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Individuals on the autism spectrum are reported to show impairments in the processing
of social information, including aspects of eye-movements towards faces. Abnormalities
in basic-level visual processing are also reported. In the current study, we sought to
determine if the latency of saccades made towards social targets (faces) in a natural
scene as opposed to inanimate targets (cars) would be related to sub-clinical autism
traits (ATs) in individuals drawn from a neurotypical population. The effect of stimulus
inversion was also examined given that difficulties with processing inverted faces are
thought to be a function of face expertise. No group differences in saccadic latency
were established for face or car targets, regardless of image orientation. However, as
expected, we found that individuals with higher autism-like traits did not demonstrate a
saccadic face inversion effect, but those with lower autism-like traits did. Neither group
showed a car inversion effect. Thus, these results suggest that neurotypical individuals
with high autism-like traits also show anomalies in detecting and orienting to faces. In
particular, the reduced saccadic face inversion effect established in these participants
with high ATs suggests that speed of visual processing and orienting towards faces may
be associated with the social difficulties found across the broader autism spectrum.

Keywords: autism, face processing, face inversion, saccade, eye-movements

INTRODUCTION

A core element of Autism Spectrum Disorder (ASD) is a difficulty in dealing with social situations,
including deficits in eye-contact and reading non-verbal social signals. In addition, individuals with
ASD often show impairments in attending to social information, spending less time, for example,
fixating on the eyes and the central region of faces (Snow et al., 2011). Impairments in identifying
emotions from facial expressions (Lozier et al., 2014), and based on eye-tracking studies, in shifting
attention towards Guillon et al. (2016), and disengaging attention away from faces (Chawarska
et al., 2010; Kikuchi et al., 2011) have also been reported in ASD populations.

Given that nonverbal social cues are usually rapid and dynamic, speed of visual processing
and the orienting of attention may be important for developing social-communication skills. For
example, the latency of the event-related potential (ERP) associated with early perceptual face
processing has been shown to predict emotion recognition in adolescents with ASD (Lerner et al.,
2013). In addition, under free-viewing of photographs of natural scenes, individuals with ASD are
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slower to first fixate on a person in the scene, and spend less time
looking at a person when there are other objects in the scene
(Wilson et al., 2010).

In neurotypical populations, faces appear to constitute a
unique category of objects that gain priority access to neural
processing possibly via a direct superior colliculus-pulvinar-
amygdala route (McFadyen et al., 2017). For example, faces
capture attention in visual search, even when they are irrelevant
to the task (Devue and Grimshaw, 2017), and infants also
demonstrate preferential looking at faces (Johnson et al., 1991).
The salient nature of faces is well illustrated by a saccadic
choice reaction time paradigm employed by Crouzet et al.
(2010) in which saccade onset times towards photographs of
natural scenes presented simultaneously to the left and right of
fixation averaged 150 ms when detecting the side containing
a face (the express saccade range), compared to more than
180 ms when they were detecting a vehicle. This speed of
visual processing for faces is consistent with reports of rapid
ventral stream activation (Braeutigam et al., 2001; Eimer and
Holmes, 2002; Liu et al., 2002), or may reflect direct subcortical
pulvinar pathways to the amygdala that bypass early visual
cortex (Johnson, 2005; Méndez-Bértolo et al., 2016; McFadyen
et al., 2017). Interestingly, this type of fast processing is likely
mediated by the magnocellular system which is also reported
to be impaired in ASD (Greenaway et al., 2013). In the present
study, we used the Crouzet et al.’s (2010) paradigm to examine
the detection of faces vs. cars to disentangle whether the deficit
in face detection in ASD is specific to social stimuli such as faces
or instead reflects a general deficit in saccadic orienting.

