 Hz p 0.001 0.88 0.16 0.35 0.04 0.38 0.21
100–500 ms η2

p 0.26 0.001 0.05 0.02 0.10 0.02 0.04
Theta F(1,41) 1.53 1.87 15.83 7.00 2.92 0.19 1.98
4–7 Hz p 0.22 0.18 <0.001 0.01 0.10 0.67 0.17
250–650 ms η2

p 0.04 0.04 0.28 0.15 0.07 0.01 0.05
Theta F(1,41) 15.22 0.56 31.49 0.01 5.53 3.58 0.70
4–7 Hz p <0.001 0.46 <0.001 0.92 0.02 0.07 0.41
650–1,100 ms η2

p 0.27 0.01 0.43 <0.001 0.12 0.08 0.02
Alpha-beta F(1,41) 23.13 7.08 11.89 3.61 9.05 0.23 0.40
10–30 Hz p <0.001 0.01 0.001 0.07 0.004 0.64 0.53
0–250 ms η2

p 0.36 0.15 0.23 0.08 0.18 0.01 0.01
Alpha-beta F(1,41) 105.14 0.56 1.90 <0.001 4.27 0.24 7.22
10–30 Hz p <0.001 0.46 <0.001 0.99 0.05 0.63 0.01
650–1,100 ms η2

p 0.72 0.01 0.32 <0.001 0.09 0.01 0.15

For late alpha-beta band power, the interaction among
premise monotonicity, conclusion congruency, and brain region
was significant (Table 2). Thus, post hoc repeated-measures
ANOVAs were performed in the anterior and posterior regions.
The main effects of premise monotonicity were significant
in both the anterior (F(1,41) = 82.97, p < 0.001, η2p = 0.67)
and posterior regions (F(1,41) = 87.61, p < 0.001, η2p = 0.68),
with T arguments producing larger alpha-beta power than
S arguments.

The Correlation Between Behavioral
Response and Electrophysiology
Parameters
To further analyze the relationship between variations of
behavioral responses and changes in the electrophysiology
parameters, Spearman’s correlation analysis was performed.
The variations of behavioral responses (‘‘correct’’ response
rates, response strength, and decision threshold c) and
electrophysiology parameters (FN400 amplitudes, SN
amplitudes, phase-locked anterior delta power, phase-locked
posterior theta-alpha power, non-phase-locked anterior theta
power, non-phase-locked posterior alpha-beta power) were
computed as S minus T under congruent and incongruent
conclusion conditions. Only significant correlations are reported
in the following paragraphs.

Under congruent conditions, the results suggested that the
variation in ‘‘correct’’ response rates was significant correlated
with that in FN400 amplitudes [r = −0.37, p = 0.02, 95%CI
(−0.61, −0.08)], and with the variation in phase-locked anterior
delta power [r = 0.31, p = 0.05, 95%CI (0.001, 0.56)]. The
results also suggested that the variation in decision threshold
c was significant correlated with that in FN400 amplitudes
[r = 0.31, p = 0.05, 95%CI (0.01, 0.56)], and with that in
phase-locked posterior theta-alpha power [r = −0.41, p = 0.01,
95%CI (−0.63, −0.12)].

Under incongruent conditions, the results suggested that
the variation in response strength significantly correlated with
the variation in non-phase-locked anterior early theta power
[r = 0.31, p = 0.05, 95%CI (0.004, 0.56)]. The results also
suggested that the variation in ‘‘correct’’ response rates was
significantly correlated with that in phase-locked posterior theta-
alpha band [r = −0.34, p = 0.03, 95%CI (−0.58, −0.04)], and
with that in non-phase-locked anterior late theta power [r = 0.31,
p = 0.05, 95%CI (0.01, 0.56)].

DISCUSSION

Cui et al. (2018) explored the dependence of ERP responses
to inductive decisions on the premise monotonicity effect
during category-based induction. However, the neural oscillation
profiles of this effect, which can provide insight into the cognitive
processing that lost in traditional ERP analysis, were not
investigated in their study. In this study, we investigated the EEG
oscillatory activity related to the premise monotonicity effect
during category-based induction, using time-frequency analysis
techniques. The data suggested that the premise monotonicity
effect was revealed by response strength, ‘‘correct’’ response rate,
reaction times, decision threshold, FN400 amplitudes, and SN
amplitudes. Moreover, the time-frequency analysis showed that
the premise monotonicity effect was revealed by delta and theta-
alpha in phase-locked EEG power, and theta and alpha-beta in
non-phase-locked EEG power.

In the present study, the premise monotonicity effect during
category-based induction was revealed by response strength,
‘‘correct’’ response rates, reaction times, and decision threshold,
in agreement with previous studies (Osherson et al., 1990;
Feeney, 2007; Cui et al., 2018; Hayes and Heit, 2018). Moreover,
the premisemonotonicity effect during category-based induction
was revealed by FN400 and SN amplitudes, similarly to
what reported by Cui et al. (2018), with different high-pass
filter parameters.
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In phase-locked power, the premise monotonicity effect
during semantic category-based induction was revealed by delta
power in the 100–350 ms time window. In the cognitive domain,
delta oscillations are related to signal detection, decision-
making, attention, inhibition, or working memory (Spironelli
and Angrilli, 2010; Putman, 2011; Leszczy ński et al., 2015;
Rac-Lubashevsky and Kessler, 2018; reviews, Knyazev, 2012;
Harmony, 2013; Güntekin and Baş ar, 2016).

