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Motor imagery (MI) based brain computer interfaces (BCI) detect changes in brain activity

associated with imaginary limb movements, and translate them into device commands.

MI based BCIs require training, during which the user gradually learns how to control his

or her brain activity with the help of feedback. Additionally, machine learning techniques

are frequently used to boost BCI performance and to adapt the decoding algorithm

to the user’s brain. Thus, both the brain and the machine need to adapt in order to

improve performance. To study the utility of co-adaptive training in the BCI paradigm

and the time scales involved, we investigated the performance of two groups of subjects,

in a 4-day MI experiment using EEG recordings. One group (control, n = 9 subjects)

performed the BCI task using a fixed classifier based on MI data from day 1. In the

second group (experimental, n = 9 subjects), the classifier was regularly adapted based

on brain activity patterns during the experiment days. We found that the experimental

group showed a significantly larger change in performance following training compared

to the control group. Specifically, although the experimental group exhibited a decrease

in performance between days, it showed an increase in performance within each day,

which compensated for the decrease. The control group showed decreases both within

and between days. A correlation analysis in subjects who had a notable improvement

in performance following training showed that performance was mainly associated with

modulation of power in the α frequency band. To conclude, continuous updating of the

classification algorithm improves the performance of subjects in longitudinal BCI training.

Keywords: brain-computer interface, electroencephalograpy, motor-imagery, machine learning, coadaptation,

skill acquisition

1. INTRODUCTION

Brain-computer interface (BCI) systems translate brain signals, e.g., electroencephalography (EEG)
into control commands for a computer application or a neuroprosthesis. A popular paradigm for
BCI communication is motor imagery (MI) (Wolpaw and Wolpaw, 2012; Perdikis et al., 2016;
Schultze-Kraft et al., 2017). In this paradigm, the user imagines performing a movement with a
particular limb, a process which alters the rhythmic activity in locations in the sensorimotor cortex
that correspond to the imagined limb. The BCI system detects these differences and provides the
subjects with feedback in the form of cursor movements or other computer commands (Wolpaw
and Wolpaw, 2012). Importantly, acquisition of BCI control requires practice, which arguably
involves the acquisition of a new representation of the task (Shanechi et al., 2016); that is, using
the feedback that the subjects receive, their brains gradually adapt to the task and produce a more
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effective input signal to the BCI (Wolpaw and Wolpaw, 2012;
Alkoby et al., 2017). Apart from the learning of the subjects,
learning also takes place within the decoding component by
adapting classifier parameters in a way that reduces performance
errors (Vidaurre et al., 2011a,b; Perdikis et al., 2016). This
classifier adaptation process can occur in parallel with human
learning, thereby potentially reducing the amount of practice
needed to achieve an effective use for the BCI system.

Practical usage of BCIs has been hindered by their instability.
EEG signals are non-stationary due to hardware constraints, such
as variations in electrode impedance and positioning from day
to day, or due to variability in the cognitive processes that occur
during task’s performance (such as changes in attention levels,
boredom, frustration, etc.). Thus, in addition to the contribution
of adaptation for the mutual learning of the brain and the
classifier, adaptation has the potential of mitigating the effects of
such non-stationarities.

A major goal of the BCI community is to offer potential
users, whether disabled or healthy, practical BCI systems that
would serve them in the long run, day after day. This paper
tackles some issues that are frequently overlooked in EEG-based
BCI research, such as the challenges involved in BCI use over
multiple days and the limitations of classical training protocols
(Lotte et al., 2013; Jeunet et al., 2016). In particular, a major
question is to what extent does multi-day BCI training benefit
from co-adaptation of the classifier. Classical neurofeedback
experiments, which involve no parameter adaption, have shown
limited success. To address this shortcoming, in many BCI
experiments the classifiers are recalibrated at the beginning of
each BCI session, but this procedure is time consuming and
may limit the adoption of BCI systems for long-term daily use.
Thus, it is important to quantify the contribution of classifier
adaptation over using a fixed classifier. To address this question
systematically and disentangle the effects of machine learning
and human learning, we trained two groups of subjects in a 4-
day MI experiment using EEG recordings. During the first day
of the experiment, both groups performed four runs followed by
classifier adaptation, to ensure a minimal baseline performance
level. In the subsequent days, one group performed the BCI task
using a fixed classifier based on EEG data from the last two
runs on the first day (the control group). In the second group
(experimental), the classifier was regularly updated during the
experiment days based on the most recent brain activity (last
two runs). Importantly, the experimental protocol was identical
during the first day, and thus differences in the experimental
protocol between the groups started only on the second day. To
increase the motivation of subjects in performing the task over
many sessions, we designed a video-game training environment,
in which movement imagination signals controlled performance
in an engaging and rewarding task. In line with previous work
on co-adaptation, we used a supervised adaptation paradigm,
where the true class labels of the incoming EEG signals are
known (Schlögl et al., 2010). Our goal was to quantify the
performance difference between the two groups, in order to
assess the contribution of continuous classifier co-adaptation
compared to using a fixed classifier (which was adapted only on
the first day).