The ASD literature on visually guided saccade tasks has been
somewhat inconsistent with regard to latency measures. These
studies involve the onset of a single simple target such as a small
square [or a more engaging target such as a smiley face or a clown
for children participants (Kelly et al., 2013; Kovarski et al., 2019)],
triggering a reflexive visually guided saccade, and have found
ASD to be associated with slower saccadic onset times (SOTs)
towards a target (Goldberg et al., 2002; Miller et al., 2014; Wilkes
et al., 2015), whilst others appear to suggest intact (Minshew
et al., 1999; Takarae et al., 2004; Luna et al., 2007; Kelly et al.,
2013; Zalla et al., 2018) or even faster (Kovarski et al., 2019)
saccadic latency in ASD. In the current study however, where two
competing photographs were presented, we were interested in
the speed of saccadic orienting towards the image that contained
the target category. Given that faces are less salient in those with
ASD (Chawarska et al., 2010; Kikuchi et al., 2011; Guillon et al.,
2016) it would be expected that utilization of a choice reaction
time task should be associated with slower saccadic responses to
face targets in ASD populations.

In addition, we also examined the effect of face inversion.
In typical observers, recognition of inverted faces is reported to
be more difficult, possibly due to the disruption of holistic face
processing that occurs with inversion (Rossion, 2009). Reduced
face inversion effects have been reported in the ASD literature
(Rose et al., 2007) and have also been found to predict autism
traits (AT) in a neurotypical population (Wyer et al., 2012).
A 2012 systematic review argued there is insufficient evidence
for reduced inversion effects in ASD (Weigelt et al., 2012).

However, while most face inversion studies in those on the
autism spectrum have measured identity recognition, only a few
have utilized electrophysiological measurements to assess more
automatic aspects of face processing, finding reduced inversion
effects in ASD (McPartland et al., 2004; Vettori et al., 2019). Here,
we measured saccadic latency when participants were detecting
upright and inverted faces or cars which may also provide a more
reflexive measure of attentional bias towards faces.

As a first step to testing whether or not ‘‘reflexive’’
saccadic mechanisms mediating the rapid detection of faces are
compromised in ASD, we adopted the dimensional approach
to investigating the autism spectrum (Landry and Chouinard,
2016). Similar to patterns observed in ASD samples, the broader
autism phenotype, which includes family members of those
with an ASD as well as neurotypical samples with higher
ATs, has demonstrated anomalies in a number of cognitive
processes, including executive function (Christ et al., 2010),
visual processing (Crewther et al., 2015; Cribb et al., 2016), face
emotion processing (Palermo et al., 2006; Wallace et al., 2010;
Spencer et al., 2011) and in eye-movement patterns towards
faces (Davis et al., 2001; Åsberg Johnels et al., 2017). Together,
these results suggest that this dimensional approach provides
a useful model of ASD, and may shed light on the similarities
and dissimilarities between clinical and sub-clinical populations.
In the current study, therefore, we tested individuals with high
autism-like personality traits drawn from the general population.
Such individuals were identified using a self-report scale that
treats ASD as one end of a spectrum of behavioral traits
extending into the general population (Kanne et al., 2012).

We predicted that individuals with high autism-like traits
would exhibit the slower onset of saccadic eye movements than
individuals with lower autism-like traits when detecting faces,
even though the performance of the two groups might not
differ when detecting inanimate objects, such as cars. We also
predicted that individuals with high autism-like traits would
demonstrate reduced saccadic face inversion effects compared
to individuals with low ATs, but neither group would show a
‘‘car inversion’’ effect.

MATERIALS AND METHODS

Participants
Forty-seven participants (32 females, 15 males; mean age = 25.7,
SD = 6.3) with normal or corrected to normal vision, were
tested after providing written informed consent. All procedures
were approved by the La Trobe University Human Ethics
Committee and carried out in accordance with the approved
protocol and relevant regulations. Prior to completing the
experiment, participants completed an online version of the
Subthreshold Autism Trait Questionnaire (SATQ; Kanne et al.,
2012), a 24 item self-report questionnaire assessing a broad range
of ATs encompassing social-communication and restricted or
repetitive behaviors that has good test-retest reliability, internal
consistency and discriminant validity (Nishiyama and Kanne,
2014). A factor analysis revealed five factors (social interaction
and enjoyment, oddness, reading facial expressions, expressive
language, rigidity). Participants also completed a timed version
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TABLE 1 | Demographic information.

