
ORIGINAL RESEARCH
published: 12 December 2019

doi: 10.3389/fnhum.2019.00419

Frontiers in Human Neuroscience | www.frontiersin.org 1 December 2019 | Volume 13 | Article 419

Edited by:

Alan J. Pearce,

La Trobe University, Australia

Reviewed by:

Ines R. Violante,

University of Surrey, United Kingdom

Andrew R. Mayer,

Mind Research Network (MRN),

United States

*Correspondence:

Naznin Virji-Babul

naznin.virji-babul@ubc.ca

Specialty section:

This article was submitted to

Health,

a section of the journal

Frontiers in Human Neuroscience

Received: 12 June 2019

Accepted: 12 November 2019

Published: 12 December 2019

Citation:

Hristopulos DT, Babul A, Babul S,

Brucar LR and Virji-Babul N (2019)

Disrupted Information Flow in

Resting-State in Adolescents With

Sports Related Concussion.

Front. Hum. Neurosci. 13:419.

doi: 10.3389/fnhum.2019.00419

Disrupted Information Flow in
Resting-State in Adolescents With
Sports Related Concussion
Dionissios T. Hristopulos 1,2, Arif Babul 3, Shazia’Ayn Babul 4, Leyla R. Brucar 5 and

Naznin Virji-Babul 5,6*

1 Telecommunication Systems Research Institute, Technical University of Crete, Chania, Greece, 2 School of Mineral

Resources Engineering, Technical University of Crete, Chania, Greece, 3Department of Physics and Astronomy, University of

Victoria, Victoria, BC, Canada, 4 Rockefeller College, Princeton University, Princeton, NJ, United States, 5Djavad

Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada, 6Department of Physical

Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada

Children and youths are at a greater risk of concussions than adults, and once

injured, take longer to recover. A key feature of concussion is an increase in functional

connectivity, yet it remains unclear how changes in functional connectivity relate to the

patterns of information flow within resting state networks following concussion and how

these relate to brain function. We applied a data-driven measure of directed effective

brain connectivity to compare the patterns of information flow in healthy adolescents

and adolescents with subacute concussion during the resting state condition. Data from

32 healthy adolescents (mean age =16 years) and 21 concussed adolescents (mean

age = 15 years) within 1 week of injury were included in the study. Five minutes of resting

state data EEG were collected while participants sat quietly with their eyes closed. We

applied the information flow rate to measure the transfer of information between the

EEG time series of each individual at different source locations, and therefore between

different brain regions. Based on the ensemble means of the magnitude of normalized

information flow rate, our analysis shows that the dominant nexus of information flow

in healthy adolescents is primarily left lateralized and anterior-centric, characterized by

strong bidirectional information exchange between the frontal regions, and between

the frontal and the central/temporal regions. In contrast, adolescents with concussion

show distinct differences in information flow marked by a more left-right symmetrical,

albeit still primarily anterior-centric, pattern of connections, diminished activity along

the central-parietal midline axis, and the emergence of inter-hemispheric connections

between the left and right frontal and the left and right temporal regions of the brain.

We also find that the statistical distribution of the normalized information flow rates

in each group (control and concussed) is significantly different. This paper is the first

to describe the characteristics of the source space information flow and the effective

connectivity patterns between brain regions in healthy adolescents in juxtaposition with

the altered spatial pattern of information flow in adolescents with concussion, statistically
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quantifying the differences in the distribution of the information flow rate between the

two populations. We hypothesize that the observed changes in information flow in the

concussed group indicate functional reorganization of resting state networks in response

to brain injury.

Keywords: effective connectivity, concussion, mild traumatic brain injury, adolescents, EEG, resting state,

information flow rate

1. INTRODUCTION

Traumatic brain injury (TBI) is a global health problem. In
2016 there were 27 million new cases of TBI worldwide (James
et al., 2019). Mild TBI (mTBI), often used interchangeably
with concussion, makes up 80–90% of all TBIs (Levin and
Diaz-Arrastia, 2015). Children and youth are disproportionately
affected by sport-related concussions (Moore et al., 2018) and
in the last decade, there has been a significant increase in
the rates of concussions in the pediatric population (Coronado
et al., 2015; Taylor et al., 2015; Keays et al., 2018). Additionally,
there is accumulating evidence that children and youths, once
injured, take longer to recover (Barlow et al., 2010; Toledo et al.,
2012). This is partly due to the fact that the effects of brain
injury are overlaid on a developing brain that is undergoing
dynamic changes. In addition, a concussion is itself a dynamic
event characterized by spatially diffused and continually evolving
secondary changes in both the brain structure and brain function.

Diffusion tensor imaging (DTI) can detect changes in the
white matter microstructure of the brain. DTI shows that
the stretching and tearing of the brain tissue, caused by the
acceleration and deceleration forces acting upon the head during
impact, result in a diffuse disconnection pattern that affects the
white matter architecture of the brain. Several white matter tracks
have been implicated in child and youth concussions including
the corona radiata, the genu of the corpus callosum, the fornix
and the cingulum, the corticospinal tract, the internal capsule,
and the superior longitudinal fasciculus (Borich et al., 2013; Virji-
Babul et al., 2013; Yallampalli et al., 2013; Yuan et al., 2015;
Manning et al., 2017; Murdaugh et al., 2018; Wu et al., 2018).
Structural damage to these tracts is due to trauma related changes
in axonal membranes, myelin, intra and extra axonal edema
(swelling), and inflammatory processes–see Mayer et al. (2018)
for a review.

Damage to white matter pathways and traumatic axonal
injuries are known to disrupt information flow across brain
areas (Caeyenberghs et al., 2017). Probing the brain of a
concussed youth during the “resting state” reveals significant
alterations in the functional organization of the brain. The
resting state of the brain is characterized by synchronous neural
activity over spatially distributed networks. Our group (Borich
et al., 2015) was the first to show that functional connectivity,
which refers to the statistical interdependencies between the
physiological time series recorded from the brain (Friston, 2011),
was altered within three resting-state networks in adolescents
with a concussion. Specifically, we noted: (a) alterations within
the default mode network; (b) increased connectivity in the right
frontal pole in the executive function network; and (c) increased

functional connectivity in the left frontal operculum cortex
associated with the ventral attention network (Borich et al., 2015).
Newsome et al. (2016) found that asymptomatic adolescent
athletes demonstrated increased connectivity (relative to a cohort
of high school athletes with orthopedic injuries) between the
posterior cingulate cortex and the ventral lateral prefrontal
cortex, as well as between the right lateral parietal cortex and
the lateral temporal cortex. More recently, Manning et al. (2017)
reported significant increases in resting state connectivity in the
visual and cerebellar networks.

