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Human obesity is associated with low-grade chronic systemic inflammation, alterations
in brain structure and function, and cognitive impairment. Rodent models of obesity
show that high-calorie diets cause brain inflammation (neuroinflammation) in multiple
regions, including the hippocampus, and impairments in hippocampal-dependent
memory tasks. To determine if similar effects exist in humans with obesity, we
applied Diffusion Basis Spectrum Imaging (DBSI) to evaluate neuroinflammation and
axonal integrity. We examined diffusion-weighted magnetic resonance imaging (MRI)
data in two independent cohorts of obese and non-obese individuals (Cohort 1: 25
obese/21 non-obese; Cohort 2: 18 obese/41 non-obese). We applied Tract-based
Spatial Statistics (TBSS) to allow whole-brain white matter (WM) analyses and compare
DBSI-derived isotropic and anisotropic diffusion measures between the obese and non-
obese groups. In both cohorts, the obese group had significantly greater DBSI-derived
restricted fraction (DBSI-RF; an indicator of neuroinflammation-related cellularity), and
significantly lower DBSI-derived fiber fraction (DBSI-FF; an indicator of apparent axonal
density) in several WM tracts (all corrected p < 0.05). Moreover, using region of
interest analyses, average DBSI-RF and DBSI-FF values in the hippocampus were
significantly greater and lower, respectively, in obese relative to non-obese individuals
(Cohort 1: p = 0.045; Cohort 2: p = 0.008). Hippocampal DBSI-FF and DBSI-RF and
amygdalar DBSI-FF metrics related to cognitive performance in Cohort 2. In conclusion,
these findings suggest that greater neuroinflammation-related cellularity and lower
apparent axonal density are associated with human obesity and cognitive performance.
Future studies are warranted to determine a potential role for neuroinflammation in
obesity-related cognitive impairment.
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Abbreviations: AD, axial diffusivity; BBB, blood-brain barrier; BMI, body mass index; CNS, central nervous system; CSF,
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INTRODUCTION

Obesity is a rapidly growing epidemic around the world.
According to the World Health Organization, in 2016 more
than 1.9 billion adults were overweight and 650 million (about
9% of the world population) were obese (≥30 kg/m2) (WHO,
2018). Obesity is associated with comorbidities including type
2 diabetes, hypertension, heart disease, and cancer (Haslam
and James, 2005). In addition, obesity is linked to cognitive
deficits and is a risk factor for Alzheimer’s disease (Miller
and Spencer, 2014; Walker and Harrison, 2015; Alford et al.,
2018). These latter features have raised the question of how
obesity and its comorbidities may influence brain function and
structure. Neuroimaging studies have found both structural
and functional abnormalities in obesity, but the mechanisms
underlying these differences are not well understood (Devoto
et al., 2018; van Galen et al., 2018; Garcia-Garcia et al.,
2019). One potential mechanism for brain structural and
functional findings is brain inflammation (neuroinflammation),
but this has not been explored thoroughly in humans
(Guillemot-Legris and Muccioli, 2017).

Obesity is a disease of low-grade chronic systemic
inflammation that affects many body organs (Gregor and
Hotamisligil, 2011). Also, evidence from rodent models shows
that obesity causes neuroinflammation (Guillemot-Legris
et al., 2016). Similarly, in humans with obesity, postmortem
brain examination shows evidence of gliosis and abnormal
microglia activation in the hypothalamus and altered mRNA
expression of inflammatory markers in frontal cortex suggestive
of neuroinflammation (Baufeld et al., 2016; Lauridsen et al.,
2017). Hypercaloric diet induces breakdown of the BBB, allowing
pro-inflammatory cytokines to enter the CNS (Guillemot-
Legris et al., 2016; Stranahan et al., 2016; Guillemot-Legris and
Muccioli, 2017) and promotes peripheral macrophage infiltration
to the brain (Stranahan et al., 2016), which subsequently
contributes, among other factors such as increased peripheral
free fatty acid circulation (O’Brien et al., 2017), to obesity-
associated neuroinflammation. Intriguingly, hippocampal
neuroinflammation causes deficits in memory tasks in rodent
models of obesity (Pistell et al., 2010; Beilharz et al., 2016; Cope
et al., 2018). In humans, higher adiposity is generally associated
with poorer cognitive performance in a variety of measures, yet
the underlying mechanism is not entirely understood (Wright
et al., 2016; Gameiro et al., 2017; Tsai et al., 2017). Taken
together, it is reasonable to hypothesize that obesity-related
neuroinflammation impacts the function and structure of
the human brain and could be an underlying mechanism of
obesity-associated cognitive impairment.

Evaluation of obesity-associated neuroinflammation in
humans via imaging is technically challenging and there are
few research studies in this area. Measuring specific processes
related to neuroinflammation (e.g., microglial activation)
with neuroimaging is possible via PET with radiotracers (e.g.,
TSPO radiotracer) (Vivash and O’Brien, 2016; Alam et al.,
2017). However, these PET radiotracers vary in specificity, and
some individuals (∼34% of Caucasians) have genotypes that
confer very low to mixed binding affinity for TSPO ligands

(Owen et al., 2012). Other research groups utilized MRI-based
techniques to evaluate obesity-associated neuroinflammation.
For example, alterations in T2-weighted MRI signal intensity
(an indicator of gliosis) in the hypothalamus have been found
in obese individuals (Thaler et al., 2012; Schur et al., 2015;
Kreutzer et al., 2017). Also, plasma fibrinogen, a driver of
inflammation, has been related to alterations in diffusivity
characteristics of extra-hypothalamic brain regions including
orbitofrontal cortex and amygdala in overweight and obese
individuals (Cazettes et al., 2011). Interestingly, a recent study
has also shown sex-specific effects of central adiposity and
systemic inflammatory markers on limbic system microstructure
(Metzler-Baddeley et al., 2019).