N Mean age (SD) Mean Raven’s raw score (SD) Gender ratio (M:F) Mean SATQ score (SD)

Low autism trait group 15 24.7 (5.2) 48.4 (4.6) 4:11 10.6 (4.5)
High autism trait group 15 27.4 (9.4) 46.4 (5.8) 7:8 32.4 (5.5)

of the standard Raven’s Progressive Matrices test (Raven et al.,
1996). Thirty participants were initially assigned to either high-
or low-AT groups after performing a tertile split in the ranked
SATQ scores of the initial pool of 47 participants. The final
group characteristics after replacing one participant in the low
AT group, and two participants in the high AT group (see
below for details) can be seen in Table 1. As a comparison
to the SATQ scores described in Table 1, SATQ scores in the
general population have been reported with a mean of 23.1
(SD = 7.1), and in a clinical ASD sample with a mean of 40.8
(13.6; Kanne et al., 2012).

A power analysis to determine the sample size, utilizing the
GPower package (Faul et al., 2009) was based on Crouzet et al.
(2010), Bannerman et al. (2012) and Wilson et al. (2010). First
for the within-subject comparison, when an effect size from
Crouzet et al. (2010), dz = 2.5 was used, assuming a correlation
among repeated measures (face and vehicle targets in saccadic
choice reaction time tasks), r = 0.8, a sample size of four would
be required for getting power of 0.80 with alpha level of 0.05.
More conservatively however, when the effect size dz = 0.86 was
estimated from Figure 3 of Bannerman et al. (2012) again
assuming a correlation among repeated measures (upright and
inverted fearful faces in a simple saccadic detection task), r = 0.8,
a total sample size of 15 was calculated and aimed for in the
current study. For the between-subject comparison, although not
a saccadic reaction time task, Wilson et al. (2010) report a group
effect for time to first fixation towards a face of approximately
d = 1.16. Using the same assumptions as above, a sample size of
13 per group would be required.

Stimuli and Procedure
Participants viewed stimuli on a PC 24-inch display monitor
using Experiment Builder software, and saccades were recorded
using the EyeLink 1000 Plus, a video-based eye-tracking system.
Participants viewed tasks binocularly, positioned in a chinrest for
stability 57 cm from the monitor.

Before commencing each task, a 9-point calibration of the eye
movement recording systemwas carried out. After every 10 trials,
a fixation drift-check was made to ensure that the difference
between computed fixation position during calibration and the
current target is not large.

Task design and procedure closely followed that of Crouzet
et al. (2010). Photographs were all grayscale and consisted of
200 natural scenes containing a car, along with 200 natural scenes
containing a face, and 200 distractor natural scenes containing
neither a face nor a car. The car stimuli were sourced from the
internet while the face stimuli and distractor natural scenes were
provided by Crouzet et al. (2010). Each image was converted to
grayscale, 330 × 330 pixels, and adjusted to a mean luminance
value of 128 using Adobe Photoshop. Half the face stimuli
were males and half were females. The faces and cars were

positioned in different locations within the scene rather than
predictably central and were also of varied size and viewpoint
(i.e., front/side angle etc.). Most of the face and the car images
consisted of close-up views of the target, with approximately 30%
(face images) and 35% (car images) taken frommid-stance views.
Each photo had a retinal size of 14◦ by 14◦ of visual angle and was
always positioned 8◦ left or right of fixation.

Each saccadic choice reaction-time task involved the
presentation of two pictures, one on each side of fixation; one
picture always contained the target (face or car), and the other
was a natural scene that did not contain a target. The same set
of 200 natural distractor scenes used for the face tasks were
also used as the distractor images for the car tasks. The photo
containing the target was randomly presented to the left or
right. Initially, a black fixation cross on a white background
was presented centrally for a random duration lasting between
800 and 1,600 ms, followed by a blank screen for 200 ms, and
then the two images were presented for 400 ms followed again
by a blank white screen (see Figure 1).