Although individual studies show mTBI-induced alterations
in different brain networks, a key feature in the above studies
is an overall increase in functional connectivity, referred to as
hyperconnectivity. Hillary et al. (2014, 2015) hypothesize that
both focal and diffuse injuries associated with brain injury have
widespread consequences, including the physical disruption of
the neural networks and the information flow between brain
regions, with hyperconnectivity being the primary response
to these disruptions. The altered information flow and the
hyperconnectivity can both be probed via effective connectivity
(EC), which provides a measure of the influence (direct or
indirect) that one brain region exerts over another (Friston,
2011) and identifies causal, directionally dependent interactions
between different brain regions. However, to date, little is known
about how information flow between brain regions is actually
altered following concussion, particularly during the dynamic
period of adolescent development. In this paper we investigate
this issue using a data-driven effective brain connectivitymeasure
based on the concept of information flow rate applied to EEG
signals (Hristopulos et al., 2019).

The information flow rate was developed by Liang using the
concept of information entropy and the theory of dynamical
systems (Liang and Kleeman, 2005; Liang, 2008, 2013, 2014,
2015). Information entropy is a measure of the information
contained in a given signal (e.g., time series). The theory of
dynamical systems is a general framework that describes the
temporal evolution of a collection of different units that can
interact nonlinearly with each other while also being subject
to stochastic noise signals. In studies of brain function, the
individual units correspond to different brain regions or source
locations, and their temporal evolution is described by means of
time-ordered measurements (i.e., time series) of some property.
In the present study, we focus on time-varying electrical brain
activity. The information flow rate quantifies the changes in the
information content of a time series (and hence, the temporal
evolution of the brain region from which the signal is acquired)
as a result of the interactions with other brain regions and the
stochastic forces.
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The information flow rate can measure the directional transfer
of information between time series at different locations and thus
between different brain regions. A high information rate from
region A to region B implies that a large amount of information
is transferred from A to B per second. We emphasize that a
high information flow rate from A to B does not imply that the
information flow rate from B to A is also high. Given a collection
of source locations in the brain, the information flow rate can
identify which sources transmit and which receive information,
thus leading to a network of brain connections. Since the derived
connectivity is directional, the information flow rate provides a
method for detecting causal links in the brain.

Unlike the commonly used empirical measures of causality,
e.g., transfer entropy and Granger causality, the information
flow rate is derived from general, first-principles equations
that describe the time evolution of stochastic dynamical
systems (Liang, 2016, 2018). Additionally, owing to its definition,
which involves only the time series and their temporal
derivatives (or their finite-difference approximations for
discretely sampled systems), the information flow rate has
computational advantages over other entropy-based measures
(e.g., transfer entropy), that require the estimation of additional
information (e.g., conditional probabilities) from the data.
In addition, the information flow rate can also be applied to
deterministic nonlinear systems (Liang, 2016) without requiring
a specific model structure or requiring that the time series is
stationary. In terms of working with EEG signals, this endows
the information flow rate analysis with a significant advantage,
particularly since (a) EEG signals exhibit non-stationary features,
as evidenced in transitions between quasi-stationary periods
and nonlinear dynamic behavior (Blanco et al., 1995; Kaplan
et al., 2005; Klonowski, 2009), and (b) the underlying model
structure describing interactions between the EEG time series
from different brain regions is not known. The need to assume
stationarity and an underlying model structure are necessary
pre-requisites for, and limitations of, other causality methods
(Liang, 2015).

The aim of this study is to use the information flow rate
indicated by the EEG data to measure the effective connectivity
in healthy adolescents and adolescents with subacute concussions
during the resting state condition and to compare the
corresponding information flow rate statistics and the spatial
patterns of information flow.

2. MATERIALS AND METHODS

2.1. Data Collection and Pre-processing
2.1.1. Participants
Thirty-two (32) right-handed, healthy, adolescent athletes (HC)
[mean age: 16 years; standard deviation (SD): ±1.2] and
twenty-one (21) concussed adolescents (C) (mean age =
15 years; SD: ±2.1) within one week of injury, who met
the concussion diagnostic criteria consistent with the Berlin
consensus statement (McCrory et al., 2017), took part in this
study. Sport-related concussion is defined as a traumatic brain
injury caused either by a direct blow to the head, face, neck, or

elsewhere in the body with an impulsive force transmitted to the
head resulting in changes in one or more of the following clinical
domains: (a) somatic (such as headache), cognitive (such as brain
fog), and/or emotional (such as lability) symptoms; (b) physical
signs (such as loss of consciousness, amnesia, or neurological
deficit); (c) balance impairment; (d) behavioral changes; (e)
cognitive impairment; and (f) sleep/wake disturbances. The
team coach documented the date and time of the direct blow
as per the consensus statement. The team physician or an
experienced physician with expertise in concussions made the
diagnosis of concussion based on the Berlin consensus statement.
Exclusion criteria for all individuals included focal neurologic
deficits, pathology and/or those on prescription medications for
neurological or psychiatric conditions.

The number of symptoms and symptom severity of each of
the concussed subjects were evaluated using either the Sports
Concussion Assessment Tool 3 (SCAT3), if the injured athlete
was 13 years of age or older (https://bjsm.bmj.com/content/
bjsports/47/5/259.full.pdf), or the Child Sports Concussion
Assessment Tool 3 (Child SCAT3), if younger (https://bjsm.bmj.
com/content/bjsports/47/5/263.full.pdf). Both SCAT3 and Child
SCAT3 are standardized concussion and concussion symptom
assessment tools. SCAT3’s symptom evaluation section lists 22
symptoms that can be rated from 0 (none) to 6 (severe) while
Child SCAT3 lists 20 symptoms that can be rated from 0 (none) to
3 (often). The overall symptom severity score of injured athletes
was calculated by adding all the symptom ratings for a maximum
score of 132 (SCAT3) or 60 (Child SCAT3).