At the same time, a large number of neuroimaging studies
have focused on the impact of obesity on WM microstructure
using standard DTI modeling (Kullmann et al., 2015; Alfaro
et al., 2018). DTI models a single diffusion tensor within an
image voxel, to derive the standard diffusion tensor metrics (AD,
RD, FA). Using this standard model, several studies have found
that individuals with higher BMI have lower FA in many WM
tracts (Marks et al., 2011; Mueller et al., 2011; Stanek et al.,
2011; Verstynen et al., 2012; Karlsson et al., 2013; Xu et al.,
2013; Lou et al., 2014; Bolzenius et al., 2015; He et al., 2015;
Kullmann et al., 2015; Kullmann et al., 2016; Mazza et al., 2017;
Papageorgiou et al., 2017; Alfaro et al., 2018) and mixed effects
on AD and RD (Mueller et al., 2011; Xu et al., 2013; Kullmann
et al., 2016; Mazza et al., 2017; Papageorgiou et al., 2017). In
the healthy brain or disease conditions with limited edema
and inflammation, lower FA and AD reflects impaired overall
WM integrity and axonal injury, respectively, while greater
RD reflects myelin damage (Wheeler-Kingshott and Cercignani,
2009; Winklewski et al., 2018). However, neuroinflammation-
related processes such as cellularity and edema may confound
standard DTI modeling, lead to mixed effects on AD and
RD, and decrease the sensitivity and specificity to detect WM
microstructural alterations (Winklewski et al., 2018).

In recent years, a novel data-driven DBSI (Wang et al., 2011;
Wang et al., 2014) approach has been developed that shows
sensitivity to both neuroinflammation and WM microstructural
alterations. DBSI resolves intra-voxel partial volume effects
arising from anisotropic and isotropic diffusion signals, and
models both simultaneously to obtain the best estimation of
anisotropic and isotropic diffusion tensors. Anisotropic tensor
components modeled by DBSI consider water diffusion of
WM tracts within the image voxel, deriving the rate of water
diffusion parallel to the axon (DBSI-axial diffusivity or DBSI-
AD) and perpendicular to the axon (DBSI-radial diffusivity or
DBSI-RD) or fiber-tract specific diffusion anisotropy (DBSI-
fractional anisotropy or DBSI-FA) reflecting the integrity of
axon bundles. DBSI-derived fiber fraction (DBSI-FF) indicates
axonal density. Simultaneously, DBSI models restricted isotropic
diffusion into DBSI-restricted fraction (DBSI-RF; an indicator
of resident and neuroinflammation-related cellularity) and non-
restricted diffusion into DBSI-hindered fraction (DBSI-HF; an
indicator of tissue edema). DBSI-derived isotropic measures
(DBSI-RF and DBSI-HF) are sensitive to inflammation-related
cellularity and tissue edema, respectively (Cross and Song, 2017),
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and both are present in neuroinflammation (Frohman et al.,
2006; Stamatovic et al., 2006). Validation studies of DBSI in
animal models have shown that this method can differentiate
axonal injury, demyelination, and neuroinflammation in white
and gray matter (Wang et al., 2014; Cross and Song, 2017;
Zhan et al., 2018). In humans, DBSI has been used to detect
indicators of neuroinflammation in MS (Chiang et al., 2014),
cervical spondylotic myelopathy (Murphy et al., 2016), traumatic
spinal cord injury (Sun et al., 2017), HIV (Strain et al., 2017),
and Alzheimer’s disease (Wang et al., 2019). Importantly, when
neuroinflammation is present, DBSI can provide further insight
into WM microstructural integrity (Wang et al., 2011; Chiang
et al., 2014; Wang et al., 2014; Wang et al., 2015; Murphy et al.,
2016; Cross and Song, 2017; Lin et al., 2017; Strain et al., 2017; Sun
et al., 2017; Shirani et al., 2018; Zhan et al., 2018; Lin et al., 2019).

The goal of the current study was to apply DBSI in humans to
evaluate the presence of neuroinflammation and provide further
insight into WM microstructural integrity in obesity. DBSI-
derived metrics may also help resolve some of the conflicting
findings from the DTI literature in obesity (Kullmann et al.,
2015). We hypothesized that obese individuals would have
greater DBSI-RF (an indicator of increased neuroinflammation-
related cellularity), greater DBSI-HF (an indicator of increased
edema), and lower DBSI-FF (an indicator of decreased apparent
axonal density) compared to non-obese individuals. We tested
these hypotheses in a cohort of obese and non-obese individuals
recruited specifically for a study of brain alterations in
obesity (Cohort 1). We then examined a more heterogeneous
convenience sample to confirm the presence of similar patterns
related to BMI status (Cohort 2). Since obese individuals show
impaired cognitive function relative to non-obese individuals
(Wright et al., 2016; Gameiro et al., 2017; Tsai et al., 2017),
hippocampal neuroinflammation causes impairment on memory
tasks in rodent models of obesity (Pistell et al., 2010; Beilharz
et al., 2016; Cope et al., 2018), and the hippocampus and
amygdala operate together to form emotion-associated memory
(Yang and Wang, 2017), we selected the hippocampus and
amygdala to perform region of interest (ROI) analyses and
explored the presence of similar alterations in these regions and
their relation to cognitive performance.

MATERIALS AND METHODS

Participants
In both cohorts, obesity was defined as ≥30 kg/m2. Non-obesity
was defined as ≤25 kg/m2. All studies were approved by the
Washington University School of Medicine Human Research
Protection Office and were carried out in accordance with
the principles expressed in the Declaration of Helsinki.
All participants gave written, informed consent prior
to participation.

Cohort 1: Healthy obese and non-obese adults were
recruited through an online research participant database at
Washington University, advertisements, and word of mouth
for a neuroimaging study on obesity. All participants were
assessed for the presence of diabetes with an oral glucose

tolerance test and excluded from further participation if glucose
or hemoglobin A1c levels met American Diabetes Association
criteria for Type 2 diabetes (American Diabetes Association,
2016). Participants were also assessed with a detailed history,
including neurological and physical examinations, psychiatric
interviews using the Structured Interview for DSM-IV-TR Axis
I Disorders (SCID) (First et al., 2002), and routine blood tests.
Volunteers were excluded for history of medical problems as well
as other significant neurological, cerebrovascular, cardiovascular,
or psychiatric diagnosis (DSM-IV Axis I disorders except
for specific phobias), head trauma, any current or recent
dopaminergic drug use (e.g., stimulants, agonists, bupropion,
neuroleptics or metoclopramide), current heavy alcohol use
(males > 2 drinks per day, females > 1 drink per day) or illicit
drug use, history of substance abuse or dependence, and IQ < 80
as measured by the Wechsler Abbreviated Scale of Intelligence
(WASI) (Wechsler, 1999). Data from individuals in this sample
have been reported previously (Eisenstein et al., 2013; Eisenstein
et al., 2015a,b; Pepino et al., 2016).

