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Neurofeedback-guided motor-imagery training (NF-MIT) has been proposed as a
promising intervention following upper limb motor impairment. In this intervention, paretic
stroke patients receive online feedback about their brain activity while conducting a
motor-imagery (MI) task with the paretic limb. Typically, the feedback provided in NF-MIT
protocols is an abstract visual signal based on a fixed trial. Here we developed a
self-paced NF-MIT paradigm with an embodiable feedback signal (EFS), which was
designed to resemble the content of the mental act as closely as possible. To this
end, the feedback was delivered via an embodiable, anthropomorphic robotic hand
(RH), which was integrated into a closed-looped EEG-based brain-computer interface
(BCI). Whenever the BCI identified a new instance of a hand-flexion or hand-extension
imagination by the participant, the RH carried out the corresponding movement with
minimum delay. Nine stroke patients and nine healthy participants were instructed to
control RH movements as accurately as possible, using mental activity alone. We
evaluated the general feasibility of our paradigm on electrophysiological, subjective and
performance levels. Regarding electrophysiological measures, individuals showed the
predicted event-related desynchronization (ERD) patterns over sensorimotor brain areas.
On the subjective level, we found that most individuals integrated the RH into their body
scheme. With respect to RH control, none of our participants achieved a high level
of control, but most managed to control the RH actions to some degree. Importantly,
patients and controls achieved similar performance levels. The results support the view
that self-paced embodiable NF-MIT is feasible for stroke patients and can complement
classical NF-MIT.

Keywords: neurofeedback, motor imagery, brain computer interface, sense of ownership, sense of agency, stroke,
rubber hand illusion

INTRODUCTION

Motor impairments in the upper limbs are among the most prevalent symptoms following stroke
(Grefkes and Ward, 2014). Neurofeedback-guided motor imagery training (NF-MIT) has been
proposed as a promising intervention for treating upper limb motor impairments (Pichiorri et al.,
2015; Zich et al., 2017). In this intervention, paretic stroke patients conduct a motor imagery (MI)
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task during which they receive online neurofeedback about their
brain activity. The therapeutic idea behind NF-MIT is to provide
feedback to the patients on how well they are performing,
by showing a beneficial neuronal activation pattern thought
to support motor recovery (Sitaram et al., 2017). Typically,
the feedback is a rather abstract signal, such as a moving
bar or ball presented on a computer screen. In the context
of an embodied cognition view (Wilson, 2002; Foglia and
Wilson, 2013; Wilson and Golonka, 2013), it can be argued
that an embodiable feedback signal (EFS) is more natural
and intuitive for the patient. A feedback signal that closely
resembles the MI act performed, in both time and space, may
be potentially better accepted by patients, in particular if they
suffer from cognitive impairments, and may, eventually, lead to
better performance.

A few studies have developed an EFS (Perez-Marcos et al.,
2009; Alimardani et al., 2013; Ono et al., 2013; Pichiorri et al.,
2015; Braun et al., 2016). Most of these studies were inspired
by the active rubber hand illusion (aRHI; Kalckert and Ehrsson,
2012, 2014; Braun et al., 2014) or its VR-based derivatives (Slater
et al., 2008, 2009; Sanchez-Vives et al., 2010; Kilteni et al.,
2012; Ma and Hommel, 2013; Pichiorri et al., 2015; Ma et al.,
2017). The aRHI is a special variant of the classical rubber
hand illusion, in which a movable artificial robotic hand (RH),
rather than a static rubber hand, is placed visibly, and in an
anatomically-plausible position, in front of the individual, while
the individual’s own hand is hidden from view. If the RH is
repeatedly moved in synchrony with the individual’s real or
imagined handmovements, an illusory sense of ownership (SoO)
and sense of agency (SoA) for the artificial hand can typically be
induced (Kalckert and Ehrsson, 2012, 2014; Braun et al., 2014,
2016). That is, individuals may then experience the RH as part
of their own body (SoO) and its movements as under their
voluntary movement control (SoA). In order to provide real-time
feedback for the MI within an aRHI paradigm, imagined hand
movements are decoded from electrical brain activity and the
corresponding commands are issued to the RH. Ideally, the RH
then executes the imagined movements with little temporal delay
(Braun et al., 2016).

Several studies have indicated beneficial effects of EFS (Perez-
Marcos et al., 2009; Slater et al., 2009; Alimardani et al.,
2013, 2014). Ono et al. (2013), for instance, compared different
feedback signals presented on a computer screen and found
evidence for a more robust event-related desynchronization
(ERD) pattern for natural as compared to abstract feedback
signals. Also, in a previous aRHI study (Braun et al., 2016),
we used a RH and investigated the role of feedback-signal
embodiment. Individuals experienced RH movements as more
self-related and self-caused if the RH was placed in a congruent
position such that it could be embodied. Individuals were also
able to induce RH movements more quickly. These findings
suggest that natural feedback signals may help to improve the
quality of NF-MIT. It is not clear, however, to what extent
stroke patients in particular benefit from an EFS, since most
paradigms have been tested only with healthy individuals. A
recent meta-analysis conducted by Cervera et al. (2018) showed
that brain-computer interface (BCI)-based neurorehabilitation

on upper-limb motor function can lead to more improvement
in motor performance than other conventional therapies,
supporting the general effectiveness of classical NF-MIT in
stroke patients. The specific effect of EFS, however, has not yet
been studied.

Most NF-MIT paradigms employ cue-based designs, in which
the timing and content of mental tasks are predefined by visual
or auditory cues (Scherer et al., 2008). Such rigid training regimes
are easy to control experimentally, but they suffer from poor
ecological validity, in particular when voluntary actions are
studied. Spontaneous, self-paced designs may be needed to allow
individuals to develop self-control and increased acceptance
(Lotte et al., 2013).

In the present study, we investigated whether a self-paced
embodiable NF-MIT, in which the individuals can freely explore
the consequences of their different MI acts on a RH, is
feasible. We tested this RH neurofeedback paradigm with
stroke patients (n = 9), since this is the major target group
for which NF-MIT is ultimately intended, as well as with
healthy participants matched in age and gender. We wanted to
know whether stroke patients, in particular, are able to learn
to control the RH. To evaluate neurofeedback performances,
participants had to perform various tasks such as conducting
as many RH movements as possible in some time periods
and withholding any RH movements in others. Behavioral,
subjective and electrophysiological measures were collected
and analyzed.

MATERIALS AND METHODS

Participants
Nine chronic stroke patients (one female) aged 55–75 and nine
healthy controls matched in age and sex were recruited for
the study (see Table 1, for demographic and clinical data). All
participants were required to have a normal or corrected-to-
normal vision and no known history of a mental disorder. All
patients suffered from a first-time monolateral stroke. Months
since stroke ranged from 15 to 72 months,M = 41.44, SD = 22.6.
Inclusion criterion was a moderate to severe right-hand paresis
due to the stroke as assessed by the Fugl-Meyer test (see ‘‘Stroke
Patient Assessment’’ section). Patients were required to have no
dementia, no epileptic seizures, and no severe neglect or severe
aphasia that would impair their ability to follow task instructions.
All participants were compensated for their participation (8e
per hour), gave written informed consent and were naive to the
purpose of the study. The study was approved by the University
of Oldenburg ethics committee.

TABLE 1 | Demographic data of stroke patients and healthy controls.