This study was approved by the University of British
Columbia Clinical Research Ethics Board (Approval number:
H17-02973). The adolescents’ parents gave written informed
consent for their children’s participation under the approval of
the ethics committee of the University of British Columbia and
in accordance with the Helsinki declaration. All participants
provided assent.

2.1.2. EEG Recording
Five minutes of resting state EEG data was collected while
participants had their eyes closed. The experimental apparatus
used comprises a 64-channel HydroCel Geodesic Sensor Net
(EGI, Eugene, OR) connected to a Net Amps 300 amplifier (Virji-
Babul et al., 2014). The signals were referenced to the vertex (Cz)
and recorded at a sampling rate of 250 Hz. The scalp electrode
impedance values were typically less than 50 k�. To eliminate
artifacts caused by removing/attaching the cap, 750 data points
were removed from the beginning and the end of each time series;
this corresponds to removing data with a total duration of 6 s.
The EEG time series were filtered using a band-pass filter (4–
40 Hz) and a notch filter (60 Hz), as described in Porter et al.
(2017) (see also Rotem-Kohavi et al., 2014, 2017), to remove
signal drift and line noise. Eye blinks were identified and removed
using an Independent Component Analysis (ICA) while motion
artifacts were identified via visual inspection and also removed
from the signal, as were channels with excessive noise. Each of the
resulting EEG series used in this study involves between 67,845
and 114,304 time points.
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2.1.3. EEG Analysis
We used the Brain Electrical Source Analysis (BESA) Version
6.1 software (MEGIS Software GmbH, Gräfelfing, Germany) to
map the cleaned sensor data to source waveforms. The voltages
from the sensor channels are first interpolated, using spherical
splines (Perrin et al., 1989; Scherg et al., 2002), to voltages at
81 predefined scalp locations that comprise BESA’s Standard-
81 Virtual 10-10 montage (BESA Wiki, 2018) and re-referenced
to the average reference by subtracting the mean voltage of the
81 virtual scalp electrodes. The interpolation offers a consistent
way of dealing with occasional bad channels while maintaining
a common montage across all the individuals. Following this
step, source waveforms are calculated for 15 pre-defined regional
sources. Since resting-state activity is not localized, we used
BESA’s BR_Brain Regions montage, wherein the 15 sources are
symmetrically distributed over the entire brain. BESA uses a
linear inverse operator of the lead field matrix, comprising the
topographies of the sources included in the source montage, to
calculate the source waveforms (Scherg et al., 2002). The 15 pre-
defined regions of the brain are the following: midline fronto-
polar (FpM), frontal left (FL), frontal midline, (FM), frontal
right (FR), anterior temporal left (TAL), anterior temporal right
(TAR), central left (CL), central midline (CM), central right
(CR), posterior temporal right (TPR), posterior temporal left
(TPL), parietal left (PL), parietal midline (PM), parietal right
(PR), andmidline occipito-polar (OpM) areas. Composite source
activity in each brain region is modeled as a single regional
current source dipole (c.f. Hristopulos et al., 2019 for details)
and source waveforms correspond to time series of the fifteen
current dipoles. The resulting data was exported to MATLAB
where the calculation and analysis of the information flow rates
was performed.

2.2. Effective Connectivity
We investigated the patterns and statistics of effective
connectivity by means of the information flow rate. A full
description of the information flow rate for application in
the analysis of EEG source-reconstructed signals is provided
in Hristopulos et al. (2019). Below we provide a brief description
of the measure, including the key concepts and equations.

2.2.1. Information Flow Rate
In the following, p

(l)
i (tn) denotes the time series quantifying the

time-varying strength (magnitude) of the current dipole moment
at location i (where i = 1, . . . ,Ns = 15) for the participant
l = 1, . . . , L (where L is the number of individuals, i.e., L = 32
in the control and L = 21 in the concussed group), at time
tn = n1t, where n = 1, . . . ,N is the time index and 1t = 4 ms
is the time step that corresponds to the 250 Hz sampling rate. For
brevity we drop the participant index l and we write pi,n = pi(tn)
for the current dipole magnitude at source location i and time
instant tn.

The overline denotes the sample time average for a single
dipole time series of a given individual at the source location
indexed by i, i.e., pi =

1
N

∑N
n=1 pi,n. The sample cross-covariance

of two time series corresponding to dipoles i and j is respectively
given by:

Ĉi,j = pi,n pj,n − pi,n pj,n, for i, j = 1, . . . ,Ns.

If i = j, the above equation gives the sample variance of the time
series pi, i.e., σ̂

2
i ≡ Ĉi,i.

The linear (Pearson) sample correlation coefficient between
the series pi and pj is defined by the ratio:

r̂i,j =
Ĉi,j

σ̂i σ̂j
, for i, j = 1, . . . ,Ns. (1)

Both Ĉi,j and r̂i,j are non-directional correlation measures.
Pearson’s correlation coefficient has been used as a measure of
functional connectivity (Sakkalis, 2011).

We also consider the sample covariance of the time series
pi and the first derivative of the series pj, Ĉi,dj, which we use
to compute the cross-correlation coefficients, r̂i,dj, where i, j =

1, . . . ,Ns, between the time series pi and the temporal derivative,
ṗj, of the time series pj (Liang, 2014). These coefficients are
expressed in terms of the respective covariances as follows:

r̂i,dj =
Ĉi,dj

σ̂i σ̂j
, for i, j = 1, . . . ,Ns. (2)

As for ṗj, since it is unknown a priori, a finite difference
approximation based on the Euler forward scheme, with a time
step equal to k1t, is used, i.e.,

ṗj,n =
pj,n+k − pj,n

k1t
, for j = 1, . . . ,Ns, n = 1, . . . ,N. (3)

Based on the discussion in Liang (2014) and Hristopulos et al.
(2019), we use k = 2.

The information flow rate, which measures the rate of
information transfer from the time series i to the time series
j, can be expressed using the above definitions as follows
(Liang, 2014):

Ti→j =
r̂i,j

1− r̂2i,j

(
r̂i,dj − r̂i,j r̂j,dj

)
,

for i, j = 1, . . . ,Ns, i 6= j. (4)

We refer to pi as the transmitter series and to pj as the
receiver series with respect to Ti→j. A positive (negative) rate of
information flow from i → j (Ti→j) indicates that the interaction
between the two series leads to an increase (decrease) in the
entropy of the series pj. Equivalently, it signifies that the receiver
series becomes more (less) unpredictable due to its interaction
with the transmitter series. The predictability of each time series
is negatively correlated with the entropy.