In the upright face task, participants were required to make
a saccade towards the picture containing a face and completed
200 trials. Target and distractor images were both randomly

FIGURE 1 | Illustration of the task procedure. A fixation was followed by a
200 ms blank screen, and subsequently two images were presented. In
different tasks, one photograph contained a face or a car and was presented
alongside a distractor photograph consisting of a natural scene with no car or
face. In separate tasks both the target and distractor photographs were
presented in an upright orientation, or inverted 180◦. Participants were
required to make a saccade towards the location of the target, presented
randomly to the left or the right, as quickly and accurately as possible.
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sampled without replacement. This design was repeated in the
inversion task, except that both target and distractor pictures
were rotated 180◦. Exactly the same procedure was used in
the upright and inverted car target tasks. Thus, four separate
tasks were completed, with task order counterbalanced between
participants. Within each task, participants were allowed a brief
break every 50 trials. The whole experiment lasted approximately
75 min.

Data Analysis
Eye-movements were recorded monocularly at 1,000 Hz. Data
processing and extraction made use of Eyelink Data Viewer
software, before further processing in Excel, with final analyses
utilizing SPSS. All saccades were recorded and defined by an
eye-movement motion threshold of 0.2◦, velocity above 30◦/s,
and acceleration greater than 8,000◦/s2. An accurate response
was defined as an eye movement of 4◦ or greater in the direction
of the photo containing a target. For each participant, we
calculated the percent correct trials on each task. Mean SOTs
were analyzed for correct trials only, with saccades less than 4◦

or commencing earlier than 80 ms (i.e., indicating anticipation)
excluded from the analysis. One participant in each AT group
hadmissing data for a single task. Box plots for SOTs on each task
and also the inversion effects for each target category revealed a
high AT participant for face inversion, and a low AT participant
for car inversion, both more than two standard deviations above
themean for their group. In order tomaintain equal sample sizes,
these participants were replaced with the participant next in the
ranked SATQ data and formed the final sample for both accuracy
and saccadic analyses (see Table 1). To analyze the accuracy and
SOT data, separate three-way mixed ANOVA’s were conducted,
including target (face, car) and orientation (upright, inverted)
as within-subject factors, and group (low AT, high AT) as a
between-group factor. Effect sizes are reported, adopting the
convention of small, medium and large effects with partial eta
squared values of 0.01, 0.06 and 0.14, respectively.

Given the possibility that apparent discrepancies in the gender
balance between AT groups may have influenced the results,
further analyses were conducted. Fisher’s exact test indicated
that gender was not statistically imbalanced between AT groups
(p = 0.45). Nevertheless, a mixed ANOVA using gender instead
of AT group as the between-groups factor to analyze saccadic
latencies did not reveal a main effect of gender (p = 0.219), nor
any interactions including gender (p’s > 0.795). Together these
analyses suggest that gender does not appear to have influenced
saccadic latencies in the current study.

RESULTS

Accuracy
Both groups performed the tasks with a high degree of accuracy
(mean accuracy: low AT group—face upright = 98%, face
inverted = 95%, car upright = 92%, car inverted 86%; high
AT group—face upright = 96%, face inverted = 95%, car
upright = 90%, car inverted 87%). A three-way mixed ANOVA
revealed a main effect of target, F(1,28) = 81.56, p < 0.001,
η2p = 0.744, with accuracy higher on face tasks than car tasks; a

main effect of orientation, F(1,28) = 26.75, p < 0.001, η2p = 0.489,
with accuracy higher for upright tasks than inverted tasks; but
no effect of group, F(1,28) = 0.08, p = 0.782, η2p = 0.003. The
only significant interaction was a two-way interaction between
orientation and group, F(1,28) = 5.43 p = 0.027, η2p = 0.162,
with simple effects analyses demonstrating that, although the
low AT group was more accurate for upright than inverted
stimuli (p < 0.001), the high AT group were not more accurate
for upright than inverted stimuli (p = 0.054), regardless of
target category.