Characteristics Stroke (N = 9) Control (N = 9)

Sex (male: female) 8:1 8:1
Age (SD) 60.33 (9.31) 60.22 (9.77)
Motor assessment (SD) 27.88 (15.21) -
Sensibility assessment (SD) 34.00 (4.38) -
Infarct side (left: right: both) 8:0:1 -
Infarct location (cortical: subcortical: mixed) 3:4:2 -
MOCA (SD) 21.77 (2.58) -
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Overview
The study was carried out over three sessions for stroke
patients and two sessions for healthy controls. The additional
session for the stroke patients served to conduct the cognitive,
motor and sensory assessments. The other two sessions, in
which the actual NF-MIT was conducted were identical for
both groups. Here, we report NF-MIT data from the second
of these two sessions. In the first session, participants had
to kinesthetically imagine flexion/extension movements with
both of their hands in spatiotemporal synchrony with the RHs
flexion/extension movements, while in the second session, they
imagined these movements with only their right hand. Thus, the
first session implemented a different experimental task and will
be reported elsewhere.

Stroke Patient Assessment
Cognitive assessment was conducted using the current version
of the Montreal cognitive assessment (MoCA; Nasreddine et al.,
2005). This test covers different cognitive domains and is an
established fast screening tool for detecting mild cognitive
impairments. TheMoCA score ranges from 0 to 30 and German-
speaking participants with normal cognitive ability are expected
to exceed a threshold between 18 and 24 (depending on age and
gender; Thomann et al., 2018).

Motor assessment was carried out using an adapted version
of the Fugl-Meyer test (Sanford et al., 1993). While the original
Fugl-Meyer test assesses both upper and lower limb movements,
we only focused on 29 upper-limb tasks in the present study.
All movement tasks were first executed with the non-paretic and
then with the paretic arm. For each task, the achieved motor
performance scores of the paretic and the non-paretic arm were
compared and their difference assessed on a 3-point Likert scale.
The scale ranged from zero (clearly lower performance on the
paretic side) to two (identical performance on the paretic and
non-paretic side). A summation score was then calculated by
adding up all 29 individual task scores. The maximum score
achievable was thus 58. The cut-off criterion indicating mild
to severe right-hand paresis was set to scores lower than, or
equal to, 45.

The sensory assessment was based on a testing procedure
adapted from the Nottingham Sensory Assessment (Lincoln
et al., 1998). We tested six different sensory modalities (pressure,
light touch, pain, temperature, proprioception and vibration) on
three different upper limb locations (upper arm, forearm, back of
the hand), while the patients’ eyes were closed. For each modality
and each position, sensibility performances of the paretic
and the non-paretic body side were compared and assessed
on a 3-point Likert scale, ranging from zero (no detection
of respective sensory stimulus), to two (identical sensory
detection performance on the paretic and the non-paretic side).
A summation score was then calculated by adding up all
18 individual task scores. The maximum score achievable was
thus 36.

Apparatus
The NF-MIT took place in a sound-attenuated and dimly lit
experiment room. The experimental setting was adapted from

our previous study (Braun et al., 2016) and is depicted in
Figure 1A. The participant sat in front of a rectangular table
(50× 60 cm) and placed the right hand into a black box. This box
was upholstered on the inside, so as to allow for a comfortable
placement, and covered both hand and lower arm, hiding
them from view. The anthropomorphic RH was placed in an
anatomically-congruent position next to the black box, such that
it was positioned medially aside the hidden real right hand. The
horizontal distance between the participant’s real right hand and
RH was around 7.5 cm. A green LED was placed in the middle
of the table. Both the RH and the participant’s right (unseen)
hand were covered with a thin-gauge garden glove. A blanket
covered shoulders and arm and the space between the RH and
the participant’s body. The aim of this was to facilitate the visual
impression that the RH could be the participant’s own hand.
The RH closely resembled a typical large human hand in terms
of shape and size, and could be controlled with Matlab R2012a
(Mathworks, Natick, MA, USA) via a microcontroller (Arduino
mega 2560). The RH realistically mimicked hand flexion and
hand extension movements (for more details, see Braun et al.,
2016). The time delay between a Matlab control command sent
to the microcontroller and an actual RH movement onset was
less than 200 ms. The NF-MIT itself consisted of two blocks, a
training block, and a feedback block.

Neurofeedback Motor-Imagery Training
Training Block
The training block served to acquaint the participants with the
MI task and to calibrate the classifiers used in the ensemble
classification algorithm for the ensuing feedback block (see
‘‘EEG Data Recording’’ and ‘‘EEG Data Analysis and Classifier
Training’’ sections for more detail). To enable a successful aRHI
induction in the feedback block, RH movements were already
included in the training. The training block lasted 12 min and
was based on a fixed trial structure, and consisted of around
50 runs, each run lasting around 14 s and beginning with a 5 s rest
period. During the initial rest period, the RHwas in the open state
and participants were instructed to relax and not to move. After
that, a small LED indicated to the participants to prepare for the
subsequent MI flexion trial, which began 300 ms after LED onset
and lasted for 1.5 s. During this period, the RH flexed its fingers
and the participants were required to concomitantly imagine
the same movement with their right hand. The instruction was
thus to kinesthetically imagine the same flexion movement, in
spatiotemporal synchrony with the RH movement. The flexion
period was finished by the offset of the LED and the participants
were instructed to relax again for another 5 s. Then, the LED
switched on again, preparing the participants for the extension
trial, which began 300 ms after LED onset. The extension trial
also lasted 1.5 s, during which the RH extended its fingers
and participants were required to concomitantly imagine this
extension movement with their right hand. The extension trial
was finished by the offset of the LED and the next run began.

Neurofeedback Block
During the neurofeedback block, the RH was connected to a
BCI that was trained on the training block data (see ‘‘EEG

Frontiers in Human Neuroscience | www.frontiersin.org 3 January 2020 | Volume 13 | Article 461

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Spychala et al. Self-Paced Embodiable Neurofeedback

FIGURE 1 | Study design. (A) Experimental apparatus. Participants placed their right hand into a black box, whereas the robotic hand (RH) was placed directly
alongside in front of the participant. During the training block, participants kinesthetically imagined flexion and extension movements in spatio-temporal synchrony to
the flexion and extension movements of the RH. (B) Brain-Computer Interface (BCI). For neurofeedback provision, the RH was connected to a BCI that was trained
on the training block data and moved whenever the BCI detected the imagination of either a participant’s flexion or extension. The BCI’s classification algorithm was
based on signal features of the 8–30 Hz sensorimotor rhythm (SMR). (C) Neurofeedback tasks. During the feedback block, participants attempted to control the
RH’s movements as accurately as possible, using their motor-imagery (MI) thoughts alone. To evaluate their achieved controllability over the RH, participants had to
perform different “BCI Parcours” in which they attempted to carry out various computer-given, experimenter-given or self-given commands. Data privacy remark: The
person shown on the figure agreed with the publication of this figure.

Data Recording’’ section), and moved whenever the BCI’s
classification algorithm assumed an instance of flexion or
extension imagination. The neurofeedback block consisted of an
acquaintance phase and three neurofeedback tasks (Figure 1C),
each of which lasted 4 min.

During the acquaintance phase, the participants had the
opportunity to familiarize themselves with self-paced NF-MIT.
That is, they were allowed to freely try different MI acts and to
observe how these acts influenced the RH’s movement behavior.
The overall aim thereby was to gain as much control as possible
over the RH’s flexion, extension, and resting states, using MI
thoughts alone. To help the participants to accomplish this
aim, we suggested they try different mental strategies (e.g., ‘‘If
you want to flex the RH, try to imagine grasping something

or recall the flexion imagination from the training phase’’
or ‘‘If you want to rest the RH, mentally count numbers’’).
Moreover, the participants were asked whether some threshold
modifications within the classification algorithm needed to be
done; for instance, whether they remained trapped within one
RH state. The classifier thresholds of the logistic regression
used in the ensemble classification algorithm were then adjusted
according to which thresholds best enabled participants to
control the RH using MI. That is, if for instance the RH
opened more often than intended by the participant, we set
the threshold of the respective classifier to a higher value,
e.g., from 0.7 to 0.8 (see ‘‘EEG Data Analysis and Classifier
Training’’ and ‘‘Ensemble Classification Algorithm and Online
Data Flow’’ sections).
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The first neurofeedback task was a ‘‘rest vs. move task,’’ during
which the participants attempted to move the RH as often as
possible during 30 s move phases and as little as possible during
30 s rest phases. The respective phases alternated eight times and
were indicated by a small LED that switched on during move
phases and switched off during rest phases.