2.2.2. Normalized Information Flow Rate
The information flow rate Ti→j is a measure of the information
flow from series pi to series pj; however, it offers no indication of
whether the impact of pi on the predictability of pj is significant.
Quantifying the latter requires knowing the relative impact of the
entropy transferred to the receiver from the transmitter series,
compared to the total entropy rate of change due to all the

Frontiers in Human Neuroscience | www.frontiersin.org 4 December 2019 | Volume 13 | Article 419

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Hristopulos et al. Disrupted Information Flow in Concussed Adolescents

influences acting on the receiver. The latter (hereafter referred
to as the normalization factor for the information flow rate
from pi to pj and denoted as Zi→j) can be straightforwardly
computed (Liang, 2015; Hristopulos et al., 2019). The relative
impact of the transmitter series on the receiver series is then given
by the normalized information flow rate from the transmitter pi to
the receiver pj:

τi→j = Ti→j/Zi→j, (5)

which measures the percentage of the total entropy rate of
change for pj that is due to its interaction with pi. Thus,
in the following we use τi→j to quantify the resting-state
effective connectivity in the brains of the control (healthy)
and concussed individuals, and to investigate the patterns of
directional information flow between the different regions of
their brains.

3. RESULTS

In Table 1 we list the demographic information about the
participants in this study. All the concussed participants met

TABLE 1 | Demographic information for the participants in the control and

concussed groups.

Demographic information Controls Concussed

Age (Years, SD) 16 (1.2) 15 (2.1)

Gender 100% Male 100% Male

Time since concussion 100%: within 1 week

SCAT3 (# of Symptoms, SD) 13.1 (7.0)

SCAT3 (Symptom Severity, SD) 28.8 (19.0)

Child-SCAT3 (# of Symptoms, SD) 12.5 (6.3)

Child-SCAT3 (Symptom Severity, SD) 23 (19.7)

The acronym “SD” stands for “standard deviation” and “SCAT” for “Sports Concussion

Assessment Tool”.

the Berlin criteria and exhibited a minimum of 4 and as
many 22 SCAT3 symptoms at the time of testing. The most
common symptoms were difficulty concentrating/remembering,
dizziness, sensitivity to light, “don’t feel right,” fatigue,
and irritability.

The plots in Figure 1 show the mean of |τi→j| evaluated
over all the individuals in the control and concussed groups
respectively. The acronyms appearing in the figure refer to EEG
source locations in the brain listed in Table 2.

Since the reconstructed EEG signal involves 15 source
locations, the total number of potential connections between
brain regions is 15 × 14 = 210 (the 15 self-connections i → i
are not meaningful and are thus excluded). As evidenced in

TABLE 2 | List of the 15 brain regions used in EEG source space reconstruction in

BESA.

Source dipole label Brain region

FL Frontal, left hemisphere

FpM Fronto-polar midline

FR Frontal, right hemisphere

FM Frontal midline

CL Central, left hemisphere

CM Central midline

CR Central, right hemisphere

TPL Posterior temporal, left hemisphere

TAL Anterior temporal, left hemisphere

TAR Anterior temporal, right hemisphere

TPR Posterior temporal, right hemisphere

PM Parietal midline

PL Parietal, left hemisphere

PR Parietal, right hemisphere

OpM Occipital-polar

FIGURE 1 | Maps of the mean absolute normalized information flow rate |τi→j| for the control (Left) and concussed (Right) individuals. The EEG source labels are

defined in Table 2.
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TABLE 3 | List of the thirty most active connections in source space for the control (left) and concussed (right) individuals ranked by mean |τi→j |.

From To Mean |τi→j| From To Mean |τi→j|

Control Concussed

1 FL FpM 1.463516e-01 FpM FR 9.139760e-02

2 FpM FL 1.244544e-01 FpM TAL 7.800451e-02

3 PM OpM 9.544217e-02 FpM FL 7.796168e-02

4 FL FM 9.151434e-02 FpM FM 7.068658e-02

5 CM CR 8.715951e-02 FR FpM 6.849991e-02

6 FpM FM 8.528051e-02 PL OpM 6.841781e-02

7 FM FpM 8.513447e-02 TAL FpM 6.758274e-02

8 FM FL 8.300400e-02 FpM TAR 6.683954e-02

9 PL OpM 8.091458e-02 FR TAR 6.599597e-02

10 FL TAL 7.785959e-02 TAL FL 6.582645e-02

11 TAR TPR 7.631225e-02 TAR FR 6.447614e-02

12 FM CM 7.534613e-02 FM FpM 6.404960e-02

13 CM FpM 7.455397e-02 TPL PL 6.224385e-02

14 CM FM 7.023347e-02 TAR TPR 6.117049e-02

15 TAL FL 7.021745e-02 TAL TPL 5.957048e-02

16 FpM TAL 6.997750e-02 TAR FpM 5.773160e-02

17 PR OpM 6.969384e-02 PL PM 5.766076e-02

18 PM PR 6.927217e-02 FM FR 5.691796e-02

19 CR CM 6.851740e-02 FL TAL 5.649172e-02

20 PM PL 6.850605e-02 FR FM 5.594106e-02

21 TAR FR 6.783224e-02 FM FL 5.527661e-02

22 FR TAR 6.657403e-02 TPR TAR 5.410975e-02

23 CM FL 6.640744e-02 PR TPR 5.153787e-02

24 FM FR 6.630883e-02 TPL OpM 5.132545e-02

25 TAL TPL 6.473654e-02 FR FL 5.126175e-02

26 FpM CM 6.348101e-02 PR OpM 4.983997e-02

27 TAL CL 6.266565e-02 FL FpM 4.933237e-02

28 TPL PL 6.158443e-02 PL TPL 4.897207e-02

29 OpM PR 6.095310e-02 TAL TAR 4.892466e-02

30 OpM PM 6.082626e-02 TPR PR 4.862880e-02

The EEG source labels are defined in Table 2.

Figure 1, the range of values of |τi→j| for the two groups are
broadly comparable (we are using a common color scale for the
two plots). In detail, however, the values ofmean |τi→j| are overall
somewhat higher for the control group and the connectivity
patterns are different. We elaborate on the connectivity
differences below.