The idea of co-learning and co-adaptive training was studied
before (Lotte et al., 2018). For example, Vidaurre et al.
(2011a,b), show that adaptive LDA classifier enabled some
users who were initially unable to control the BCI to achieve
better than chance classification performance. Nevertheless,
the experimental paradigm included a single session and the
advantage of co-adaptive learning compared to a non-adaptive
paradigm was not examined. In the present study, we focus on
multi-day training and directly compare a co-adaptive protocol
with a non co-adaptive protocol.

In a recent work by Muller et al. (2017), a theoretical model
of the two-learner problem in BCI was proposed. The results
showed that an adaptation that is either too fast or too slow
can actually be detrimental to user learning. Therefore, there
is a clear need to develop adaptation paradigms that guarantee
human learning and boost it. Important issues in this regard are
what is the optimal rate for adapting the classifier and under what
conditions the mutual learning process will eventually converge
to a stable solution (Lotte et al., 2018).

2. METHODS

2.1. Participants
Eighteen healthy volunteers met the inclusion criteria (see below)
and participated in this study, twelve females and six males.
The age of the participants was 19 to 27 years (Mean =

23.8; SD = 1.9). They were all right handed (as verified by
observation and as part of the screening questionnaire), had
no history of neurological or psychiatric disorders and had
normal or corrected-to-normal vision. All participants were
naive to BCI, gave written informed consent, and were paid for
their participation. The study was approved by a local ethics
committee (Ben-Gurion University) and is in accordance with
the ethical standards of the Declaration of Helsinki.

2.2. Experimental Paradigm
The study consisted of 4 daily sessions performed over 4
consecutive days, each session consisted of four runs. The first
session started with a calibration run, while all the following
15 runs were BCI training sessions (Figure 1A). The first run
was used for calibration of the BCI system, and served as
an opportunity for the participants to get familiar with MI.
In each session participants were seated comfortably in an
armchair in front of a screen. In the calibration run, the
participants were asked to imagine movement of the right hand
(RH) and left hand (LH) without getting visual feedback on
the screen. At the beginning of the run, a yellow spaceship
appeared in the center of the screen, representing the subject-
controlled spaceship, navigating through a galaxy (Figure 1B).
The run consisted of a block of 60 trials (30 for RH MI,
30 for LH MI). A trial lasted 6 s, with 2 s between trials
(see Figure 1B). At the beginning of a trial a cue, in the
form of a target spaceship, appeared on the left or right side
of the screen, indicating which MI condition the participants
should perform, and stayed there for the rest of the trial.
After 6 s the target spaceship disappeared and the next target
appeared after an inter-trial interval of 2 s. The task of
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FIGURE 1 | MI-BCI training paradigm. (A) Design of the multi-day experiment, (B) Calibration run setup, (C) Feedback (FB) training runs.

the participants was to perform a kinesthetic MI (imagining
squeezing a ball with the left or right hand) as soon as the
cue appeared and as long as the target spaceship was on the
screen. Participants were asked to focus on the spaceships and
avoid producing unnecessary muscle or eye movements, and
to restrict movements like eye blinking or swallowing to the
inter-trial period.

The setup of BCI training runs was the same as for the
calibration run with the exception that 0.5 s after the start of the

trial the participants received feedback about the decoding of the

BCI algorithm (Figure 1C). Feedback was provided in the form
of a laser beam extending out of the personal spaceship toward
the target spaceship, with the direction and length of the beam
being controlled by the classifier output sign (i.e., negative go to
the left, positive go to the right) and amplitude, respectively. Each
training run lasted 6 minutes, and the total trial length varied
between 5 to 10 s, depending on subject performance; a longer

laser beam in the correct direction for a longer period made the
target spaceship disappear faster. Thus, the number of trials in
each 6-min run was not fixed (mean across participants = 41,
SD = 12; min = 30, max = 52). The maximal number of trials
in a run contained equal numbers of trials for each direction.
At the end of each trial, the participant was presented with the
number of points that he or she received. The points were added
to the total run score. For each trial, the subject received between
0 and 10 points. The given points were inversely proportional to
the time required to finish the trial (i.e., range from 0 points for
10 s trials to 10 points for 5 s trials). The video-game training
environment and the subject-specific trials were used to increase
subject’s engagement (Lotte et al., 2012; Jeunet et al., 2016).