The second neurofeedback task was a ‘‘follow commands
task,’’ during which the participants attempted to carry out
movement commands given by the experimenter. To this
end, the experimenter sat next to the participants, equipped
with a laptop, and time-marked each given command. The
experimenter chose one from four different commands, three
explicit commands and one implicit commands. The explicit
commands were ‘‘open,’’ ‘‘close’’ and ‘‘grasp,’’ where grasp meant
to open (extension) and immediately close (flexion) the RH. The
implicit command was to keep the RH in its momentary resting
state (i.e., either ‘‘remaining opened’’ or ‘‘remaining closed’’), as
long as the experimenter gave no new explicit command.

The third neurofeedback task, the ‘‘announce commands
task,’’ was identical to the follow commands tasks, with
the exception that this time the participants themselves
announced their next intended RH movement. Participants
orally communicated the commands to the experimenter
and thereafter aimed to initiate the announced movement.
Commands were again time-marked by the experimenter.
During the times in which the participant gave no command
it was assumed that the participant currently did not intend
to move the RH. Further, during the times in which the
participant announced a command, but had not yet achieved the
announced movement, it was assumed that the participant was
still attempting to carry out the announced movement.

EEG Data Recording
EEG data acquisition was done with a mobile, 24-channel EEG
system (mBrainTrain GmbH, Belgrad, Serbia) using an elastic
cap (EASYCAP, Herrsching, Germany). The cap’s electrode
montage was a subset of the 10–20 system. It included the
following positions: FP1, FP2, F7, F8, FZ, FC1, FC2, T7, C3,
CZ, C4, T8, TP9, CP5, CP1, CPz, CP2, CP6, TP10, P3, PZ,
P4, O1, and O2. AFz served as ground (DRL) and FCz as
reference (CMS). The continuous EEG signal was digitized via
Lab Streaming Layer (LSL1) with a sampling rate of 500 Hz and
24-bit resolution.

EEG Data Analysis and Classifier Training
To prepare the neurofeedback, EEG training data were analyzed
on-site with EEGLAB (Delorme and Makeig, 2004) and BCILAB
(Kothe and Makeig, 2013). More specifically, three probabilistic
classifiers were derived and used as the basis for an ensemble-like
classification algorithm (see details below). A first classifier
was calibrated for discriminating flexion trials from extension
trials, a second for discriminating flexion trials from rest
trials, and a third for discriminating extension trials from
rest trials. That is, the first classifier output referred to the
probability of flexion as opposed to the extension, the second

1https://github.com/sccn/labstreaminglayer

to the probability of flexion as opposed to remaining open,
and the third to the probability of extension as opposed
to remaining closed. The three classifiers were trained on
different time segments but otherwise underwent the same
signal processing steps. To derive each classifier, the EEG
training data were first band-pass filtered from 8 to 28 Hz
and then epoched into 1.5 s segments relative to the onsets
of the extension, flexion, and rest trials. In total there were
thus twice as many rest trials as extension or flexion trials.
Next, the segments that included obvious non-stereotyped
artifacts were identified and rejected using built-in EEGLAB
functions (Delorme et al., 2007). The remaining segments were
submitted to an adaptation of BCILAB’s pre-built ParadigmCSP
class (Kothe and Makeig, 2013). This paradigm detects class-
specific changes in the sensorimotor rhythm (SMR) by means
of common spatial pattern (CSP) analysis. Briefly described,
given two time windows of a multivariate signal, CSP finds
spatial filters that minimize the variance for one class and
simultaneously maximize the variance for the other class (for
reviews, see Ramoser et al., 2000; Blankertz et al., 2008).
Using ParadigmCSP, 24 CSP filters were derived for each
classifier. From these 24 spatial filters, the first four and last
four filters (i.e., those filters who promised the highest class-
discriminability) were inspected with respect to their spatial
topography and associated time course. All CSP-filters showing
physiologically-plausible sensorimotor cortex activity were kept,
and feature values were calculated by multiplying each EEG
segment with each CSP-filter and then taking the log-variance
from the CSP segments. For each classifier, the feature space
was equal to the number of CSP filters used. To obtain
probabilistic class estimates, a regularized logistic regression
model as implemented in BCILAB was then trained on each
of the three derived training sets (feature matrices). Given a
training set of observations whose class membership is known,
this machine learning algorithm learns to make probability
estimates on the class membership of new observations (Dreiseitl
and Ohno-Machado, 2002). These probability estimates served
as the basis for our ensemble-like classification algorithm
described below.

Ensemble Classification Algorithm and
Online Data Flow
To deliver the feedback, Matlab, LSL and BCILAB were
used. The data processing and feature extraction followed
the same procedure as during classifier training (Figure 1B).
The classifiers always operated on the most current 1.5 s.
EEG segment and were constantly updated every 50 ms. To
control the RH’s movements and resting states, an ensemble-like
classification algorithm was implemented, in which the ultimate
classifier output depended on the weighted estimates of the
three individual classifiers. The usage of the three classifiers’
estimates was determined by the RH’s current state, being one
of six different states: ‘‘remaining opened,’’ ‘‘currently flexing,’’
‘‘just closed,’’ ‘‘remaining closed,’’ ‘‘currently extending’’ and
‘‘just opened’’ (Figure 2). For an illustration of one cycle of
the RH’s state transitions, first, assume that the RH is in the
‘‘remaining opened’’ state. In that state only the open vs. flexion
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FIGURE 2 | BCI implementation for neurofeedback provision. To control the RH’s movements and resting states during the neurofeedback block, an ensemble-like
classification algorithm was implemented, in which the ultimate classifier output depended on the situation-dependent combination of three individual classifiers (ŶEF,
ŶOF, ŶCE). That is, the RH’s current state (which was either “Remaining Open,” “Currently Flexing,” “Just Closed,” “Remaining Closed,” “Currently Extending” or “Just
Opened”) determined how the three estimates were combined to derive the final classification algorithm’s decision. Further details are provided in the main text.

classifier is active and the RH remains in this state until the
constantly-updated classifier output reaches a certain threshold
(e.g., p = 0.7 for the flexion class), individually adjusted for the
participant during the acquaintance phase. Once a threshold
is reached, the RH starts flexing, i.e., it switches into the
‘‘currently flexing’’ state. During the ‘‘currently flexing’’ state,
no classifier is active and the RH remains in this state for as
long as the flexion movement is being completed (2 s). Next,
the RH switches into the ‘‘just closed’’ state, during which
the closed vs. extension classifier and the extension vs. flexion
classifier are active. The RH remains in this state either until
both classifier outputs reach their respective thresholds, or until
2 s have passed. In the first case, the classification algorithm
assumes an extension has been imagined and thus immediately
induces an extension movement, that is, it switches into the
‘‘currently extending’’ state. In the latter case, the RH switches
into the ‘‘remaining closed’’ state, during which only the closed
vs. extension classifier is active. The RH remains in this state
until the closed vs. extension classifier output reaches its defined
threshold and then it starts extending, that is, it switches into
the ‘‘currently extending’’ state. During the ‘‘currently extending’’
state, no classifier is active and the RH remains in this state
until the extension movement is completed (2 s). Next, the
RH switches into the ‘‘just opened’’ state, during which the
open vs. flexion classifier and the extension vs. flexion classifier
are active. The RH remains in this state either until both
classifier outputs meet their defined thresholds, or until 2 s have

passed. In the first case, the classification algorithm assumes
a flexion has been imagined and thus immediately induces a
flexion movement, that is, it switches into the ‘‘currently flexing’’
state. In the latter case, the RH switches into the ‘‘remaining
open’’ state.