3.1. Qualitative Comparison of Information
Flow Rates and Connectivity Patterns
For purposes of a qualitative comparison, we limit ourselves
to the thirty (30) strongest connections (for example the
connections with the largest |τi→j|) for the control and the
concussed individuals. These connections are listed in a rank-
ordered fashion in Table 3 and shown in Figure 2 in terms of
a matrix plot. The magnitudes of these top thirty connections
range between 0.146 and 0.06 for the control group and between
0.091 and 0.049 for the concussed, and an examination of

Figure 2 suggests that the spatial distribution of the two sets of
connections is manifestly different. In the case of the control
group, the connections are more clustered about the diagonal
as well as toward the center of the matrix. In the case of the
concussed group, the connections aremore dispersed and there is
a larger number of them near the edges. The connections are also
displayed in Figures 3A–D, by means of directional arrows on
the axial-view brain schematics: Figure 3A illustrates the spatial
distribution of the fivemost important connections (red arrows);
Figure 3B shows the top ten connections, with those ranked 6 to
10 shown in yellow. Figure 3C shows the spatial distribution of
the top 15 connections, with those ranked from 11 to 15 plotted
in dark green, while Figure 3D gives the spatial distribution of
the full set of top thirty connections, with those ranked 15 to 30
colored turquoise.

An examination of Figure 3A reveals that of the top 5
connections for the control group, three involve the left frontal
region (FL): FL sends information to the frontal midline and
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FIGURE 2 | Maps of the top 30 mean absolute normalized information flow rate values for the control (Left) and concussed (Right) individuals. The EEG source

labels are defined in Table 2.

FIGURE 3 | Brain view comparison of the information flow rate between healthy controls (top row) and concussed (bottom row). Schematics (A–D) display

respectively from left to right the top 5, 10, 15, and 30 connections. The connections are ranked based on the average value of |τi→j |. The EEG source labels are

defined in Table 2.

fronto-polar midline (FM, FpM), and receives information from
FpM. The bidirectional connection is on the left side. In the
concussed group, however, the most active site is the fronto-polar
midline region (FpM), with the top four connections extending

bilaterally to the left and right frontal regions (FL, FR) as well
as to frontal midline (FM) and left temporal (TAL) region.
The one bidirectional connection is on the right side, between
FpM and FR.
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Introducing the next five connections (6 to 10) and examining
the top ten connections jointly (Figure 3B), we find that in the
control group, the connections are largely concentrated in the left
anterior region of the brain. We also note that there is now a
total of three bidirectional connections: between left frontal (FL)
and fronto-polar midline (FpM) that we have already highlighted
as well as between left frontal (FL) and frontal midline (FM)
and between fronto-polar midline (FpM)and frontal midline
(FM) regions.

In contrast, in the concussed group, the left-right symmetry
in the distribution of the connections becomes more apparent;
the activity extends beyond the frontal regions and involves both
the left and right temporal regions (TAL and TAR). We also
observe two pairs of bidirectional connections: between FpM and
FR already mentioned as well as between FpM and TAL.

For the control group, the next five connections (11
to 15) largely preserve the existing spatial distribution of
the connections. The flow is still primarily left lateralized
and anterior-centric. The additional connections do expose
additional bidirectional information flow between already
engaged brain regions. In the concussed data, the left-right
symmetry in the distribution of the connections in the anterior
region of the brain is largely unaltered; however, we also observe
the information flow extending toward the posterior regions of
the brain, with a slight excess in the number of such connections
on the left.

With the final fifteen to thirty connections (in Figure 3D),
we see the emergence of distributed activity in the posterior
half of the brain in both the control and concussed groups.
This includes bidirectional flows between the parietal and the
occipital regions in the control group, and the temporal and the
parietal regions in the concussed groups. Additionally, in both
groups, the additional connections tend, on the whole, toward
greater left-right symmetry in both the posterior as well as the
anterior regions. The concussed results also show the emergence
of two inter-hemispheric connections between the left and right
temporal regions (TAL to TAR) and the left and right frontal
regions (i.e., FR to FL).

3.2. Statistical Comparisons of Information
Flow Rates and Connectivity Patterns
First, we have assessed the top thirty connections discussed
above and have confirmed the statistical significance of these top
|τi→j| values using the non-parametric permutation testing (Maris
and Oostenveld, 2007; Cohen, 2014). In permutation testing,
we formulate a null hypothesis that there is no information
flow between the sources pi and pj for all i and j. We then
generate Ms randomized states um(tn), where n = 1, . . . ,N,
and m = 1, . . . ,Ms. The randomized states are derived from
each transmitter source time series pi by scrambling the N time
points of pi using random permutations. This operation destroys
the temporal order of pi and also any patterns of information
flow from pi to pj. Any resulting deviations of the estimated
|τm→j| values (based on the shuffled time series pm) from zero,
are due to random fluctuations and do not represent meaningful
information flow. Statistically significant values of information

flow should be considerably higher than the random fluctuations
of |τm→j|.

The p-value of the statistic |τi→j| is defined as the fraction of
theMs permutation states for which |τm→j| exceeds |τi→j|. A high
p-value implies that the null hypothesis cannot be rejected since a
significant number of randomized states have higher information
flow rate than the |τi→j|. In contrast, a low p-value provides
support for the alternative hypothesis (i.e., statistically significant
information flow from pi to pj). The observed value |τi→j| is then
considered as statistically significant if the respective p-value is
below a specified significance level. We use 0.05 for the latter for
all the statistical tests reported below although we also report the
actual p-value as well.

In our numerical analysis, we used Ms = 100. For each
simulation and each individual we scramble the time order of
the transmitting source pi for all the top 30 transmitter-receiver
pairs pi → pj, and we calculate the resulting |τm→j|. For the
(control, concussed) group, we thus have a matrix of (32, 21)
(individuals)×30 (top connections)×100 (# simulations) values
of |τm→j|. We take the average over the individuals within each
group leading to two 30×100matrices of |τm→j| values. Then, we
count how many of the 100 average |τm→j| values (based on the
randomized transmitter series) exceed the group’s mean |τi→j|

for each of the top 30 connections in each group. The fraction of
such exceedances gives us the p-value. For both the control and
the concussed groups the resulting p-value is zero. In the control
(concussed) group the lowest average |τm→j| is ≈ .6 × 10−6

(4.98 × 10−6) and the highest is ≈ .3.53 × 10−5 (4.26 × 10−5).
These values are well below the range of the |τi→j| values for the
top 30 connections for both groups reported in Table 3. It is also
possible to obtain p-values by calculating standard Z values for
the observed |τi→j| in each group based on the null hypothesis
distribution (Cohen, 2014, p. 464). This approach rests on the
assumption of a normal distribution of the group averages. It is
somewhat more conservative, since it can yield non-zero p-values
even if the approach based on the fraction of exceedances yields a
zero p-value. However, in the present case, the standard Z-value
approach also leads to zero p-values. Hence, since our analysis
is based on 100 randomized samples, we can conclude that the
top thirty within-group-averaged |τi→j| values are statistically
significant at the 5% level for both groups.