Cohort 2: Healthy obese and non-obese adults were recruited
through an online research database at Washington University
and flyers to be a control group for ongoing studies. Exclusion
criteria included self-reported diabetic medication use or
unknown diabetic medication status, current or past history
of confounding neurological disorders, depression as assessed
by the Beck Depression Inventory II (BDI-II) (Beck et al.,
1996), current alcohol or substance abuse, head injury with
loss of consciousness greater than 30 min, claustrophobia or
seizures, and fewer than 8 years of education. Data from
some individuals in this sample have been reported previously
(Strain et al., 2017).

BMI Measures
Body mass index was calculated as kg/m2 in both cohorts.
Cohort 1: Height and weight measurements were taken by a
trained nurse. Cohort 2: Height and weight were self-reported
by participants.

Neuropsychological Performance
As described previously (Strain et al., 2017), individuals in
Cohort 2 completed a cognitive test battery that included
executive function, verbal and visuospatial learning and memory,
and psychomotor speed. These included the Wechsler Adult
Intelligence Scale III [WAIS-III including digit span, digit
symbol, symbol search, and letter number sequencing subtests
(Wechsler, 1997)]; Trail-making Test Parts A and B (Reitan,
1958); Multilingual Aphasia Examination verbal fluency subtest
(Benton and Hamsher, 1976); F-A-S test (Spreen and Benton,
1977); animal (category) fluency (Goodglass and Kaplan, 1972);
Delis-Kaplan Executive Function System [D-KEFS including
Color-Word Interference Task (Delis et al., 2001)]; Hopkins
Verbal Learning Test (HVLT) learning and recall (Brandt,
1991); Brief Visuospatial Memory Test-Revised (BVMT-R)
(Benedict, 1997); Grooved Peg Board (Baser and Ruff, 1987);
and finger-tapping test (FTT) (Schmitt, 2013). The Wide Range
Achievement Test 3 (WRAT3) (Snelbaker et al., 2001) was
also administered.
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MRI Acquisition
Cohort 1: Magnetic resonance imaging scanning was performed
on a Siemens Trio 3T scanner with a 20 channel head
coil. Structural magnetic resonance T1-weighted anatomical
images were obtained using a 3-D MPRAGE sequence [sagittal
orientation, repetition time (TR) = 2400 ms, echo time
(TE) = 3.16 ms, inversion time (TI) = 1000 ms, voxel
resolution = 1 × 1 × 1 mm3, frames = 176, flip angle = 8◦,
FOV = 256 × 256 mm]. We acquired two echo planar
DTI sequences, of similar phase encoding direction, with 27
volumes each (transverse orientation, 2 × 2 × 2 mm3 voxels,
TR = 12,300 ms, TE = 108 ms, flip angle = 90◦, 25 directions,
b-values ranging from 0 to 1400 s/mm2, and two non-diffusion
weighted images).

Cohort 2: Magnetic resonance imaging scanning was
performed on the same Siemens Trio 3T scanner with a 12
channel head coil. Structural magnetic resonance T1-weighted
anatomical images were obtained using the 3-D MPRAGE
sequence described for Cohort 1. Two sequential diffusion-
weighted scans, of similar phase encoding direction, were
obtained (transverse orientation, 2 × 2 × 2 mm3 voxels,
TR = 9,900 ms, TE = 102 ms, flip angle = 90◦, 23 directions,
b-values ranging from 0 to 1400 s/mm2, and one non-diffusion
weighted image).

Image Preprocessing and DTI
Processing
For both cohorts, all DTI volumes were manually inspected to
exclude the presence of large artifacts. FMRIB Software Library
(FSL) (Smith et al., 2004) was used to perform all preprocessing
steps and fit the DTI diffusion tensor model at each imaging
voxel. Non-brain tissue was removed using FSL BET (brain
extraction tool) (Smith, 2002), followed by motion and eddy-
current distortions correction. Field maps were not acquired
as part of these studies and thus corrections for susceptibility-
induced distortions were not performed. For DTI analyses, FSL
DTIFIT tool was used to compute diffusivities from fitting the
diffusion tensor model and to generate DTI-FA (DTI-fractional
anisotropy), DTI-MD (DTI-mean diffusivity), DTI-RD (DTI-
radial diffusivity), and DTI-AD (DTI-axial diffusivity) volumes
for each subject. DTI-derived image volumes for each participant
were subsequently processed through the TBSS (Smith et al.,
2006) pipeline to allow for whole-brain WM voxel-wise analyses
as described below.

Since head motion during MRI scans is positively related to
and shares genetic factors with BMI (Hodgson et al., 2017), and
because registration-based correction methods do not exclude
the effects of head motion entirely, we also computed motion
parameters as described by Yendiki et al. (2014). These motion
parameters include average volume-by-volume translation,
average volume-by-volume rotation, percentage of slices with
signal drop-out, and signal drop-out severity. In order to obtain
these motion measures, we completed the image correction and
quality assessment steps of the TRACULA pipeline (TRActs
Constrained by UnderLying Anatomy), without running the
WM pathways reconstruction steps (Yendiki et al., 2011).

TRACULA-derived average volume-by-volume translation and
average volume-by-volume rotation were included as regressors
in subsequent voxel-wise and statistical analyses. The readout
of percentage of slices with signal drop-out and signal drop-
out severity were 0 and 1, respectively, for every participant
in both cohorts.

DBSI Processing
Diffusion basis spectrum imaging measures were calculated
using in-house software scripted in MATLAB and Statistics
Toolbox Release (2012), and as first described in Wang et al.
(2011). Unlike conventional DTI modeling, DBSI modeling
simultaneously differentiates and quantifies several intravoxel
pathological processes (axonal injury/loss, axonal demyelination,
neuroinflammation-related cellularity, and vasogenic edema)
by assigning a dedicated diffusion tensor for each of these
pathological processes. While DTI-derived FA quantifies the
degree of anisotropy for the whole image voxel, DBSI estimates
anisotropy of fiber tracts within the image voxel without being
confounded by isotropic diffusion. The total diffusion signal (Sk)
measured by DBSI includes both anisotropic (Ak) and isotropic
(Ik) diffusion tensor components, and the weighted sum of these
components is presented in Eq. 1.