2.3. EEG Data Acquisition and Processing
The EEG was recorded from 10 Ag/AgCl scalp electrodes
arranged in two Laplacian channels located over the
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sensorimotor cortex (C3, C4) (Wolpaw and Wolpaw, 2012;
Yang et al., 2017). The signals were acquired with a g.USBamp
amplifier (Guger Technologies, Austria) with 256 Hz sampling
rate, 0.5 Hz high-pass, and 30 Hz low-pass filter, and an
additional 50 Hz notch filter. Electrode impedance was regularly
checked to ensure impedance below 5 K�.

2.4. Feature Extraction and Classification
The data of the calibration run of every participant were used
to identify subject-specific features. Specifically, the EEG power
spectrum of every participant during the calibration run was
calculated to obtain subject-specific α and β frequency bands
(Yang et al., 2017), which discriminated best between the two MI
classes. The α bandwas defined as a 4Hz band (±2Hz around the
central frequency), with a central frequency that varied between 8
and 11 Hz. Similarly, the β band was defined as a 6 Hz band (±3
Hz around the central frequency), with a central frequency that
varied between 17 and 27Hz. For each pair of central frequencies,
a Linear Discriminant Analysis (LDA) classifier was trained, and
the pair that produced optimal classification accuracy was chosen
for all subsequent runs.

The band powers of these frequency bands were used as
features to set up the LDA classifier in a two-stage process.
First, for each 500 ms time window, from the first to the last
second within the trials, a classifier was trained and validated by
a 10-fold cross-validation. In the second stage, the best detected
point in time was used to generate a single classifier, which was
subsequently used for providing continuous online feedback to
the subject every 500 ms. During the first day, there were three
training runs following the calibration run. At the end of each
run, a new classifier was trained based only on the last two
runs, and was then used in the next run. The difference between
experimental days is highlighted in the following section.

2.5. Control and Experimental Groups
The 18 participants whomet the inclusion criteria were randomly
divided into two groups. One group (n= 9; 7 females) performed
the BCI training in days 2 to 4 using the classifier that was
designed based on the MI data from the last run in day 1
(control group). In the second (experimental) group (n = 9;
5 females), the classifier was regularly updated based on brain
activity patterns during the experimental days. The classifier
update followed a “batch” approach; the two most recent runs
were used to create a new classifier, and this new classifier was
used in the following run. For the first run in a day, the classifier
was constructed based on the last two runs of the previous day.
For the second run in a day, the classifier was constructed based
on the last run of the previous day with the first run of that
day. The accuracy of each run was calculated as the proportion
of successful trials (trials in which the target spaceship was
destroyed) in each run. This calculation was performed offline
at the end of each run.

Subjects were included in the experiment only if their
accuracy at the final run of the first day was above 70%.
This decision was based on a previous pilot study, in which
we found that subjects with very low initial performance
often did not improve. In total, 3 subjects (out of an

FIGURE 2 | Performance changes in the control and the experimental groups

between the start of day 2 and the end of day 4. The groups show a significant

difference in behavior (∗p < 0.05). On each box, the horizontal red line marks

the median and the edges of the box are the 25th and 75th percentiles.

Whiskers are capped at max. of 1.5 the IQR. The x’s represent individual

subjects.

original pool of 21 subjects) with performance lower than
70% were excluded from the experiment after the first day
and did not participate in subsequent sessions. At the end
of the first day, the groups had comparable performance
(Control: mean = 80.1%, SD = 8.6%; Experimental: mean =

75.3%, SD = 5.6%). One-tail t-test was used to assess the
statistical significance of the accuracy differences within and
between groups.

3. RESULTS

As described in the Methods section, the difference between
the experimental designs of the two groups started only on the
second day of the experiment. Initial performance, defined as
the percentage of accuracy obtained by the end of first day, for
all 18 subjects who completed the experiment was above 70%
(Mean = 77.7%, SD = 7.4%). Frequency bands were selected for
each subject separately, and showed variability between subjects,
especially in the β band (α band center: Mean= 9 Hz, SD= 1.03
Hz, β band center: Mean= 21.9 Hz, SD= 3.77 Hz).