Next, we look at all the connections and perform statistical
comparisons of the normalized information flow rates obtained
for the groups of control and concussed individuals. The question
that we seek to answer is whether the marginal distributions
of information flow rate are different in these two groups, and
whether such difference, if it exists, leads to distinguishable
summary statistics. The following analysis of the |τi→j| empirical
(sampling) distributions is based on the 32 × 210 = 6720 values
for the control and the 24× 210 = 5040 values for the concussed
group. The |τi→j| values are calculated over all the individuals in
each group and for each of the 210 pairs of 15 source locations
(as discussed in section 3.1) and the two distributions are shown
in Figure 4.

We test the null hypothesis that the |τi→j| for both the control
and concussed groups follow the same marginal (1-D) statistical
distribution. We use the Kolmogorov-Smirnov (K-S) test for
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FIGURE 4 | Probability density histograms of the |τi→j | values for the control

(blue-gray) and concussed (rose) groups. The height of each histogram bar is

equal to the number of observations in the bin divided by the total number of

observations and the bin width. Thus, the area of each bar is equal to the

relative number of observations per bin, and the sum of all the bar areas is

equal to one.

comparing the two corresponding cumulative distribution
functions, e.g., Press et al. (2007). The null hypothesis is that there
is no difference between the two distributions (for the control and
concussed groups). The K-S test rejects the null hypothesis with
p = 1.6175× 10−214, which is practically zero. Moreover, unlike
the histograms shown in Figure 4, the K-S test operates on the
raw data and is not affected by the bin size. This result provides
solid statistical evidence that the probability distributions of the
|τi→j| values for the control and concussed groups are different.
This result is also supported by the probability density histograms
shown in Figure 4: in the concussed group there is a higher
probability for smaller values of |τi→j| than in the control group,
as well as a longer right tail which implies the presence of some
higher values in the concussed group.

We also use the non-parametric Kruskal-Wallis test (Durka
et al., 2004) to compare the |τi→j| distributions for the control
and concussed groups. The data are assumed to come from
continuous distributions which are otherwise arbitrary. The null
hypothesis is that two samples come from the same distribution.
The Kruskal-Wallis test is a non-parametric one-way analysis of
variance (ANOVA) which tests the null hypothesis. In contrast
with the classical parametric ANOVA method, the Kruskal-
Wallis test does not rely on the normal distribution.

Since the control group involves 32 subjects and the concussed
group 21, we perform the comparison between the two groups
using 1,000 samples. Each sample involves 210× 21 |τi→j| values

TABLE 4 | Statistics of the |τi→j| sampling distributions from the individuals in the

control and concussed groups.

Group

Statistics
Median COV Skewness Kurtosis

Control 0.030 0.89 ± 0.066 2.30 ± 0.44 12.07 ± 5.35

Concussed 0.013 1.77 ± 0.13 4.15 ± 0.41 23.24 ± 4.22

COV is the coefficient of variation. The intervals reported for the COV, the skewness and

the kurtosis coefficients are equal to two times the jackknife estimate of the standard error.

obtained from 21 out of 32 control individuals and the respective
|τi→j| values for the 21 concussed individuals. In all cases the
Kruskal-Wallis test shows that the null hypothesis is rejected
with p < 1.95 × 10−131. Hence, this test also confirms that
the |τi→j| values from the two groups do not follow the same
probability distributions.

The descriptive summary statistics for the |τi→j| sampling
distributions of the two groups are given in Table 4. We compare
the median value, the coefficient of variation (COV) which is
equal to the standard deviation divided by themean, the skewness
(coefficient of asymmetry), and the kurtosis coefficient. For the
COV, the skewness and the kurtosis coefficients we provide
estimates of uncertainty (95.45% confidence intervals) that are
based on two times the jackknife estimate of standard error (Efron
and Hastie, 2016, p. 156). The jackknife estimates are obtained
by generating L samples (L being the number of individuals in
each group), so that each sample excludes one of the individuals
in the group. The jackknife is known to overestimate the true
standard error (Efron and Hastie, 2016, p. 158). The respective
95.45% confidence intervals for the summary statistics of the two
groups are non-overlapping. This result supports the conclusion
of the K-S test, i.e., that the probability distributions of the |τi→j|

values for the control and concussed groups are different.
To further investigate the differences between the two

|τi→j| empirical distributions, we generate 100,000 sub-samples
comprising 12 individuals for each group. The sub-samples per
group are generated by means of random permutations of the
individuals’ indices. The coefficient of variation, the skewness
and the kurtosis of |τi→j| are evaluated for each sub-sample
(based on all the connections and individuals in the sub-sample)
and the results are plotted in Figure 5. The four plots shown
include the 3D scatter plot of the three-component statistical
vector (COV, skewness, kurtosis) (top left) as well as the three
2D projections on the planes (COV, skewness) [top right] (COV,
kurtosis) [bottom left] and (skewness, kurtosis) [bottom right].
As it is evident in these plots, there is a clear separation
between the |τi→j| “points” in the control and concussed
groups. In addition, the patterns formed by the statistics
viewed as points in 3D space have different geometric shapes
and orientations.