EEG Offline Analysis
Time-Frequency Analysis
MI-induced changes in the SMR served as the physiological
basis for our classification algorithm. To further explore these
oscillatory changes, an offline EEG time-frequency (TF) analysis
was carried out on the training block data. EEG artifacts were
attenuated using extended infomax independent component
analysis (ICA; Bell and Sejnowski, 1995; Delorme and Makeig,
2004). Artifactual independent components were identified by
visual inspection and excluded from the back projection. Next,
the ICA-corrected continuous data were segmented from −2 to
3 s, relative to the onsets of theMI flexion andMI extension trials.
EEG segments containing unique, non-stereotyped artifacts were
identified by built-in EEGLAB functions and rejected. From
each remaining EEG segment, a corresponding CSP segment
was calculated by multiplying the data with a chosen CSP-
filter. To obtain a unique CSP-component for each participant,
all 24 potential CSP components were first derived from
each segment and then the physiologically most plausible CSP
component was kept. A TF analysis was carried out on the
derived CSP segments by means of a continuous Morlet wavelet
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transform (Debener et al., 2005; Thorne et al., 2011). The hereby
obtained frequency bins ranged from 5 to 50 Hz in 1 Hz
frequency steps. The TF analysis was conducted for the time
interval from −0.8 to 2.3 s.

To avoid edge artifacts, TF data were only analyzed from
−0.5 s to 2 s, relative to the beginning of MI. Percent power
change relative to baseline power was calculated. That is, for each
frequency bin, the corresponding time series was first squared,
then scaled to decibels (10 × log10) and finally its change in
power (relative to the first 0.5 s mean baseline power) was
calculated. For the statistical analysis, SMR power changes were
separately extracted for flexion and extension trials. To this end,
across trials, mean percent log power changes between 10 and
25 Hz were calculated for the 1 s time interval beginning 0.5 s
after MI onset.

ERD Latency Analysis
Based on the TF data, an ERD latency value was calculated,
reflecting the time intervals between MI period onsets and ERD
onsets. To this end, a threshold defined as a power reduction of
at least 30% as a corresponding desynchronization was set. To
counterbalance outliers, the 20th percentile of all trials exceeding
the determined threshold was taken to calculate a mean ERD
latency across trials for each participant.

CSP Filter Analysis
To further evaluate the neurophysiological basis of our
NF-MIT, we investigated the quality of the CSP filters that
were calculated for the online analysis. For this purpose,
six criteria were extracted from the heuristics of appropriate
filter selection (see Supplementary Material S1). These criteria
were, first, whether the signal in the CSP pattern appeared
to originate from the sensorimotor areas; second, whether
the signal in the CSP filter appeared to originate from the
sensorimotor areas; third, whether there was a recognizable
discriminability between the compared trial classes in the power
value distributions; fourth, whether there was recognizable
discriminability between trial classes on single-trial time course

visualizations; fifth, whether a left-sided ERD and/or a right-
sided ERD or ERS occurred; and finally, whether the power
value distributions for each trial class were normally distributed.
Two CSP filters (one for flexion, one for extension) for each
participant were evaluated on these criteria. Each criterion
could be either fulfilled or not. A sum value across the two
CSP filters was calculated, leading to a maximum score of
12 points. We defined that scores ≥10 indicated plausible
CSP filters.

Questionnaire Data
A 15-item questionnaire (see Table 2), adapted from previous
studies (Kalckert and Ehrsson, 2012; Braun et al., 2014, 2016),
was used to assess the participant’s subjective experiences. At
the end of each block, the experimenter read each item to the
participant, and the participant had to rate his or her level of
agreement on a 7-point Likert scale. The scale ranged from
−3 (‘‘totally disagree’’) to +3 (‘‘totally agree’’). SoO, SoA and
two other phenomenal target properties—experiential realness
(ER) andMI-action binding (MIAB)—were operationalized. SoA
was defined as the amount of experienced authorship over the
RH’s movement behavior and SoO as the experienced level
of ‘‘mineness’’ towards the RH. MIAB indicated the extent
to which the self-induced MI percept and the RH motion
percept felt bound together and ER the extent to which the
MI act was felt as real and vivid. Three items were used
for each phenomenal target property and later averaged to
obtain a single value for each block. The remaining three items
were control items, one relating to SoA, and two relating to
SoO. These items entailed illusion-related statements but did
not specifically capture the phenomenal experience of limb
ownership or SoA. Hence, in the case of a successful SoO and
SoA induction, items related to these two phenomenal constructs
should have high affirmative ratings, whereas the control
items should not be specifically affected by the experimental
manipulation. As in former studies (Kalckert and Ehrsson, 2012;
Braun et al., 2014, 2016), the illusion threshold to confirm

TABLE 2 | Questionnaire for assessment of subjective experiences.

Phenomenal target property Statement

Sense of ownership I felt as if the robotic hand was my own hand.
I felt as if my real hand was at the position of the robotic hand.
I felt as if the robotic hand was part of my body.

Sense of ownership (control questions) I felt as if I no longer had a right hand; as if my right hand had disappeared.
I felt as if I no longer had a left hand; as if my right hand had disappeared.

Sense of agency I felt as if I was controlling the closing movements of the robotic hand.
I felt as if I was controlling the opening movements of the robotic hand.
I felt as if I could withhold any robotic hand movements.

Sense of agency (control question) I felt as if the robotic hand was controlling my will.
Experiential realness My imagined movements appeared as clear and detailed to my inner mind’s eye as if they actually happened.

My imagined movements felt as vivid and real as if they actually happened.
I forgot that I was just imagining and not actually executing the movements.

MI-action binding I experienced my imagined hand extensions and the extensions of the robotic hand as inseparably linked with each other.
I experienced my imagined hand flexions and the flexions of the robotic hand as inseparably linked with each other.
I felt as if my imagined movements were happening at the position where the robotic hand was actually located.

Note. Three statements addressed each phenomenal target property. In addition, control statements were included that included illusion-related statements but which did not capture
the phenomenal experience of agency or ownership. Statements were read in counterbalanced to the participants, and the participants had to rate their level of agreement on a 7-point
Likert scale.
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a successful SoO and SoA induction across participants was
set to ≥ 1.

Neurofeedback Performance Evaluation
(Classification Accuracies)
Training Accuracies
Online training accuracies were calculated for all three
classifiers with a five-fold block-wise cross-validation procedure.
The calculation relied on the training block, using the
same time segments as during classifier calibration. To
statistically test whether the training accuracies were above
chance level, a binomial statistic with p = 0.05 was used
(Combrisson and Jerbi, 2015).

Feedback Accuracies
To evaluate performance during the feedback block, feedback
accuracies were analyzed in each task. Additionally, the number
of movements during rest phases was compared to the number
of movements during move phases in the rest vs. move task.
Since no fixed trial structure was given for the follow commands
and announce commands task, we post hoc reconstructed a trial
structure in order to calculate feedback accuracies (Figure 3).
To this end, we segmented the data into 5 s intervals, relative
to each command. We then defined two different trial types,
intended movement trials and intended rest trials, and assigned
each segment to one of the two types. A series of intended
movement trials began as soon as a movement command was
given by the experimenter or participant and lasted until the
intended movement was finally carried out. A series of intended
rest trials, in turn, started as soon as a movement was carried out
and no further command was yet given. The intended movement
trials in which a movement occurred were defined as true
positive (TP) outcomes whereas those intended movement trials
without any movement occurrence were defined as false negative
(FN) outcomes. Likewise, the intended rest trials without any
movement occurrences were defined as true negative (TN)
outcomes whereas those intended rest trials with a movement
occurrence were defined as false positive (FP) outcomes. To
calculate overall feedback accuracies, the sum of all TP and

TN trials was then divided by the total number of trials and
multiplied by a hundred. The possible values thus ranged from
zero, indicating that all trials failed, to 100, indicating only
successful trials, that is, a perfect match of the participants’
intentions and the RH behavior. Regarding the feedback
accuracies in the rest vs. move tasks, data were equally segmented
into 5 s intervals, with move phases comprising only intended
movement trials, and rest phases comprising only intended rest
trials. To statistically test whether feedback accuracies in the
follow commands and announce commands task were above
chance level, an established statistical procedure relying on the
classification accuracies’’ confidence intervals (CI) was used, with
p = 0.05 (Billinger et al., 2012). Regarding the rest vs. move
task, the same statistic as for the training accuracies was taken
(Combrisson and Jerbi, 2015).