3.1. Control vs. Experimental Group
We found a significant difference in performance changes
during training between the experimental and the control groups
(Control: Mean = –2.3%, SD = 5.8%; Experimental: Mean =

+11.3%, SD = 16.8%; p = 0.023). While in the control group
there was no significant change in performance (p = 0.136), the
experimental group showed a significant improvement across
the multi-day experiment (p = 0.04). Figure 2 shows the total
change in performance for both groups between the beginning
of day 2 and the end of day 4. Figure 3 highlights the clear
difference in behavior between the groups during the course of
the experiment.
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FIGURE 3 | Averaged performance across subjects of each group from the

first run of day 2 to the last run of the experiment on day 4 (a total of 12 runs).

Co-adapting the classifier boosts the performance of the experimental group.

3.2. Group Dynamics
The groups also exhibit different dynamics of performance
during training. In order to study these dynamics we examined
changes in performance that occur within a training day and
between consecutive training days.

Between-day differences: The between-day change measure
represents the mean of all changes between the end of one
day and the beginning of the next day in the experiment. For
each group, we calculated the grand average of the between-
day change across all subjects (including the change between
day 1 and day 2). Both groups showed a decrease in the
average between-day change in performance (Figure 4), with
no statistically significant difference between the groups (p =

0.38). The observed decrease in performance between days can
be associated with changes in neural dynamics, changes in the
recording setup, and changes in the mental and physical state of
the subjects.

Within-day differences: to study the within day dynamics
in each group, we calculated the average within-day change in
performance for each subject. The subject within-day change
represents the mean of all changes calculated between two
consecutive runs within the same day of the experiment. For
each group, the grand average of the within-day change was
calculated across subjects. For the control group, the total
within-day change showed no significant change in performance
(Mean = 0.03%, SD = 1.23, with p = 0.94), across the
experiment period. On the other hand, the experimental group
showed a significant within-day improvement (Mean = 2.5%,
SD = 1.64, with p = 0.002) (see Figure 4). To summarize,
the incremental within-day improvement in the experimental
group compensated for the deterioration caused by the between-
day changes, and probably led to an overall increase in
performance across the experiment. In the control group, the
deterioration due to between-day variations, along with the

FIGURE 4 | Within- and between-day changes in performance. Both groups

showed a decrease between days. For the within-day dynamics, the control

group showed no significant change, while the experimental group showed

accuracy improvement (∗p < 0.05). Day 1 was included in calculating the

between-day change.

absence of improvement within days, resulted in an overall
decrease in performance. The performance of representative
subjects from the control and experimental groups is shown in
Figures 5, 6, respectively.

3.3. Features-Performance Correlation
To examine the neural features that contributed to the
performance in the task, we ran a correlation analysis between
the power in each band and the performance across runs.
The analysis was conducted only on four subjects from
the experimental group who showed robust improvement
during training (subjects with 10% or higher improvement in
performance during training). Results show that performance in
three out of four subjects was associated mainly with modulation
of power in the α frequency band (Table 1). Interestingly, power
in the α frequency band during resting state was shown to
be predictive of BCI performance in a motor imagery task
(Blankertz et al., 2010), supporting the suggested functional role
of this band in BCI performance.

4. DISCUSSION

Our results demonstrate that BCI training with an engaging
video game and using subject-specific frequency bands is
not enough for eliciting improvement in a multi-day BCI
training and that improvement with training requires also
continuous adaptation of the classification algorithm. We
note that in the experimental group, a new classifier was
trained after each run based solely on the last two runs.
Thus, the training of the new classifier always relied on the
same sample size and was not incremental. Improvement in
the performance of the experimental group, therefore, cannot
be attributed to accumulation of more training data and
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FIGURE 5 | Control subjects (S1, S2): Performance curve per run (Top), and the change in accuracy across the experiment days (Bottom).

FIGURE 6 | Experimental subjects (S1–S3): Performance curve per run (Upper), and the change in accuracy across the experiment days (Lower). The majority of

subjects show a positive trend in performance. The subjects also show different rates (speeds) of improvement.

points to changes in the underlying neural representations
of the task, namely in the power within the corresponding
frequency bands.