Sk =

NAniso∑
i=1

fie−|
Ebk|.λ⊥i e−| Ebk|.(λ‖i−λ⊥i ). cos2 8ik +

b∫
a

f (D)e−| Ebk|D dD

(k = 1, 2, 3, . . . , k). (1)

Where Sk and Ebk are the signal and b-value of the kth diffusion
gradient; NAniso is the number of anisotropic tensors, 8ikis the
angle between the principal direction of the ith anisotropic tensor
and the kth diffusion gradient; λ‖i and λ⊥i are the AD and RD
of the ith anisotropic tensor, fi is the signal intensity fraction for
the ith anisotropic tensor, and a and b are the isotropic diffusion
spectrum f (D) low and high diffusivity limits.

Moreover, DBSI assesses isotropic diffusion tensor signal
distribution within the whole spectrum of apparent isotropic
diffusivity (resulting from intracellular and sub-cellular
structures, and edematous extracellular tissue). Through
previous experimental analyses (Wang et al., 2011; Wang et al.,
2015), we grossly grouped isotropic diffusion as restricted
diffusion (D ≤ 0.3 µm2/ms; a proxy measure of water diffusion
in the intracellular compartment hence cellularity), and non-
restricted isotropic diffusion (D > 0.3 µm2/ms; a proxy measure
of water diffusion in the extracellular space). By solving the DBSI
model, we obtain a group of anisotropic and isotropic metrics
that include: DBSI-FA (indicates overall WM integrity), DBSI-
AD (indicates axonal loss/injury), DBSI-RD (indicates myelin
loss), DBSI-fiber fraction or DBSI-FF (indicates apparent axonal
density), DBSI-RF (D ≤ 0.3 µm2/ms; indicates inflammation-
related cellularity), and DBSI-hindered fraction or DBSI-HF
(D > 0.3 µm2/ms; indicates extracellular tissue edema). DBSI-
derived image volumes for each subject were subsequently
processed through the TBSS pipeline to allow for whole-brain
WM voxel-wise analyses as described below.
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TBSS and Voxel-Wise Analyses
Post-processing and voxel-wise analyses of DTI- and DBSI-
derived metrics were completed with TBSS (Smith et al., 2006).
DTI-FA images were used to create an average WM skeleton.
First, all DTI-FA were slightly eroded and end slices were
excluded to remove potential outliers from diffusion tensor
fitting. Secondly, all images were non-linearly registered to
FMRIB58-FA standard-space image as a target image. Aligned
FA images were then averaged to create a mean FA image, and
fed into the skeletonization step to create a WM skeleton using a
threshold of FA > 0.2. Using the same transformation process, all
DTI- and DBSI-derived images, for each subject, were projected
onto the mean FA skeleton, which represents the center of WM
tracts common to all subjects, and used to perform further
voxel-wise and ROI analyses.

Finally, the FSL Randomize tool (Winkler et al., 2014)
was applied to perform separate voxel-wise statistical analyses
within each cohort, and determined which skeleton voxels were
significantly different between obese and non-obese groups
(p < 0.05, corrected for multiple comparisons). We used GLMs
controlling for age, sex, and race. Also, to account for the
effects of head motion, we also controlled for TRACULA-derived
motion measures (volume-by-volume translation and rotation).
The TFCE option was used in TBSS analysis to correct for
family-wise error (Nichols and Holmes, 2002).

Hippocampal and Amygdalar ROI and
WM Tracts Analyses
In both cohorts, total hippocampal and amygdalar volumes
for each individual were computed using FreeSurfer 6.0
segmentation1 of corresponding structural MRI images.
Hippocampal and amygdalar volumes were corrected for
total intracranial volumes (ICV) and compared between
obese and non-obese groups. For all individuals, average
DBSI-derived metrics (both anisotropic and isotropic) in the
right and left hippocampus and amygdala were extracted
using ROIs from the 50% thresholded Harvard-Oxford
Subcortical Structural Atlas provided by the Harvard Center
for Morphometric Analysis in FSL (Smith et al., 2004). Average
hippocampal and amygdalar DBSI-metrics were compared
between obese and non-obese groups in each cohort separately.
Additionally, the JHU-ICBM-DTI-81 WM labels atlas was
used to create masks to define WM ROIs for further analyses
(Mori et al., 2008). To assess whether differences in DBSI
metrics between obese and non-obese groups were spatially
and qualitatively similar across cohorts, we computed the
percentage of overlap between cohorts in all 48 WM tracts
for significant differences in DBSI-RF, DBSI-FF, and DBSI-
AD. Importantly, the hypothalamus was not included in our
ROI analyses. In our experience, anatomical boundaries of
the hypothalamus are not clearly visible on MRIs, making it
difficult to be certain whether measures are not affected by
partial volume effects. Therefore, we did not include this region
in our analyses.

1https://surfer.nmr.mgh.harvard.edu/

Statistical Analyses
Differences in demographic, motion parameters, and
hippocampal volume variables between non-obese and obese
individuals were assessed with between-subjects Student’s t-tests
or, if data were not normally distributed, Mann–Whitney
U tests. Differences in race and sex distributions between
obese and non-obese groups were assessed with Chi-square
tests. Voxel-wise analyses compared DTI- and DBSI-derived
metrics between obese and non-obese groups within each
cohort separately, using GLM controlling for age, sex, race,
and TRACULA-derived motion parameters (volume-by-
volume translation and rotation). Further voxelwise GLM
analyses determined whether BMI related to DBSI metrics of
interest within each group in both cohorts. For each GLM,
the FSL statistical package Randomize (Winkler et al., 2014)
was used to correct for multiple comparisons via a TFCE
approach with a family-wise error rate derived from 5000 Monte
Carlo permutations (Nichols and Holmes, 2002). Statistical
significance was thresholded at corrected p ≤ 0.05. Average
hippocampal and amygdalar DTI- and DBSI-derived metrics
were compared between obese and non-obese groups, within
each cohort separately, using a multiple linear regression
model with age, sex, race, average hippocampal or amgydalar
volume, and motion parameters as covariates. Additionally, in
Cohort 2, we used partial Pearson r correlations controlling
for age to relate main DBSI outcomes in the hippocampus
and amygdala with performance on cognitive tasks. It was
not expected that these exploratory correlational analyses
would survive multiple comparison correction [0.05/(19
tests × 2 brain regions) = 0.0013]. Differences in cognitive
performance between obese and non-obese individuals in
Cohort 2 were assessed with two-tailed between-subjects
Student’s t-tests.