Statistical Analyses
All statistical analyses were performed using bootstrapping
procedures, as sample distributions, except for the ratings of
the controls for SoA, ER and MIAB in the training block,
and SoA and MIAB in the feedback block were non-normally
distributed. Bootstrapping approaches have generally been
shown to be a useful data analysis paradigm, particularly
when assumptions underlying traditional statistical methods
are violated, or when the sampling distributions of the test
statistics are unknown. In these cases, an empirical sampling
distribution for the statistic of interest is derived by repeatedly
resampling (with replacement) from the sample at hand. In the
context of null hypothesis significance testing, bootstrapping
allows a data-driven approximate distribution of the test
statistic, given the null hypothesis, to be obtained (instead
of assuming a theoretical distribution; see e.g., Efron and
Tibshirani, 1994, on using bootstrapping in null hypothesis
significance testing).

To evaluate group and block differences in the subjective
experiences, a two-way mixed ANOVA with bootstrapping,
with the between-subject factor group (stroke patients vs.
control participants) and within-subject factor block (training vs.
feedback block), was run for each phenomenal target property
(SoO, SoA, ER, MIAB).

FIGURE 3 | Derived trial structure in the neurofeedback block. Data were subdivided into trials of 5 s length between each pair of commands, e.g., “close” or
“open.” Trials were defined as either intended movement trials, expecting a movement of the RH (e.g., a flexion), or intended rest trials, expecting the RH to maintain
the current state. Accordingly, trials were classified as either success [true positive (TP) and true negative (TN)] or failure [false positive (FP) and false negative (FN)].
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To create the null condition, we first performed the centering
of the within-subject factor. Next, we randomly resampled (with
replacement) 18 cases of the centered data, and randomized
the between-subjects factor. This yielded a bootstrapped data
set, from which we computed the F-value of a two-way
mixed ANOVA. We then repeated this process 3,000 times to
create an empirical sampling distribution of F-values. Finally,
the F-value of the original sample was placed within the
corresponding empirical sampling F-distribution to determine
the p-value. We report a significant result if the proportion
of F-values larger than the observed one was below 5% (see
e.g., Berkovits et al., 2000 on implementing bootstrapping
in designs with repeated measures). All following two-way
mixed ANOVA calculations were carried out using the same
bootstrapping procedure.

Regarding the number of movements in the rest vs. move task,
a two-waymixed ANOVAwith bootstrapping, with the between-
subjects factor group and the within-subjects factor phase (move
phase vs. rest phase), was carried out. To evaluate group
and task effects on feedback accuracies, a two-way ANOVA
with bootstrapping, with the between-subjects factor group and
within-subjects factor task (rest vs. move task, follow commands
task, announce commands task), was conducted.

We conducted two-sided independent samples t-tests with
bootstrapping to evaluate group differences in ERD latencies
and CSP filter qualities. Two-sided independent samples t-tests
with bootstrapping were also used as follow-up t-tests for
significant effects resulting from the ANOVAs. To obtain
bootstrapped samples for the t-tests, we pooled data of the
stroke and control group, randomly generated two samples (with
replacement), and estimated the t-value in a two-sided t-test.
We repeated this procedure 3,000 times in order to estimate
the t-distribution under the null hypothesis. We then calculated
the probability of the t-value of our original data given this
distribution and reported a significant result if it was below
5% (two-sided). Here, we report both p-values and 95% CI of
the t-value.

Pearson correlation coefficients were calculated for pooled
groups and blocks between all four phenomenal target properties.
In addition, correlation coefficients were calculated for pooled
groups between training accuracies and phenomenal target
properties during the training block as well as between
feedback accuracies and phenomenal target properties during
the feedback block. All correlations were tested for significance
again using bootstrapping. To create the null condition,
we shuffled one variable while keeping the values of the
other as in the original dataset. The subsequent steps were
as described for the t-tests. All significance tests were
Bonferroni-Holm-corrected for multiple comparisons. Statistical
analyses were performed with Matlab 2017 and R 3.4.4
(R Core Team, 2018).

RESULTS

Electrophysiological Results
To determine whether our classification algorithm operated
on a physiologically-plausible EEG signal, and to check for

ERD-related group differences, we conducted an offline TF
analysis on the CSP-filtered EEG training block data as well
as CSP filter quality check. More specifically, we assessed SMR
power changes, ERD latencies and CSP filter qualities.

Power Changes in the SMR
The TF plots across subjects for the chosen CSP channels
are shown in Figure 4. For each plot, mean percent
log power changes across trials are depicted for each
frequency bin. As can be seen, both stroke patients (upper
plots) and healthy controls (lower plots) showed a power
reduction within the SMR’s 10–25 Hz frequency range
during MI flexion trials (left plots) and MI extension trials
(right plots). In the stroke patients, this power decrease
amounted to 26.31% (SD = 19.94%) in the flexion trials
and to 33.94% (SD = 20.01%) in the extension trials,
whereas in the healthy participants’ SMR power decreased
by 28.09% (SD = 24.58%) in the flexion trials and by 30.73%
(SD = 14.97%) in the extension trials. Hence, the expected
ERD pattern was clearly inducible for both groups and both
MI types. To evaluate potential differences between groups
or periods, a mixed two-way ANOVA with bootstrapping
was conducted on the mean percent log power change
between 10–25 Hz, which neither revealed a main effect
of group, F(1,16) = 0.01, p = 0.931, nor a main effect of
period, F(1,16) = 1.1, p = 0.327, and also no interaction,
F(1,16) = 0.26, p = 0.633.

ERD Latencies
ERD latencies were defined as the time interval between MI
period onset and ERD onset, whereby an ERD onset was defined
as the time-point at which the 10–25 Hz SMR power was
reduced by at least 30%. Average ERD latencies across flexion
and extension trials amounted to M = 631.58 ms (SD = 141.21)
in the stroke patients and M = 506.56 ms (SD = 126.59) in the
control participants. For evaluating potential group differences,
a two-sided independent samples t-test with bootstrapping
was conducted, which, revealed a non-significant trend for
longer ERD latencies in stroke patients as compared to control
participants, t(16) = −1.98 [95% CI (−2.19, 2.17)], p = 0.069.

CSP Filter Plausibility
Based on our criteria for CSP filter evaluation (see
Supplementary Material S1), we derived a CSP filter quality
score for each participant, whereby values ≥10 were deemed
to indicate a high CSP filter quality. Results reveal that three,
stroke patients and four control participants reached a value
of 10 or above, while on average, the CSP filter quality
amounted to M = 8.63 (SD = 2.77) in the stroke patients and
M = 8.22 (SD = 2.73) in the healthy participants. A two-sided
independent samples t-test with bootstrapping revealed no
differences in the quality of the selected CSP filters between
stroke patients and control participants t(16) = −0.3 [95% CI
(−2.26, 2.06)], p = 0.761.