The final important question that we consider is whether the
observed difference in the spatial organization of the effective
connectivity between the control and concussed groups is
statistically significant. The qualitative survey of the connectivity
patterns manifested by the top 30 connections in the two
groups hint at significant differences. However, we would like
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FIGURE 5 | Statistics of the |τi→j | distributions for the control (blue dots) and concussed (red dots) groups. The coordinates of each point in 3D space comprise the

coefficient of variation (COV), the coefficient of asymmetry (SKEW), and the kurtosis coefficient (KURT). The 100000 points are generated by random sub-sampling of

12 individuals from each group.

to quantify this. To that end, we investigate this question in
terms of a summary statistic that reflects the character of the
information flow connections between the fifteen brain regions
(i.e., source locations). Specifically, we construct weighted,
asymmetric networks (graphs) based on the τi→j values of each
group, and then compare the resulting network patterns in terms
of a characteristic measure of the network’s topological structure.
The selected measure is the assortativity coefficient introduced
by Newman (2002) and Noldus and Van Mieghem (2015). The
calculation involves the following steps:
1. The source locations correspond to the nodes of the network

and the edges correspond to connections.
2. We construct the network adjacency matrix Ai,j = |τi→j|

for all possible connections between source locations. The
matrix A has positive values (weights) for all the connected
edges and zero otherwise.

3. Each node is characterized by two numbers: the in-degree
(i.e., the weighted sum of the incoming connections),
and the out-degree (i.e., the weighted sum of the
outgoing connections).

4. We characterize the network connectivity in terms of
the degree assortativity coefficient for weighted, directed
networks, e.g., Rubinov and Sporns (2010) using the function
pearsonW.m in the Octave networks toolbox (Bounova,
2014). The degree assortativity coefficient, rW , of a network
is the Pearson correlation coefficient between strengths
(weighted degrees) of all nodes at the opposite ends of
an edge. It is a measure for the tendency of nodes to
connect with other nodes that have similar strength. It
is an important global measure of a network’s topological
structure and is frequently used in brain network analysis,
e.g., Rubinov and Sporns (2010), Geier et al. (2015), Betzel
et al. (2018) and Lim et al. (2019).

5. We formulate the null hypothesis that there is no statistically
significant difference in rW of the two groups. We then
use permutation testing to test this hypothesis (Cohen,
2014, p. 461). If there is no difference between the control
and concussed individuals (i.e., if the null hypothesis
is valid), the values of the assortativity coefficient
computed for the individuals in the control and concussed

Frontiers in Human Neuroscience | www.frontiersin.org 10 December 2019 | Volume 13 | Article 419

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Hristopulos et al. Disrupted Information Flow in Concussed Adolescents

FIGURE 6 | Frequency histograms of Pearson’s degree-degree correlation coefficient under the null hypothesis (i.e., no difference between the control and concussed

groups). The top histogram is for the control group and the bottom histogram for the concussed group. The 5 and 95% percentiles are marked by magenta squares,

while the 2.5 and 97.5% percentiles are marked by green diamonds. The value obtained for the control group is marked by the blue circle (Top), and the value

obtained for the concussed group is marked by the red circle (Bottom).

groups should be contained within the respective null
hypothesis distributions.

6. We combine the information flow rates for both the control
and the concussed individuals into a single set reflecting the
null hypothesis.

7. We randomly partition this set into two subsets, one
containing 32 subjects (used to test the null hypothesis in the
control group) and one containing 24 subjects (to test the
null hypothesis in the concussed group).

8. We calculate the mean absolute information flow rate for all
the individuals in each group (partition). We then compute
rW based on these averages.

9. We repeat the random partitioning for N ≫ 1 times (e.g.,
N = 10, 000), generating N values of rW and in the process,
obtaining a probability distribution of rW for each group.

10. We compute the percentage of times that rW values obtained
from the null hypothesis distribution are more extreme than
the respective values obtained for the two separate groups;
this percentage gives the respective p value.

The results of the analysis outlined above are displayed in
Figure 6. It is evident that rW for the control group individuals is
explained by the null hypothesis for the control group. However,
rW for the concussed group corresponds to p = 0.025 with
respect to the corresponding null hypothesis distribution; thus,
the null hypothesis can be rejected at the 5% level.

To summarize, we have carried out a quantitative statistical
analysis of themarginal probability distributions of the individual
|τi→j| as well as the group effective connectivity patterns,
based on the mean |τi→j|. The results demonstrate that not
only is the spatial organization of the effective connectivity
of the control and concussed groups different, the individual
information flow rates in each group also follow distinct marginal
probability distributions.

4. DISCUSSION

In this study we investigated the changes in effective connectivity
between a group of adolescent athletes with subacute sports
related concussion and a group of adolescent athletes with no
previous history of concussion. We applied the information flow
rate to the EEG time series signals from different source locations
to measure the transfer of information between different brain
regions. Based on the ensemble means of the normalized
information flow rate, our analysis revealed acute changes in
effective connectivity compared with age-matched controls.

We find that the strongest information flows in adolescent
athletes with no previous history of concussion is primarily
left (L) lateralized and anterior-centric, and dominated by the
triangular nexus of bidirectional information exchange between
brain regions of comparable degree: FL, FpM, FM, and CM.
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(Degree refers to the total number of incoming flows and
outgoing connections). The connections in the right anterior and
in the posterior regions are typically weaker. The latter are more
left-right (L-R) symmetric, with both the left and right parietal
regions engaging in bidirectional information exchange with the
occipital region.

In contrast, adolescents with subacute concussion show four
distinct changes in the pattern of information flow during resting
state. First, instead of four regions of comparable degree, one
region, the fronto-polar midline (FpM), stands out above all
others. Second, while the strong information flow connections
are still concentrated in the anterior region of the brain, their
spatial distribution is much more (L-R) symmetrical and include
strong bidirectional connections between the frontal and the
temporal (TAL and TAR) regions. Third, we observe the presence
of two inter-hemispheric connections in the anterior region,
i.e., FR→FL and TAL→TAR. The inter-hemispheric connections
are not present in the control group. Lastly, the activity in
the central and the parietal midline regions is greatly reduced,
and the centers of activity in the posterior regions of the
brain has shifted from the parietal regions to the left and right
posterior temporal regions, with the bidirectional information
exchange now occurring between the posterior temporal and
the parietal regions on both the left and the right. Below
we consider these results with the context of the functional
hyperconnectivity hypothesis.