RESULTS

Participants
Participant demographics and descriptive statistics for Cohort 1
and Cohort 2 are shown in Table 1.

Cohort 1: Twenty-five obese (BMI = 33.4–51 kg/m2) and
twenty-one non-obese (BMI = 18.6–25.9 kg/m2) participants
contributed DTI scans for analyses. Data from two individuals
whose BMIs were 25.1 and 25.9 kg/m2 were included as non-
obese since they met criteria for normal percent body fat
and other metabolic parameters. Obese participants were older
than non-obese participants and had a larger proportion of
African Americans compared to the non-obese group. Non-
obese and obese groups did not differ in sex distribution or
years of education.

Cohort 2: Eighteen obese (BMI = 30–43 kg/m2) and forty-
one non-obese (BMI = 18.5–25 kg/m2) participants contributed
DTI scans for analyses. Sex and race distributions differed
between obese and non-obese groups such that there were higher
proportions of females and African Americans in the obese
group. Obese and non-obese groups did not differ in age or
years of education.
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TABLE 1 | Demographic data and TRACULA-derived motion parameters for
obese and non-obese participants in Cohort 1 and Cohort 2.

Cohort 1 Non-obese Obese p-value
(n = 21) (n = 25)

Age (years) mean (S.D.) 28 (5.2) 31.6 (6.4) 0.05∗

Sex (male/female) 5/16 4/21 0.51

Race 18 C/2 AA/1 H 13 C/12 AA 0.01∗∗

Body mass index (kg/m2) mean
(S.D.)

22 (2.2) 40 (4.9) <0.001∗∗∗

Education level (years) mean (S.D.) 15.8 (1.49) 15.1 (1.82) 0.23

Volume-by-volume translation
(mm) mean (S.D.)

0.96 (0.2) 1.1 (0.1) 0.03∗

Volume-by-volume rotation
(mm) mean (S.D.)

0.0039 (0.0007) 0.0043 (0.0007) 0.08

Cohort 2 Non-obese Obese p-value
(n = 41) (n = 18)

Age (years) mean (S.D.) 29.5 (14.4) 29.8 (12.9) 0.12

Sex (male/female) 25/16 3/15 0.002∗∗

Race 23 C/16 AA/1 5 C/13 AA 0.03∗

AS/1 BI

Body mass index (kg/m2) mean
(S.D.)

21.7 (1.7) 35.7 (4.3) <0.001∗∗∗

Education level (years) mean (S.D.) 13.2 (2.08) 13.3 (1.33) 0.55

Volume-by-volume translation
(mm) mean (S.D.)

1.06 (0.1) 1.13 (0.13) 0.04∗

Volume-by-volume rotation
(mm) mean (S.D.)

0.0042 (0.001) 0.0048 (0.001) 0.09

∗, ∗∗, ∗∗∗, p ≤ 0.05, 0.01, 0.001 relative to non-obese. Independent Student’s
t-test, Mann–Whitney U test, or Pearson Chi-Square test were used as appropriate.
C, Caucasian; AA, African American; H, Hispanic; AS, Asian; BI, Bi-racial. S.D.,
standard deviation.

Motion Parameters
TRACULA-derived motion parameters for Cohort 1 and Cohort
2 are shown in Table 1. In both cohorts, the obese group required
greater volume-by-volume translation for motion correction
during the DTI scans. However, neither this measure nor volume-
by-volume rotation related to BMI within non-obese (r ≤ 0.31,
p ≥ 0.18) or obese (r ≤ 0.21, p ≥ 0.40) groups in either cohort.

Voxel-Wise Comparison of DBSI and DTI
Metrics
Cohort 1: In TBSS analyses that covaried age, sex, race, and
motion parameters, DBSI-FA was lower in obese compared to
non-obese individuals, while DBSI-AD and RD were greater
in obese compared to non-obese individuals (Figures 1A–C).
DBSI-FF was lower in obese compared to non-obese individuals
(Figure 1D) while DBSI-RF and DBSI-HF were greater in obese
compared to non-obese individuals (Figures 1E,F). Lower DTI-
FA and DTI-AD were observed in obese compared to non-
obese individuals (Figure 2A). DTI-MD and DTI-RD were not
significantly different between obese and non-obese individuals
(data not shown).

Cohort 2: In TBSS analyses that covaried age, sex, race, and
motion parameters, similar to Cohort 1, the obese group had

FIGURE 1 | Diffusion basis spectrum imaging-derived measures of white
matter integrity and indicators of neuroinflammation in Cohort 1 and Cohort 2.
(A) DBSI-derived fractional anisotropy. (B) DBSI-derived axial diffusivity.
(C) DBSI-derived radial diffusivity. (D) DBSI-derived fiber fraction.
(E) DBSI-derived restricted fraction. (F) DBSI-derived hindered fraction.
Green, white matter skeleton; red-yellow, obese greater than non-obese
group (p < 0.05, corrected); blue-light blue, obese lower than non-obese
group (p < 0.05, corrected).

lower DBSI-FF and greater DBSI-RF when compared to the non-
obese group (Figures 1D,E). DBSI-FA and DBSI-AD were greater
in the obese compared to the non-obese group while DBSI-RD
was lower in the obese group compared to the non-obese group
(Figures 1A–C). DBSI-HF did not differ between obese and non-
obese groups. DTI-AD was lower in the obese compared to the
non-obese group (Figure 2B). DTI-FA (Figure 2B), DTI-MD
and DTI-RD were not significantly different between obese and
non-obese individuals (data not shown).

For the group differences in DBSI-FF and DBSI-RF, we
determined the degree to which WM tracts overlapped in
both cohorts (Figure 3). Differences in DBSI-RF and DBSI-FF
were observed in widespread WM tracts and the percentage
of overlap between both cohorts in all 48 WM tracts are
included in Supplementary Table 1, in which columns are sorted
in descending order according to the number of voxels that
overlap for DBSI-RF.