Questionnaire Results
The perceived SoO, SoA, ER, and MIAB levels
are depicted in Figure 5. Each phenomenal
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FIGURE 4 | Event-related desynchronization (ERD) during MI. Time-frequency (TF) plots show the percentage change in power from baseline (i.e. from −0.5 s to
0 s) for MI flexion trials (left panels) and MI extension trials (right panels). MI started at time point zero and was performed for 1.5 s. Vertical lines indicate the chosen
time interval for the statistical analysis (i.e. from 0.5 s to 1.5 s). The solid blue line on the bottom reflects MI-related power changes within the 10–25 Hz SMR
frequency range. Topoplots above the TF plots show the standard deviations across the chosen common spatial pattern (CSP)-filters for each channel.

target property was considered as successfully
induced with an average value of ≥ 1 on a
group level.

Sense of Ownership
The SoO-induction criterion was reached in both groups
(patients and controls) and both blocks (training and feedback),
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FIGURE 5 | Questionnaire ratings for each phenomenal target property. Boxplots depict questionnaire ratings for the training and feedback blocks, separately for
stroke patients and healthy controls. The black dashed line indicates successful RHI induction on group level.

while all SoO control questions showed values around zero
or less, thus refuting any suggestion of response bias. The
highest SoO level was reported by the stroke patients during
the neurofeedback block (M = 1.26, SD = 1.66), whereas
the lowest SoO level was reported by the healthy controls
during the training phase (M = 1.00, SD = 1.62). A
mixed two-way ANOVA with bootstrapping revealed no main
effect of group, F(1,16) = 0.00, p = 0.964, no main effect
of phase, F(1,16) = 0.81, p = 0.402, and no interaction,
F(1,16) = 0.32, p = 0.595.

Sense of Agency
The SoA-induction criterion was met for the stroke group in
the training phase (M = 1.33; SD = 1.29) and feedback phase
(M = 1.59; SD = 0.52). By contrast, for the control group, the
criterion was not reached either in the training (M = 0.33;
SD = 2.2) or in the feedback (M = 0.37; SD = 2.0) phase. Mean
values of the SoA control items were around zero in both groups
(stroke group: M = 0.28, SD = 1.56; control group: M = −0.83,
SD = 1.8), thereby refuting any suggestion of response bias. The
mixed two-way ANOVA with bootstrapping revealed neither a
main group effect, F(1,16) = 2.41, p = 0.157, nor a main effect of
phase, F(1,16) = 0.25, p = 0.647, nor an interaction between group
and phase, F(1,16) = 0.14, p = 0.718.

Experiential Realness
The ER-induction criterion was met for both groups in both
the training phase (stroke group: M = 1.33, SD = 1.37; control
group: M = 1.15, SD = 1.25) and the feedback phase (stroke
group: M = 1.63, SD = 0.66; control group: M = 1.11,
SD = 0.88). A two-way mixed ANOVA with bootstrapping
revealed neither a main effect of group, F(1,16) = 0.58, p = 0.473,
nor of phase, F(1,16) = 0.38, p = 0.552, nor an interaction,
F(1,16) = 0.62, p = 0.463.

MI-Action Binding
Whereas the patient group met the MIAB-induction criterion in
both phases (training: M = 1.41, SD = 1.2; feedback: M = 1.19,
SD = 0.71), the control group did so only in the feedback phase
(training: M = 0.6; SD = 1.89; feedback: M = −0.07; SD = 2.3).
A mixed two-way ANOVA with bootstrapping revealed neither
a main effect of group, F(1,16) = 2.46, p = 0.153, nor of phase,
F(1,16) = 1.2, p = 0.327, nor an interaction, F(1,16) = 0.3, p = 0.602.

Performance Results
Training Accuracies
Training accuracies were calculated for all three classifiers with
a five-fold block-wise cross-validation procedure using the EEG
data from the training block. Accuracies for both groups and all
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FIGURE 6 | Performance analysis. Boxplots depict the crossfold-validation-based training accuracies of the three classifiers from the training phase (upper panel),
and the feedback accuracies for the three different MI-tasks of the neurofeedback phase (lower panel). The black dashed line in the upper panel indicates the
statistical chance level (p = 0.05).

three classifiers are shown in the upper panel of Figure 6. In
the stroke group, overall training accuracies were significantly
above chance level (α = 0.05, Combrisson and Jerbi, 2015) in
24 of the 27 derived accuracies (three classifiers times nine
stroke patients), giving a proportion of 88.89%. In the control
group, 25 of the 27 derived accuracies were above chance-level,
corresponding to a proportion of 92.59%. In order to evaluate
differences in groups and classifiers, a mixed two-way ANOVA
with bootstrapping with the within-subject factor classifier and
the between-subject factor group was conducted, revealing a
main effect for the classifiers, F(1,16) = 12.98, p = 0.003, but
no main effect for group, F(1,16) = 1.24, p = 0.285. Post
hoc two-sided independent-samples t-tests with bootstrapping
revealed a difference between the training accuracies of the
opened vs. flexion classifier and the extension vs. flexion
classifier, t(16) = −3.26 [95% CI (−2.07, 2.01)], p = 0.003,
d = 0.77, as well as between the closed vs. extension classifier and
extension vs. flexion classifier, t(16) = 3.22 [95%CI (−2.01, 2.02)],
p = 0.005, d = 0.76 (all values passing the Bonferroni adjustment
of alpha = 0.025).

Feedback Accuracies
In order to assess the performance during the feedback block,
feedback accuracies were analyzed for each task. Feedback
accuracies are depicted for both groups and all three tasks in
the lower panel of Figure 6. The average feedback accuracy
across tasks wasM = 57.95% (SD = 12.74) in stroke patients and
M = 54.31% (SD = 15.16) in control participants. Differentiating

between the tasks, feedback accuracies varied highly among
participants in both groups, with values from 20% to 82,93%
in stroke patients and from 0% to 75% in control participants.
In both the control and the patient group, accuracies were
significantly above chance level in 18 of the 27 derived accuracies,
giving a portion of 66.67%. In order to evaluate differences
between groups and tasks, a two-way mixed ANOVA with
bootstrapping was conducted, revealing no main effect of task,
F(1,16) = 5.13, p = 0.075, no main effect for group, F(2,15) = 0.32,
p = 0.587, and no interaction effect between group and task,
F(3,15) < 0.001, p = 0.978.

Robotic Hand Movements in Rest vs. Move Task
In addition to evaluating the feedback accuracies, performance
has been further assessed by comparing the number of
movements during rest phases to the number of movements
during move phases in the rest vs. move task. Figure 7 displays
the mean number of movements during rest and movement
phases of the rest vs. move task. A mixed two-way ANOVA
with bootstrapping revealed an effect of phase (F(1,16) = 13.84,
p = 0.003), in that participants conducted fewer movements
during the rest phases (M = 1.76, SD = 0.86) than movement
phases (M = 3.50, SD = 2.12). In contrast, nomain effect of group,
F(1,16) = 1.52, p = 0.252, nor any interaction effect were found,
F(1,16) = 0.16, p = 0.697.

Correlation Analysis
In order to assess the relationships between our various
experimental variables, Pearson correlation coefficients were
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FIGURE 7 | Boxplots depict the mean number of RH movements within the
rest vs. move task, separately for stroke patients and healthy controls.

calculated for pooled groups and blocks between, first, all four
phenomenal target properties, second, training accuracies and
phenomenal target properties during the training block, and
third, feedback accuracies and phenomenal target properties
during the feedback block. Significant positive correlations
across groups and blocks were found between all four
phenomenological constructs, all of which depict large effect-
sizes (see Table 3). Apart from that, no other significant
correlations were found.