Saccadic Onset Times
A three-way mixed ANOVA revealed significant main effects of
target, F(1,28) = 207.54, p < 0.001, η2p = 0.881, with SOTs to faces
faster than those to cars; orientation, F(1,28) = 8.84, p = 0.006,
η2p = 0.24, with SOTs to upright targets faster than those to
inverted targets; but not for group, F(1,28) = 0.02, p = 0.878,
η2p = 0.001. There were no significant two-way interactions
involving the group factor. The three-way interaction, however,
was significant, F(1,28) = 4.97, p = 0.034, η2p = 0.151 (see
Figure 2A). Simple main effects analysis used to interpret this
interaction demonstrated that it was driven by differences in
the inversion effects between groups. The inversion effect was
defined as the paired comparison of SOTs between upright and
inverted targets separately for each target category. Specifically,
the low AT group showed a significant inversion effect for faces
(p < 0.001) but not for cars (p = 0.968), whereas the high AT
group did not demonstrate a significant face inversion effect
(p = 0.170), nor a significant car inversion effect (p = 0.309;
see Figure 2B). A t-test also revealed that the high AT group
demonstrated a smaller face inversion effect compared with the
lowAT group, t(28) = 2.85, p = 0.008. Although the high AT group
showed a slower SOT for faces compared with the low AT group,
the group difference was not significant (p = 0.301), and no other
differences in SOTs were apparent between the groups for any of
the tasks (p’s> 0.651; see Figure 2A).

Reaction time data, including saccadic reaction times, is
usually positively skewed, and median SOT, rather than mean
SOT per participant may be considered appropriate for the
current analysis. Although this solution is not recommended for
data sets in which conditions have different number of trials
(Miller, 1988; as was the case here due to the exclusion of trials
not meeting inclusion criteria), a mixed ANOVA was run as
suggested by a reviewer. After replacing a further outlier in
the high AT group, the 3-way interaction was still significant,
F(1,28) = 4.30, p = 0.047, η2p = 0.133. Simple main effects
demonstrated the same pattern of results as for the analysis based
on means (see Appendix). Indeed the difference in SOT between
the mean and median for each participant was small, ranging on
average between 3–5 ms depending on the task condition.

DISCUSSION

The results of our experiment indicate that people with high
(though sub-clinical) ATs showed different eye-movement
patterns, compared with people with low ATs, when orienting
towards faces in natural scenes. In particular, these differences

Frontiers in Human Neuroscience | www.frontiersin.org 4 January 2020 | Volume 13 | Article 470

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Laycock et al. Face Inversion With High Autism Traits

FIGURE 2 | (A) Average saccade onset times (SOTs) to detect the
photograph containing a face or a car in the upright and inverted tasks for
high and low Autism Trait (AT) Groups. (B) Face and car inversion effects,
calculated as the difference in mean SOTs between upright and inverted
tasks for high and low AT Groups. Error bars indicate standard error of the
mean. The low AT group demonstrated a significant face inversion effect
(p < 0.001), whereas the high AT group did not (p = 0.170). The face
inversion effect of the low AT group was significantly larger than that of the
high AT group (p = 0.008). Neither group demonstrate a car inversion effect.

were demonstrated by a reduced latency-based face inversion
effect. These effects were found to be specific to the detection
of faces with no evidence for differences in inversion effects
when detecting inanimate targets, such as cars. Although the
current study was not designed to test oculomotor and early-
stage visual processing, the lack of a generalized impairment for
saccade onset latencies and the specificity of the inversion effects
to face targets suggests the oculomotor and visual processing
deficits that have sometimes been reported in ASD populations
across a range of paradigms are unlikely to account for the
face-detection deficit we observed (for reviews, see Simmons
et al., 2009; Freedman and Foxe, 2018).