Voxelwise Correlations Between BMI and
DBSI Metrics of Interest
Higher BMI related to greater voxelwise DBSI-RF in WM
tracts within obese and non-obese groups in Cohort 1 but
not within either group in Cohort 2. BMI did not relate to
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FIGURE 2 | Diffusion tensor imaging-derived measures of white matter
integrity in Cohort 1 and Cohort 2. (A) Cohort 1: Obese individuals had lower
white matter fractional anisotropy (FA) and axial diffusivity (AD) than non-obese
individuals. (B) Cohort 2: Obese individuals had similar white matter FA but
lower AD than non-obese individuals. Green, white matter skeleton; blue-light
blue, obese lower than non-obese group (p < 0.05, corrected).

voxelwise DBSI-FF in WM tracts in either group in either cohort
(data not shown).

ROI Analyses of Hippocampal and
Amygdalar DBSI Metrics
In both Cohort 1 and Cohort 2, we compared average
hippocampal and amygdalar volumes and hippocampal and
amygdalar DBSI-derived metrics (DBSI-FA, DBSI-AD, DBSI-
RD, DBSI-FF, DBSI-RF, DBSI-HF) between obese and non-obese
groups using multiple linear regression, covarying for age, sex,
race, average hippocampal or amygdalar volumes, and motion
measures (volume-by-volume translation and rotation) (Figure 4
and Tables 2, 3). In Cohort 1, hippocampal DBSI-RF was
greater in the obese group when compared to the non-obese
group (Cohen’s d effect size = 1.03; 19.7% increase). Amygdalar
DBSI metrics were not different between obese and non-obese
groups in Cohort 1. In Cohort 2, hippocampal DBSI-AD and
DBSI-RF were greater in the obese compared to the non-obese
group (Cohen’s d effect sizes = 0.59 and 0.70, 3.4% increase
and 12.2% increase, respectively) and amygdalar DBSI-FF and
DBSI-RF were lower and greater in the obese compared to the
non-obese group, respectively (Cohen’s d effect sizes = 1.2 for
both comparisons, 8.3% decrease and 22% increase, respectively).
Amygdalar volume was larger in obese relative to non-obese

FIGURE 3 | Overlap in white matter tracts with significant differences between
obese and non-obese groups in both cohorts (Cohort 1: Blue-purple; Cohort
2: Red-yellow). (A) Lower DBSI fiber fraction in obese compared to
non-obese. (B) Greater DBSI restricted fraction in obese compared to
non-obese.

individuals in both cohorts. Hippocampal volumes and other
DBSI-derived metrics were not different between obese and non-
obese individuals in either cohort.

Cognitive Correlations With
Hippocampal and Amygdalar DBSI-RF
and DBSI-FF
Scores from cognitive measures acquired from Cohort 2 were
correlated across obese and non-obese individuals with DBSI-
RF and DBSI FF in the hippocampus and amygdala, controlling
for age (Figure 5). Eighteen cognitive measures had enough
data points to be included in these exploratory analyses. BVMT,
WAIS-III digit span subtest and FTT for the non-dominant
hand performances were not included due to insufficient data
points (≥20 subjects did not have one or more of these data
points). All other correlations between ROI DBSI-FF or DBSI-RF
and cognitive measures were not significant (p ≥ 0.06; data not
shown). Also, we compared cognitive measure scores to assess
between-group differences (data not shown). The obese group
showed lower total recall (HVLT total recall, p = 0.02) and lower
delayed verbal recall (HVLT delayed recall; p = 0.007), while no
differences were observed in other cognitive measures (p≥ 0.11).

DISCUSSION

The findings of our current study indicate the presence of diffuse
neuroinflammation (greater DBSI-RF) in several WM tracts
and hippocampus in both cohorts and amygdala in Cohort 2
and lower apparent axonal density (DBSI-FF) in several WM
tracts in both cohorts and amygdala in Cohort 2 in obese
individuals as assessed by DBSI. Additionally, obese groups
had consistently higher DBSI-AD when compared to non-
obese groups, but DBSI-FA and DBSI-RD were inconsistent
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FIGURE 4 | Comparison of DBSI metrics in the hippocampus (A,B) and amygdala (C,D) between obese and non-obese groups in Cohort 1 and Cohort 2. FA,
fractional anisotropy; AD, axial diffusivity; RD, radial diffusivity; FF, fiber fraction; HF, hindered fraction. Median, first and third quartiles, 1.5 × interquartile range
shown. ∗, ∗∗, p ≤ 0.05, 0.01, respectively.
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TABLE 2 | Hippocampal DBSI metrics and volumes in obese and non-obese groups in Cohort 1 and Cohort 2.

Cohort 1 Cohort 2

Obese Non-obese p-value Obese Non-obese p-value

DBSI-FA 0.52 ± 0.03 0.5 ± 0.03 0.06 0.68 ± 0.03 0.67 ± 0.03 0.37

DBSI-AD 1.54 ± 0.11 1.48 ± 0.09 0.09 1.97 ± 0.1 1.9 ± 0.1 0.02∗

DBSI-RD 0.54 ± 0.05 0.53 ± 0.03 0.35 0.44 ± 0.03 0.45 ± 0.04 0.67

DBSI-FF 0.23 ± 0.02 0.23 ± 0.02 0.37 0.28 ± 0.02 0.29 ± 0.03 0.22

DBSI-RF 0.08 ± 0.01 0.06 ± 0.01 0.045∗ 0.08 ± 0.01 0.07 ± 0.01 0.008∗

DBSI-HF 0.51 ± 0.05 0.50 ± 0.04 0.35 0.43 ± 0.05 0.44 ± 0.06 0.54

Hippocampal volume (mm3) 4203.2 ± 308 4009.2 ± 274 0.89 4358.8 ± 810 3856.1 ± 356 0.67

Mean ± S.D. shown. DBSI metrics are unitless. ∗, ∗∗, ∗∗∗, p ≤ 0.05, 0.01, 0.001 relative to non-obese. DBSI, Diffusion Basis Spectrum Imaging; FA, fractional anisotropy;
AD, axial diffusivity; RD, radial diffusivity; FF, fiber fraction; RF, restricted fraction; HF, hindered fraction.

TABLE 3 | Amygdalar DBSI metrics and volumes in obese and non-obese groups in Cohort 1 and Cohort 2.