DISCUSSION

The aim of the present study was to investigate the feasibility
of a self-paced and embodiable NF-MIT. To this end, an
anthropomorphic RH was integrated into an EEG-based BCI
and used for neurofeedback provision. Within three different
neurofeedback tasks, stroke patients and healthy controls freely
attempted to control the RH’s movement behavior in a self-paced
manner, using MI.

General Feasibility
The general feasibility of our NF-MIT was investigated on
the electrophysiological, phenomenological, and performance

TABLE 3 | Significant correlations between phenomenal target properties.

r R2 t(16) 95% CI p

SoO vs. SoA 0.56 31% 4.92 (−1.84, 2.18) <0.001
SoO vs. ER 0.76 58% 6.91 (−1.89, 2.11) <0.001
SoO vs. MIAB 0.62 38% 4.57 (−1.90, 2.20) <0.001
SoA vs. ER 0.71 50% 5.87 (−1.91, 2.13) <0.001
SoA vs. MIAB 0.82 67% 8.31 (−1.88, 2.16) <0.001
ER vs. MIAB 0.73 53% 6.24 (−1.87, 2.24) <0.001

Note. Table includes the Pearson correlation coefficients (r), the R-squared, the t-value
(t) with 16◦ of freedom, the 95% confidence interval (95% CI) of the t-value, and the
p-value (p).

level. On the electrophysiological level, across trials the
expected ERD pattern of a right-handed MI task was evident
in most of our participants. That is, for most of our
participants, the TF analysis revealed a typical MI-related
decrease in 8–30 Hz oscillatory brain activity over the
sensorimotor areas. Results from the CSP filter analysis were
more mixed: While only 38% of our participants reached
our threshold for full CSP-filter plausibility (≥10), most
remaining participants were close to our (rather restrictive)
cut-off value (see ‘‘Discussion’’ section below). Moreover, the
criteria for CSP-filter plausibility pertain to the discriminability
between compared mental states rather than to whether
or not the filters are anatomically plausible in the first
place. In other words: while our chosen CSP-filters were
rather poor in discriminating between the different mental
states, their spectrotemporal filter characteristics were as
expected. Taking these findings together, we thus conclude
that the classification algorithm operated on noisy, but
electrophysiologically-plausible, MI-related brain signals and not
merely on some technical artifacts.

Regarding phenomenology, our questionnaire results
revealed that the induction criterion was reached on the group
level in both blocks and both groups for the target properties
SoO and ER. With respect to MIAB, the illusion criterion was
met in both groups during the training block, but only in the
stroke group during the feedback block. Regarding SoA, the
illusion criterion was met during both blocks for the stroke
patients, but in neither block for the healthy controls (see
‘‘Discussion’’ section below). These findings demonstrate that
the RH could be embodied in the participants’ phenomenal
body scheme to a reasonable degree. That is, most participants
of both groups experienced the RH as part of their own body
and their MI acts as close to real. Moreover, the majority
experienced the MI act as perceptually fused with the RHmotion
percept. Regarding the subjective ratings derived from the
training block, these results replicate our former study (Braun
et al., 2016). Here, we similarly showed that within a fixed
trial structure, illusory SoO and SoA, as well as ER and MIAB,
may be achieved over an external device by the approximate
synchrony of imagined limb movements and observed RH
movements. As pertains to the subjective ratings derived from
the neurofeedback block, we find a similarly successful induction
of the four phenomenal target properties, but this time in a
scenario without a fixed trial structure. This shows that even
in the presence of significant temporal mismatches between
the imagined limb movements and RH motion behavior, the
RH was still phenomenally embodiable. This, in turn, suggests
that either the proportion of mismatches is small enough for
SoO, SoA, ER and MIAB not to be disrupted, or these four
phenomenal constructs are sufficiently robust to violations of
expected RH actions.

Regarding the performance level, we investigated
classification accuracies from both the training block (training
accuracies) and feedback block (feedback accuracies). For the
training block, most of our participants, regardless of whether
they belonged to the control or stroke group, achieved training
accuracies that exceeded the statistical chance level. This finding
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is in line with the typical MI classification outcomes of traditional
NF-MIT paradigms (see e.g., Yong and Menon, 2015) and also
with the findings of our former aRHI study (Braun et al., 2016).
The finding indicates that the MI-induced ERD pattern was
not only evident across trials as seen in the ERD findings, but
was reliable enough to be also detectable at the single-trial level.
Moreover, the finding shows that our classification algorithm
was not only suitable for healthy controls but worked equally
well with stroke patients. The difference in classifier training
accuracy between extension vs. flexion and the other two
classifiers is probably because it is harder to distinguish two
types of movement in EEG than it is to distinguish movement
from non-movement.

For the feedback block, we found that most participants were
able to achieve at least some level of control over the RH’s actions.
That is, although mean feedback accuracies across tasks were
rather poor (∼58% in stroke patients,∼54% in healthy controls),
almost all participants (nine of nine stroke patients and eight of
nine healthy controls) performed at least one neurofeedback task
above chance level. More generally, the majority of all accuracies
(∼67% in both groups) obtained in the three tasks—rest vs.
move, announce commands and follow commands—exceeded
that threshold. Furthermore, in the rest vs. move task, both
groups showed significantly fewer RH movements in the rest
phases than in the movement phases. Taking these findings
together, this shows that, in principle, it is possible to use a
self-paced paradigm for RH control. To our knowledge, this is
the first study to have demonstrated this.

It should be pointed out that we cannot claim any superiority
of an embodiable over an abstract feedback signal under
self-paced NF-MIT. This was not, however, the principal
research objective in the present study. Rather, we intended
to investigate whether an EFS is, in principle, feasible in a
self-paced neurofeedback paradigm. Future studies are necessary
to compare abstract and EFSs, and to investigate under which
circumstances the different feedback types are more suitable.

Group Differences
We found differences between stroke patients and control
participants on the electrophysiological and phenomenological
levels, but not on the performance level.

On the electrophysiological level, we found a non-significant
trend for a delayed ERD onset in stroke patients as compared
to healthy controls. While distinct lateralized ERD patterns in
control participants as compared to stroke patients have been
widely addressed in previous studies (Feydy et al., 2002; Scherer
et al., 2007; Braun et al., 2017), few did so with respect to distinct
ERD latencies in the context of NF-MIT. This might be due
to highly varying study designs and a few direct comparisons
of stroke patients with matched control participants. Schaechter
(2004), for instance, reported a prolonged latency of motor-
evoked potentials after the infarct. Moreover, findings by Crone
et al. (1998) showed a longer ERD latency for ipsilateral
activation patterns as compared to contralateral activation. It
has been suggested that delays in ERD onset result from slower
information processing in damaged brain structures (Leocani
and Comi, 2006). Although we remain cautious in interpreting

the trend we found here for a delayed ERD onset, it is thus, in
principle, compatible with the existing evidence.

As regards the phenomenological level, we found a difference
between groups for SoA. That is, whereas the illusion criterion
was met during both blocks for the stroke patients, it was not met
in either block for the healthy controls. A speculative explanation
might be that stroke patients generally have a vaguer percept
of the affected hand, leading them to more quickly experience
SoA. As functional reliability in neural tissues may be damaged
in stroke patients, these patients may be accustomed to spending
more effort to control their own affected hand.

Correlation Analysis
In line with our former study (Braun et al., 2016), we observed
high correlations between SoO, SoA, ER andMIAB. This suggests
that these subjectivemeasures do not relate to separate, but rather
to overlapping and interacting aspects of phenomenal experience
(for a discussion, see Braun et al., 2016). However, we did not find
significant correlations between any subjective measure and the
classification accuracies. Contradicting our argumentation for
an EFS, a direct relationship between the participants’ perceived
level of RH embodiment and neurofeedback performances can
thus not be demonstrated on a statistical level. Given the
low sample sizes, these null findings may, however, be due
to a lack of statistical power or due to a suboptimal EFS
implementation (see ‘‘Study Limitations’’ section). Taking into
account existing evidence supporting the beneficial effects of
an EFS (see ‘‘Introduction’’ section), we believe that the lack
of correlation does not render EFS useless, as we argue in
the following.