4.1. Hyperconnectivity as a Feature of
Brain Injury
Hillary and Grafman (2017) argues that hyperconnectivity (as
measured by an increase in the magnitude or the number
of connections in brain regions), is a fundamental and
observable response to all neurological injury resulting in
neural network disruption. They propose that this response
reflects the brain’s attempt to re-establish communication
between networks through the recruitment of “detour pathways”
using less established routes to bypass prior, now damaged,
connections. While a growing number of studies demonstrate
hyperconnectivity following concussion (Borich et al., 2015;
Newsome et al., 2016; Manning et al., 2017), these studies tend
to focus on increases in the density of connections. To date there
is no study explicitly demonstrating the formation of re-routing
patterns via an effective connectivity analysis. Our results are
the first to show this. Specifically, our analysis demonstrates the
emergence of four alternate pathways of information flow in the
concussed group that likely reflect the consequences of physical
disruption of prior connections.

First, we observed a shift in the center of activity from
the left frontal region to the fronto-polar midline region, and
a concomitant increase in the number of strong information
flow connections in the right anterior region that results in
a more (L-R) symmetrical connectivity pattern. These changes
are consistent with results of our previous resting state fMRI
study and resting EEG study of functional connectivity in
concussed versus healthy (control) subjects. In the fMRI study,
we found that increased functional connectivity was primarily

concentrated in the right frontal region within the executive
function network (Borich et al., 2015). The EEG study showed
significant increases in the functional connectivity in areas
corresponding to the right inferior frontal gyrus and the right
dorsolateral prefrontal cortex (Virji-Babul et al., 2014), areas
that in Figure 3 lie to the right of FM. Numerous studies
have reported a frontal and specifically, prefrontal vulnerability
to brain injury —see Eierud et al. (2014) for review. In
adolescence, the incomplete development of white matter tracts
may contribute to the increased vulnerability in this region.
Damage to these areas (both left and right) may require re-
routing of information via newly established detour pathways to
re-establish communication within frontal-central regions.

The next three key findings in the concussed group, which we
consider together, are (a) the presence of two inter-hemispheric
connections, one in the frontal region, i.e., FR→FL, and one
between the left and right temporal regions, i.e., TAL→TAR,
(b) a shift to bilateral posterior temporal regions, and (c) the
diminished activity in the central and the parietal midline
regions, and to a lesser degree in the frontal midline region.

These shifts in information flow are most likely a consequence
of injury to white matter tracts such as the corona radiata,
the genu of the corpus callosum and the superior longitudinal
fasciculus. In fact, Ling et al. (2012) have suggested that the fibers
within the corpus callosum are highly susceptible to mechanical
injury and several studies have shown that concussion results
in impact to the corpus callosum (Kraus et al., 2007; McAllister
et al., 2012). We hypothesize that injury to the interface between
the two hemispheres of the brain, and to the white matter
tracts, particularly the corpus callosum, is the reason for the
reduced activity in the frontal-central-parietal midline regions
and the emergence of these alternate pathways of information
flow between the two hemispheres that we have observed in
this study.

An important question that arises from these results is: What
are the functional consequences of hyperconnectivity and the
establishment of alternate pathways of information flow? It is
important to note that hyperconnectivity does not necessarily
represent positive functional plasticity. Caeyenberghs et al.
(2017) have proposed that increased functional connectivity
may represent maladaptive plasticity, particularly when
associated with impaired cognitive function. Increased
functional connectivity is metabolically costly and may be
associated with a highly simplified and tightly synchronized
pattern of brain activation that constrains the dynamics and
flexibility of neural responses (Hillary et al., 2015; Caeyenberghs
et al., 2017). Although the behavioral correlates of this type of
plasticity or re-structuring have not been well characterized,
this altered functional connectivity may limit the performance
of tasks that require dynamic switching between different
brain/behavioral states.

We recently investigated how pediatric concussion alters the
temporal dynamics of brain states within resting state networks
using resting state fMRI data. Functional networks in resting
state are not stationary but rather switch between different brain
states. The strength as well as the direction of connections vary
from seconds to minutes (Chang and Glover, 2010; Jones et al.,
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2012; Hutchison et al., 2013). Using a sliding window analysis,
we extracted three separate brain states within the resting state
condition in both healthy adolescents and adolescents with
concussion. Our analysis revealed that the healthy adolescents
switched dynamically between three brain states, spending
approximately the same time in each brain state. In contrast, we
found that adolescents with concussion spent themajority of time
in only one brain state. We hypothesize that this lack of dynamic
flexibility is likely to negatively impact the performance of tasks
that require shifting of attentional states or performance of more
complex tasks (Muller and Virji-Babul, 2018).

One potential long-term concern for concussed patients is
that this pattern of hyperconnectivity, combined with limited
flexibility of network dynamics, may represent more than a
transient process of brain injury. Since hyperconnectivity is
associated with high metabolic cost, chronic hyperconnectivity,
in combination with elevated metabolic processes may
offer a clue to the link between concussion and future
neurodegeneration. Clearly, long-term studies examining
the trajectory of connectivity and the relationship between
structural, functional and effective connectivity patterns
are urgently needed—particularly in the adolescent phase
of development.

4.2. Limitations
There are several limitations to this study that are worth noting.
First, we have a modest sample size which comprises data
obtained at one time point between 1 week and 1 month post
injury. Thus, the effects that we report will likely continue to
evolve over the course of recovery. Longitudinal studies over the
span of at least 6 months to 1 year are needed to understand the
long-term effects on effective connectivity resulting from a single
concussion. Several important questions need to be answered,
such as: how does recovery of white matter integrity influence
the pattern of effective connectivity, what is the relationship and
trajectory of both brain structure and function over a 1 year time
span in the adolescent brain, and how do these changes impact
high level cognitive function? The second limitation is that
our sample primarily consists of male adolescent athletes. This
constraint is due to the sports teams that agreed to participate in
our study. The effects of concussion on female athletes are highly
understudied. We are currently collecting data and following a
group of female soccer players over an entire season to evaluate
the effects on brain connectivity in this group.

In summary, our study demonstrates the changes in effective
connectivity associated with a sports related concussion (within
1 week of injury) in an adolescent population, for the first time.
The acute effects of a concussion are shown to be associated with
distinct differences in information flow in comparison with age-
matched youths who had no history of concussion. Specifically,
the concussed group shows a more left-right symmetric pattern

of information flow corresponding to an increase in the number
of strong connections in the right anterior region of the brain,
inter-hemispheric connections between the left and right frontal
and temporal regions of the brain, and a diminished level of
activity along the frontal-central-parietal midline axis. They also
highlight the need to follow athletes longitudinally in order to
study the long-term impact of concussion, particularly when
the concussion occurs during the dynamic period of adolescent
brain development.
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