Cohort 1 Cohort 2

Obese Non-obese p-value Obese Non-obese p-value

DBSI-FA 0.54 ± 0.02 0.55 ± 0.02 0.3 0.7 ± 0.03 0.68 ± 0.02 0.41

DBSI-AD 1.43 ± 0.12 1.44 ± 0.09 0.61 1.83 ± 0.11 1.75 ± 0.11 0.31

DBSI-RD 0.51 ± 0.06 0.51 ± 0.04 0.26 0.42 ± 0.04 0.43 ± 0.03 0.16

DBSI-FF 0.33 ± 0.02 0.33 ± 0.02 0.27 0.36 ± 0.02 0.39 ± 0.03 <0.001∗∗∗

DBSI-RF 0.05 ± 0.01 0.06 ± 0.01 0.33 0.07 ± 0.01 0.05 ± 0.01 <0.001∗∗∗

DBSI-HF 0.49 ± 0.04 0.49 ± 0.04 0.28 0.42 ± 0.05 0.43 ± 0.03 0.78

Amygdala volume (mm3) 1746.04 ± 157 1669.41 ± 116 0.07 1802.5 ± 338 1575.7 ± 117 0.05∗

Mean ± S.D. shown. DBSI metrics are unitless. ∗, ∗∗, ∗∗∗, p ≤ 0.05, 0.01, 0.001 relative to non-obese. DBSI, diffusion basis spectrum imaging; FA, fractional anisotropy;
AD, axial diffusivity; RD, radial diffusivity; FF, fiber fraction; RF, restricted fraction; HF, hindered fraction.

across cohorts (lower DBSI-FA and greater DBSI-RD in Cohort
1; greater DBSI-FA and lower DBSI-RD in Cohort 2). These
findings might also indicate that neuroinflammation-related
processes (cellular infiltration and tissue edema) could have
confounded DTI-derived metrics. Exploratory analyses showed
correlations between hippocampal and amygdalar DBSI-RF or
DBSI-FF and some cognitive variables in Cohort 2.

Comparison Between DTI and DBSI
Findings in Obesity
Diffusion tensor imaging has been extensively used to
evaluate WM microstructure changes associated with obesity.
Consistently, lower DTI-FA has been observed in obese
compared to non-obese groups (Kullmann et al., 2015), while
DTI-AD and DTI-RD alterations have been mixed (Mueller
et al., 2011; Xu et al., 2013; Kullmann et al., 2016; Mazza et al.,
2017; Papageorgiou et al., 2017). In our study, in several WM
tracts, DTI-AD was lower in obese groups in both cohorts,
DTI-FA was lower in the obese group in Cohort 1, while
DTI-RD was not different between groups in either cohort.
Using the traditional interpretation of DTI results, these findings
indicate impaired overall WM integrity and axonal injury
in the obese groups. Because DTI models both intra-axonal
and extra-axonal water diffusion, cellularity associated with
obesity might lead to decreased diffusion in all directions,
resulting in the observed decrease in DTI-AD even without

the presence of axonal injury. When isotropic diffusion was
accounted for in the DBSI modeling, DBSI-AD was slightly
greater in the obese groups in both cohorts, which could indicate
increased water diffusion parallel to the axons in the extracellular
compartment as a result of increased tissue edema. The presence
of tissue edema could also contribute to the lower apparent
axonal density (lower DBSI-FF) in the obese groups. These
findings indicate that neuroinflammation-related processes
(cellular infiltration and tissue edema) could have confounded
DTI-derived metrics. This notion was previously suggested by
some authors and demonstrated by histopathological studies
in animal models of neuroinflammatory diseases (Wang
et al., 2014; Cross and Song, 2017; Winklewski et al., 2018;
Zhan et al., 2018).

The inconsistent differences in DBSI-FA and DBSI-RD (lower
DBSI-FA and greater DBSI-RD in Cohort 1; greater DBSI-
FA and lower DBSI-RD in Cohort 2) could also support
the hypothesis that different biological processes may underlie
obesity-related WM microstructure alterations (Haley et al.,
2018). In each cohort, the pattern of change in DBSI-FA,
DBSI-AD, and DBSI-RD might represent a different stage
of WM reorganization post-injury. This hypothesis has been
used to explain the bi-directional changes in DTI-FA in other
conditions (e.g., a rodent model of traumatic brain injury) (Harris
et al., 2016). In the case of obesity, the underlying mechanism
could be an ongoing process of WM structural reorganization
(demyelination/remyelination, loss of long WM tracts, axon
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FIGURE 5 | Significant correlations between hippocampus/amygdala DBSI fiber fraction and DBSI restricted fraction with performance in key measures of cognition
in Cohort 2 (blue: obese; red: non-obese). Shaded area surrounding regression lines are 95% confidence intervals). DBSI-FF, fiber fraction; DBSI-RF, restricted
fraction; HVLT, Hopkins Verbal Learning Test; WRAT-3, Wide Range Achievement Test 3; Dom, dominant; Non-dom, Non-dominant.

sprouting) associated with persistent neuroinflammatory process.
Nevertheless, although this hypothesis is a plausible explanation
for the inconsistent diffusivity differences observed in our study,
these differences might also be due to between-cohort differences
in hardware used, such as head coils, and DTI acquisition
parameters or participant characteristics due to sample selection
criteria. As mentioned above, while DTI data from Cohort 2
participants were primarily selected from a convenience sample
comprising the HIV- control group of an HIV neuroimaging
study, Cohort 1 participants were selected specifically for a
study of brain alterations in obesity unconfounded by current
or past co-morbid disease. Therefore, more stringent screening
for diabetes, mental illness, substance and alcohol abuse,
and IQ/education was performed in Cohort 1 relative to
Cohort 2. We excluded individuals with diabetes in order to
study neuroinflammation in obesity per se, unconfounded by
hyperglycemia and insulin resistance, factors already linked to

neuroinflammation (Pugazhenthi et al., 2017). More rigorous
experimental designs are necessary to confirm the validity of
these hypotheses and to determine what non-BMI factors relate
to DBSI measures.