Arguments for an Embodiable Feedback Signal
One benefit of an EFS could be that it facilitates causal inference
(Shams and Beierholm, 2010). If the provided neurofeedback
signal closely enough resembles the MI act performed, in
both time and space, the MI percept and the visual percept
induced by the neurofeedback signal could possibly be better
fused. Consequently, the brain could infer a common cause for
both percepts.

A second advantage could be that the perceptual fusion
just described opens up the possibility for inducing SoO,
which, in turn, might provoke SoA (Kalckert and Ehrsson,
2012, 2014; Braun et al., 2014, 2016). As has been repeatedly
demonstrated (Perez-Marcos et al., 2009; Sanchez-Vives et al.,
2010; Braun et al., 2016), SoO is inducible by merely
imagining limb movements in approximate temporal synchrony
to observed hand movements. A neurofeedback signal that
is inherently linked to the BCI-user’s own body and its
voluntary movements should increase the compliance with
the NF-MIT and help to convince the BCI-user about
the effectiveness of the training, thereby improving his
or her motivation.

A third benefit might be that an EFS potentially reduces the
patient’s cognitive workload since the cognitively-demanding
task of mentally rehearsing limb movements could be bottom-up
facilitated by the EFS (as with mirror visual feedback;
Ramachandran and Altschuler, 2009). To be clear, for healthy
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participants such cognitive offloading might be unnecessary or
perhaps even a hindrance. The major target group of NF-MIT is,
however, stroke patients whose MI abilities are often impaired,
and here much more uncertainty exists as to what these
BCI-users actually imagine.

Fourth, an EFS may require less abstract thinking by the
BCI-user than an abstract neurofeedback signal. Whereas with
an abstract neurofeedback signal the BCI-user has to understand
that the signal shown on the computer screen relates to his
or her own MI-act, this act of abstraction would not be
needed with an EFS.

Many arguments may thus be found in favor of an embodiable
rather than an abstract neurofeedback signal. We acknowledge,
however, that these arguments assume an idealized scenario, in
which the EFS sufficiently matches the mental acts performed. In
what way such an EFS can be realized in practice, awaits further
empirical validation.

Study Limitations
Our phenomenological results support the hypothesis that the
RH as a feedback signal was embodiable. Yet, an RH adjusted
to user-specific sizes might have improved the embodiment—we
recruited all genders, but used a larger RH for all participants,
originally modeled from a male hand.

Regarding the rather poor performance accuracies in the
neurofeedback block, several reasons might account for the
deviation between intended and observed BCI output. First, our
participants could just have had rather poor MI abilities. That
is, they were not sufficiently able to vividly imagine the required
limb movements, and as a consequence, were over-challenged
with the given MI task. For the present study, we, cannot
follow up on this possibility, given that we did not include
an MI ability or severity questionnaire. It should, however, be
noted that former studies found no (Rimbert et al., 2019) or
rather moderate (Vuckovic and Osuagwu, 2013; Marchesotti
et al., 2016) relations between subjective MI ability measures
and BCI literacy.

Second, the rather poor neurofeedback performances might
have been caused by shortcomings of the participants’ ability
to modulate their SMRs. Here, an indirect measure of SMR
control is given by the derived brain activity patterns and
ERD analysis. As expected, MI-related activation patterns
over sensorimotor areas could be observed in both groups,
with moderate and mostly above-chance level mean training
accuracies across classifiers.

Third, there may have been deficits in the interpretation
and translation of brain activity into control signals (Mason
et al., 2006). Our classification algorithm was based on the
derivation of CSP filters. We found electrophysiologically
plausible, yet highly varying, filters in both groups. In order to
achieve a better classification, enhanced reliability for obtaining
high-quality CSPs is required (Ang et al., 2008). Overall, we
consider advanced machine learning algorithms a key for
future research in NF-MIT and, ultimately, for advancing
NF-MIT clinical application. Without substantial improvements
in EEG-based SMR signal extraction, this may remain a
challenging goal.

Fourth, it should be noted that during the training block,
the RH always moved in synchrony with the imagination of the
participant’s own limb movement. From a phenomenological
perspective, we consider this design aspect appropriate, in
order to bottom-up facilitate the patient’s MI process and
for keeping the training and neurofeedback block as similar
as possible. From a signal processing perspective, however,
this design aspect has a caveat, in that limb movement
observation and limb movement imagination may both induce
an ERD. As a consequence, it remains unknown as to how
far the ERD pattern observed is driven by the limb movement
imagination, and not exclusively by the limb movement
observation. If only the latter were the case, this would cast
problems on the BCI, since it requires a brain signal that can
be mentally self-induced, independent from external sensory
stimulation. For the present experiment, the above-chance level
feedback accuracies during the NF block, however, indicate
that the observed ERDs were at least partly driven by limb
movement imaginations.

The method we adopted for CSP filter quality assessment
was rather unstandardized. While we consider our six suggested
CSP filter quality criteria valid, we are aware that many other
criteria could be used instead, or in addition. Likewise, we are
aware that our defined threshold of 10 is rather arbitrarily set
and that other cut-off values could be defined. Despite these
limitations, we nevertheless, consider our CSP-filter assessment
procedure as an important step towards a physiologically-
plausible CSP filter selection, given that most existing
CSP-based NF-MIT paradigms just select CSP filters based
on class-discriminability.

Interestingly, performance accuracies greatly varied, not
only among participants but similar between the different
neurofeedback tasks. This might be due to a lack of experience
in NF-MIT, and therefore training phases prior to the actual
NF-MIT might be beneficial to reduce exercise-dependent
intraindividual variability in performance. Differences between
subjects, on the other hand, suggest that the same NF-MIT
paradigm may not be suitable for all participants, and prior
training phases might be needed to assess an individuals’
potential for NF-MIT. Taking into account the participant’s
suitability for NF-MIT based on a training paradigm might
be another possibility for achieving less variability and
superior feedback accuracies (de Vries and Mulder, 2007;
Ono et al., 2013). Yet, it would also limit the generalizability of
the application.

One potential drawback in our experimental design concerns
differences in the task instructions between our training and
feedback blocks. While in the training block, participants were
instructed to just relax during the rest trials, in the feedback
block, they were explicitly asked to employ mental strategies,
such as counting numbers. Hence, with respect to phenomenal
content, the resting states during the training block and feedback
block differed, which might have reduced the classification
algorithm’s reliability. The reason for giving different task
instructions for the training and feedback resting periods was
that, for the fixed and timely regular trial structure during the
training block, we considered the refraining from MI to be
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much easier than during the self-paced feedback phase, when
the rest periods were not of a fixed 5-s duration, but rather
were of arbitrary length. In addition, we wanted to provide our
participants with some cognitive strategies for potential benefit
to their neurofeedback performances.

Finally, it should be recalled that MI instructions differed
between the first (unreported here) and the second NF-MIT
session. In spite of this difference in the MI tasks, general
training effects might have occurred in the second session due
to the first, as participants were more familiar with MI as
well as the neurofeedback procedure. However, training effects
of session one on session two do not in principle limit the
feasibility of the second session, provided that all participants
underwent both NF-MIT sessions in the same order, which was
the case here.

Despite these drawbacks, we conclude that this study
successfully demonstrates that healthy participants and stroke
patients embodied an RH into their body scheme, and were able,
to some modest degree, to control the RH in a self-paced setting.
We hope this will motivate further research exploring the idea
that an embodiable self-paced NF-MIT is beneficial in stroke
motor rehabilitation.
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