The results indicate that non-stationarity in the brain signal
is significant and that on average, subjects cannot overcome its
accumulating effect across four days with practice alone. This
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TABLE 1 | Feature-Performance correlation in four subjects from experimental

group: for each subject, the feature with maximum correlation with performance is

reported.

Subject Feature r-value

S0 α1 0.90

S4 β1 0.35

S6 α2 0.31

S7 α2 0.34

non-stationarity can be a result of changes in brain signals due to
the BCI training. Neurophysiological and imaging studies have
repeatedly demonstrated representational changes following the
acquisition of a motor skill (Nudo et al., 1996; Hardwick et al.,
2013). If indeed the non-stationarity is due to changes in the
representation of the task following training, then the BCI
paradigm in the context of a fixed classifier is paradoxical, since
its acquisition is associated with changes in the brain signals that
are needed for its control. Non-stationarity could also result from
other sources of variation in the neural signal that are indirectly
related to the performance of the subjects. For example, it could
change due to changes in the engagement of the subject (Galin
et al., 1978). Last, changes in the neuronal patterns could stem
from non-task related effects such as variation in the positioning
of the EEG electrode, changes in the impedance of the electrodes
etc. Such changes are expected to be greater after removing and
putting the EEG cap again and are therefore consistent with the
between-day changes in performance. Regardless of the source of
noise, our results support the idea that adaptation of the readout
algorithm is crucial for improving control over BCI.We speculate
that with extended training, the performance of subjects that
train with a fixed classifier will start to decrease due to increased
miss-calibration and frustration. However, it might be that with
a longer training period, performance will improve even with a
fixed classifier. In addition to decreasing the non-stationarity in
the system, updating the classifier may have a secondary effect on
themotivation of the subjects; improvement in performance with
training increases the engagement of the subjects whereas lack of
improvement may lead to frustration and reduced motivation to
exercise the control over the BCI system. It also allows subjects
to explore different mental strategies to improve the control over
their brain rhythms in order to achieve a better performance in
the game.

Notably, even within the experimental group some subjects
did not show improvement in performance following training,
suggesting that updating the classifier is a necessary but
not sufficient condition for maintaining and improving BCI
performance. This inter-subject variability in terms of the ability
to gain and improve control on BCI also suggests that further
subject-specific optimizationmay be needed (e.g., subject specific
batch size, identification of invariant features, calibration time,
trial duration, and task complexity). The term co-adaptation
implies a direct coordination between the human and the
machine adaptation processes. It could be that some subjects in
the experimental group failed to realize that such a coordination
exists in the experiment. In these cases, the simultaneous

learning of the human and the machine did not converge and
improvement was not attained.

Our results are congruent with recent state-of-the-art
BCI protocols that involve feature and classifier calibration,
continuous updates of the classifiers (Faller et al., 2012), and
an engaging control task (Perdikis et al., 2018). Such protocols
have shown the potential of increasing the number of controlled
classes (degrees of freedom; McFarland et al., 2010; Friedrich
et al., 2013), the proportion of subjects that reach a satisfactory
control levels (Faller et al., 2012), and the utility of BCI in
real world tasks (Perdikis et al., 2018). Importantly, while these
studies have clearly demonstrated a successful acquisition of
BCI control, the contribution of each one of the features that
are involved in each protocol (such as calibration, adaptation,
feedback) to the final performance is lacking. In this study, our
aim was to quantify the contribution of classifier’s adaptation to
the performance of subjects by directly comparing it with respect
to a control protocol.

5. CONCLUSIONS

Many efforts in the BCI field are directed toward designing better
features, classifiers and noise reduction techniques (Vidaurre
et al., 2011b; Jeunet et al., 2016). Even though these aspects are
key to designing a BCI, it is clear from our work that the setting
in which the BCI is designed- the training protocol, adaptive
disciplines, and considerations of co-adaptive learning - have
great influence on the robustness, functionality, and training time
of the BCI.

We argue that more work should be focused on co-adaptive
learning paradigms and that BCI design processes should take
into account that MI BCI is a skill (Shanechi et al., 2016)
to be learned by the user, and that user adaptation has
great effect on the designed classifier and on the statistics of
the changing EEG signals. The ultimate goal is the design
of a BCI platform in which brain plasticity and machine
learning are combined to achieve a skilled BCI usage for
real-life applications. Thus, it would be interesting to pursue
experiments with similar paradigms for periods that go beyond
four days, to examine long-term convergence of human and
machine adaptation.
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