Histopathological Abnormalities
Associated With Neuroinflammation in
Obesity
In obese groups, greater DBSI-RF in WM tracts and
hippocampus presumably reflect an increase in CNS resident
inflammatory cells. Significant increases in glial fibrillary acidic
protein (GFAP) immunoreactive astrocytes were observed in the
hippocampus and frontal and parietal cortices in rodent models
of obesity (Tomassoni et al., 2013). Evidence of increased gliosis
was observed in the mediobasal hypothalamus of living obese
humans assessed by MRI (Thaler et al., 2012; Schur et al., 2015),
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which related to greater post-mortem GFAP staining intensity
(Schur et al., 2015). Peripheral inflammation as indicated
by plasma fibrinogen related to alterations in DTI-measured
apparent diffusivity in the amygdala (Cazettes et al., 2011). In
several rodent studies, obesity-induced microglia activation and
other types of neuroinflammation were frequently observed in
hypothalamus, hippocampus, amygdala, and other brain regions
(Erion et al., 2014; Tucsek et al., 2014; Guillemot-Legris and
Muccioli, 2017). Obesity-related microglial activation in rodents
mediates the relationship between synaptic dysfunction and
cognitive deficits, which are blocked by inhibition of microglial
activation (Erion et al., 2014; Cope et al., 2018). Reversal
of obesity-related macrophage infiltration into leaky BBB
improves obesity-associated cognitive dysfunction (Stranahan
et al., 2016). Since DBSI doesn’t distinguish different cell
types, it would be necessary to perform validation studies, e.g.,
correlation of DBSI-derived metrics with histopathological
measures of neuroinflammation in rodent models of obesity
and in human postmortem brain, to confirm that these
altered properties truly reflect neuroinflammation and detect
which cell types are responsible for the observed changes in
DBSI-RF in our study.

Interestingly, in Cohort 1, DBSI-HF was greater in obese
compared to non-obese individuals. DBSI-HF models non-
restricted water diffusion in the extracellular compartment and
reflects tissue edema in acute neuroinflammatory conditions
(Wang et al., 2011; Wang et al., 2014; Zhan et al., 2018). In the
case of possible chronic neuroinflammation in disease states such
as obesity, histopathological evaluation is needed to determine
the mechanism that underlies greater DBSI-HF.

Neuroinflammation, Axonal Density, and
Cognitive Performance
In the current study, we showed that DBSI-RF, an indicator
of neuroinflammation, and DBSI-FF, an indicator of axonal
density, in hippocampus and amygdala related to cognitive
performance in some measures. These results are in line with
studies in which impaired performance on memory tasks is
induced by hippocampal neuroinflammation in rodents with
diet-induced obesity (Pistell et al., 2010; Beilharz et al., 2016;
Cope et al., 2018) and the observed association between plasma
fibrinogen and water diffusion in the amygdala in obese and
overweight individuals (Cazettes et al., 2011). The current results
suggest altered water diffusivity in the brain, and perhaps
neuroinflammation, may relate to altered cognitive performance.
However, these data should be considered preliminary since
analyses were exploratory and not corrected for multiple
comparisons. Future studies may determine whether putative
neuroinflammation modulates the relationship between BMI and
cognitive performance.

Limitations and Future Directions
The primary strength of the current study is the replication of the
findings that DBSI-RF, a putative marker of neuroinflammation,
and DBSI-FF, a marker of axonal density, are greater and
lower, respectively, in obese than non-obese individuals in two

independent cohorts. The main weakness of this study is that
data were not available to link DBSI metrics to alterations in
inflammation-related behavior or proinflammatory cytokines in
plasma or CSF. Without histopathological validation, though
plausible, it remains speculative that the DBSI-measured
alterations truly reflect neuroinflammation. Previous studies
showed that DBSI-RF is associated with activated microglia
and astrogliosis in several neuroinflammatory conditions (Wang
et al., 2011; Chiang et al., 2014; Wang et al., 2014) but this
has not been examined in obesity. Interestingly, the regions of
increased DBSI-RF and decreased DBSI-FF in obese individuals
in Cohort 1, from a study designed to test for differences
in the brain due to obesity unconfounded by other health
issues, falls almost entirely within the regions of the findings
from obese individuals in Cohort 2, a convenience sample, as
described above. Lack of convergent findings for some DBSI
anisotropic metrics could be due to variations in stage of
WM reorganization and differences between cohorts including
participant characteristics and DTI sequence parameters, as
discussed above. A third weakness is that age, sex and race
distributions differed between obese and non-obese individuals
in one or both cohorts. There are age, sex, and racial differences in
adiposity and associated traits including systemic inflammation
severity due to physiological, social and psychological factors
(Thorand et al., 2006; Stepanikova et al., 2017a,b). While
we controlled for age, sex and race in our data analyses,
we cannot rule out the possibility that differences between
groups in these factors contributed to our results. Clearly,
age, sex, and race should be included in future studies as
variables of primary interest with sufficient sample size to power
these studies. DTI sequence parameters were slightly different
between cohorts, which prevented us from combining data
across cohorts. Future studies should be prospective in nature,
include larger sample sizes and obtain complimentary measures
of neuroinflammation using PET with radiotracers specific for
activated microglia, plasma and CSF inflammatory marker levels,
and measures of cognitive function. Also, studies of animal
models of obesity would allow for histopathological validation
of DBSI metrics.

CONCLUSION

In two independent cohorts, we showed that a DBSI-derived
indicator of neuroinflammation is greater and axonal density
is lower in obese compared to non-obese humans. In addition,
the discrepancies between DBSI- and DTI-derived anisotropic
metrics demonstrate the limitations of DTI when applied to
disease states that may be accompanied by neuroinflammation.
Additionally, these findings highlight the significance of
applying multi-component models of diffusion imaging in these
populations. Future studies are warranted to determine whether
high-calorie diet-induced neuroinflammation occurs in ROIs
outside hippocampus, amygdala, and hypothalamus and its
potential role in obesity-associated impairment in behaviors
thought to be regulated by these regions. Finally, the results
of the current study indicate that putative neuroinflammation
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and associated cognitive impairment occurs even in obese
individuals without diabetes. Given the evidence implicating
diabetes in the development of neuroinflammation and
cognitive impairment (Pugazhenthi et al., 2017), it will
be important to assess relationships between metabolic
markers, cognition, and MRI-derived neuroinflammation
metrics in individuals who do and do not develop insulin
resistance over time. Also, further histopathological studies in
postmortem brain are necessary to confirm that the altered
DBSI properties we observed in obese humans truly reflect
neuroinflammatory processes.
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