We speculate that working memory (WM) updating during
category-based induction modulates the phase-locked anterior
delta power. In the present study, compared with congruent
conclusions, incongruent conclusions involve a categorical
membership inconsistent between premises and conclusions,
which generates more information to be updated in the WM.
Moreover, T− needs more WM to be updated than S−. This
is because each T− argument includes two premise categories
unrelated to the conclusion category, whereas S− only includes
one. As a result, T− involves increased conceptual confliction
than S−, producing an increased WM updating requirement.
In addition, T+ needs less WM to be updated than S+. This is
because T+ has more premise categories than S+, which provide
more evidence to support induction. As a result, T+ involves
increased conceptual fluency than S+, leading to a decreased
WM updating requirement. Therefore, incongruent conclusions
generate more information to be updated in the WM, producing
larger anterior delta power than congruent conclusions; T−

needs more WM to be updated than S−, producing larger
anterior delta power; and T+ needs less WM to be updated
than S+, producing less anterior delta power. These speculations
are supported by Rac-Lubashevsky and Kessler (2018), who
suggested that WM updating is related to an increase in anterior
delta power.

In phase-locked power, the premise monotonicity effect
during semantic category-based induction was also revealed
by the posterior theta-alpha power. We hypothesize that the
facilitation of inference-driven processing and subjectively
perceived inductive confidence produce the variations of
the posterior theta-alpha power. In the present study, T
arguments elicited more definite responses than S arguments,
suggesting that inference-driven processing is facilitated
by T arguments. This facilitated processing may occur
via the inhibition of specific stimulus-based bottom-up
processing demands during inferences, producing larger
phase-locked posterior alpha power. This hypothesis is in line
with previous studies which suggested that facilitating task
performance via preventing the reorientation of stimulus-
driven irrelevant stimulations is associated with increased
posterior alpha power (e.g., Benedek et al., 2014; Fink et al.,
2018; a review, Klimesch, 2012). Moreover, the facilitation of
inference-driven processing of T arguments led to stronger
subjectively perceived inductive confidence than S arguments;
as a result, T arguments produced larger posterior theta
power than S arguments. This hypothesis is supported by
Wynn et al. (2019), who suggested that stronger subjective
perceived confidence is related to an increase in posterior
theta power. In a recognition task, they found that evoked
posterior theta power was stronger during high-confidence than

low-confidence responses in the retrieval phase, suggesting that
increased evoked theta power indicates stronger subjectively
perceived confidence.

In non-phase-locked power, the premise monotonicity effect
during semantic category-based induction was revealed by
the anterior theta power. Specifically, in the present study,
T− induced larger theta power than S− in a relatively
early time window (250–650 ms), while S arguments induced
larger theta power than T arguments in a relatively late
time window (650–1,100 ms). We hypothesize that top-down
guided cognitive control requirement and adaptive control
generated the increased anterior theta power. Specifically,
incongruent conclusions involve a confliction of categorical
membership, which leads to prediction errors. T− arguments
involve two violations of categorical membership, while S−
arguments only involve one. Hence, T− arguments need
more cognitive control than S−, producing larger theta
power in a relatively early time window. On the other
hand, under congruent conclusions, no conflictions occur.
As a result, T+ and S+ produced similar theta power in
a relatively early time window. This hypothesis is in line
with previous studies which indicated that the need for
cognitive control is related to an increased early anterior
theta power (Cavanagh et al., 2010; van de Vijver et al.,
2011; Rommers et al., 2017; Rac-Lubashevsky and Kessler,
2018; Cooper et al., 2019). For example, Rommers et al.
(2017) found that compared with sentences which included
an expected final word, theta band power was enhanced in
those that included an unexpected final word. They suggested
that the need for cognitive control was increased by the
prediction error in the latter condition, generating increased
theta power.

On the other hand, we speculate that implementing adaptive
control is associated with the relatively late anterior theta
power. In the present study, since the premise sample size was
smaller in S than in T arguments, the former involved more
decision uncertainty than the latter. Moreover, S arguments
led to longer reaction times and more conservative decision
thresholds than T arguments, suggesting increased response
caution. As a result, S arguments involve more adaptive control,
producing larger anterior theta power than T arguments in
a relatively late time window. This is supported by previous
studies which suggested that increased decision uncertainty
and response caution led to implementing adaptive control
and that implementing adaptive control is associated with
anterior theta power (Cavanagh et al., 2012; Cavanagh and
Shackman, 2015; Zavala et al., 2016). For instance, Zavala et al.
(2016) found that in a dot motion discrimination task with
manipulated levels of uncertainty, trials with increased levels
of uncertainty generated larger anterior theta power, suggesting
that larger anterior theta power was related to increased adaptive
cognitive control.

In non-phase-locked power, the premise monotonicity effect
during semantic category-based induction was revealed by
the alpha-beta band power. Specifically, T arguments induced
smaller alpha-beta power than S arguments in the 0–250 ms
time window, but larger alpha-beta power than S arguments
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in the 650–1,100 ms time window. We speculate that the
unification of the lexical elements for sentence comprehension
modulates the alpha-beta power in the relatively early time
window (0–250 ms), while the unification of inference-driven
information modulates it in the relatively late time window
(650–1,100 ms). In the present study, T arguments have larger
premise sample size than S arguments. Therefore, the unification
of premises and conclusion for semantic comprehension in
the T condition was more complex than in the S condition,
producing smaller alpha-beta power in T arguments than in S
arguments. Moreover, in the present study, compared with T
arguments, S arguments have relatively weaker evidence to make
an inductive decision, and thus lead to more complex inference-
driven information integration and interpretive processes (Cui
et al., 2018). Therefore, T arguments produced larger alpha-beta
power than S arguments in the 650–1,100 ms time window.
These hypotheses are based on previous studies which suggested
that the unification processing is related to alpha-beta power,
involving the unification of the lexical elements for sentence
comprehension (Davidson and Indefrey, 2007; Bastiaansen et al.,
2008; Hagoort, 2013; Lam et al., 2016; Drijvers et al., 2018), and
the unification of high level cognitive operations via reprocessing
or reanalysis of the sentences (Palva and Palva, 2007; Spironelli
and Angrilli, 2010; Kielar et al., 2014).

The neural oscillation profiles revealed in the premise
monotonicity effect during semantic category-based induction
provide evidence to support the connectionist models of
semantic cognition (Rogers and McClelland, 2008, 2014). These
models hypothesize that cognitive processing units during
semantic cognition are organized in hierarchical layers, which
can include stimuli-driven layers and experience-based layers,
and can influence each other, with a parallel distribution.
In the present study, the premise monotonicity effect during
semantic category-based induction was revealed by phased-
locked and non-phased locked EEG power, indexing stimuli-
driven bottom-up processes and experience-based top-down
processes, supporting the view that cognitive processing units
during semantic tasks are organized in various layers. Moreover,
in the present study, various neural oscillation bands were
generated in overlapping time windows, suggesting parallel
cognitive processing units. For example, both non-phase-
locked theta and non-phase-locked alpha-beta power were
generated in the 650–1,100 ms time window. Activity in
various neural oscillation bands is associated with distinctive
cognitive processing, and is thus generated in the same
time window, suggesting that the cognitive processes related
to the activity of distinctive neural oscillation bands take
place in parallel, as the connectionist models of semantic
cognition hypothesized.

A potential limitation of the present study is that only
one and two exemplars were used to manipulate the premise
monotonicity effect during semantic category-based induction,
which may lead to potential confounding factors. However,
the data suggest that under congruent conditions, the
variations of the ‘‘correct’’ response rates were significantly
correlated with FN400 amplitudes and phase-locked anterior
delta power, while the variations of decision threshold were

significantly correlated with FN400 amplitudes and phase-
locked posterior theta-alpha power. These results suggest
co-variation between brain responses and behavior responses,
providing evidence that potential confounding factors for the
premise monotonicity effect during semantic category-based
induction were well controlled.

Further studies are required to elucidate the location in the
brain where the neural oscillations for the premise monotonicity
effect during category-based induction are generated. One of the
limitations of the EEG technique is the poor spatial resolution in
brain activity. Further studies can use magnetoencephalography
(MEG) and functional magnetic resonance imaging (fMRI),
which have good spatial resolution, to explore the spatial activity
of the brain in the premise monotonicity effect during category-
based induction.

In conclusion, the present findings contribute to the
understanding of neural oscillation profiles of the premise
monotonicity effect during semantic category-based induction.
The results showed that the premise monotonicity effect
during semantic category-based induction effect is revealed
by both phase-locked and non-phase-locked power. In phase-
locked power, T− evokes larger anterior delta power than S−,
while S+ evokes larger delta power than T+, reflecting the
variations in WM updating due to the premise monotonicity
effect during category-based induction. Moreover, T arguments
evoke larger posterior theta-alpha power than S, suggesting
stronger subjectively perceived confidence. In non-phase-
locked power, T− induced larger early theta power than
other conditions between 250 and 650 ms, due to the
increased need for cognitive control. Moreover, S arguments
induced larger late theta power than T between 650 and
1,100 ms, suggesting that S arguments implement more
adaptive control towards a cautious decision than T arguments.
Furthermore, T arguments induce less alpha-beta power
than S arguments in the 0–250 ms window, which is
related to the unification of premise and conclusion for
argument comprehension; whereas S arguments induced less
alpha-beta power than T arguments in the 650–1,100 ms
window, which is related to the unification of inference-driven
information. Thus, the neural oscillation profiles of the premise
monotonicity effect during semantic category-based induction
were elucidated.Moreover, the connectionist models of category-
based induction were supported by generating both phase-locked
and non-phase locked power of premise monotonicity effect
during semantic category-based induction, with the various
bands of neural oscillation activity generated in overlapping
time windows.
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