Whereas low AT participants demonstrated a very
pronounced face inversion effect, with faster SOTs towards
upright than inverted faces, this effect was entirely absent in
the participants with high ATs. Previous studies have found
reduced or absent face inversion effects in ASD populations
(McPartland et al., 2004; Rose et al., 2007) and in a neurotypical
population a smaller face inversion effect was found to predict
ATs (Wyer et al., 2012), although Weigelt et al. (2012) have
cast doubt on the reliability of these findings. One difficulty in
making comparisons between studies is that different measures
of face processing have been used; for example, participants

may be required to match face identity in some studies or
expression in others. The reduced saccadic inversion effect
reported here suggests that the timing of the activation of face
processing mechanisms may be a critical variable, a conclusion
that is also supported by the finding in an ASD sample of a
reduced inversion effect in the N170 latency when viewing faces
(McPartland et al., 2004).

Reports of a lack of face inversion effects in ASD (McPartland
et al., 2004; Rose et al., 2007; Vettori et al., 2019) have been used
to argue that individuals with ASD use a more feature-based
approach to face processing. Typical observers are thought to use
a more global or holistic approach to face processing, rather than
a feature-by-feature analysis, and it is the disruption to this global
analysis from turning the face upside down that produces the face
inversion effect (Rossion, 2009). In the current study, a dramatic
reduction in a saccade latency-based face inversion effect in
participants with higher ATs suggests that this more feature-
based approach to face processing extends across the broader
autism spectrum. Importantly, it suggests that this feature-based
approach operates not only at a slower more deliberate level
but also at a faster and more reflexive level as required by the
task demands in the current study. Finally, in both ASD and in
the broader autism spectrum, previous studies have suggested
either a more generalized impairment in global visual processing
or a bias in local visual processing (Plaisted et al., 1999; Cribb
et al., 2016). This might seem to be inconsistent with the current
result given that different inversion effects were established for
high and low AT groups when detecting faces, but not when
detecting cars. Unlike for faces, however, it is assumed that
the processing of non-face objects typically relies more on a
feature-based strategy (Farah et al., 1998). As a consequence,
reduced face inversion effects may reflect a face-specific anomaly
in processing in the high AT participants, though a more general
global processing deficit would be expected to be evident only
when comparing the upright and inverted face conditions.

Although all participants were able to quickly and accurately
select and direct eye-movements towards both face and car
target categories, face targets were selected more accurately and
with faster response times than for car targets. This replicates
the findings in neurotypical adults by Crouzet et al. (2010),
highlighting that faces constitute a special category of objects.
Across all participants in the current sample, there was a 30-ms
advantage in detecting a face as opposed to a car. It may be
that humans have an innate specialized face specific module
(Kanwisher and Yovel, 2006) or that a general-purpose object
processing system develops expertise in face recognition given
lifelong repeated exposure to faces (Hoehl and Peykarjou, 2012).
A more interactive view suggests that innate tendencies to orient
to faces lead to the development of face-sensitive regions in the
ventral stream (de Haan et al., 2002). Regardless, it is evident that
a clear behavioral advantage for the detection of faces is a strong
and robust effect.

Although slower saccade initiation by high AT individuals
to faces in a choice reaction time task was not established as
expected, a moderate effect size (η2p = 0.038) in the predicted
direction was evident in this sub-clinical population. It remains
possible that this effect would be more pronounced in a

Frontiers in Human Neuroscience | www.frontiersin.org 5 January 2020 | Volume 13 | Article 470

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Laycock et al. Face Inversion With High Autism Traits

clinical sample and could reflect differences in conductance
or processing speed within face regions of the ventral stream.
Although a trend suggested that the high AT group was slower
overall to respond to upright faces than was the low AT group,
the saccadic onset in both groups was still faster than what may
be expected from ERP studies that have shown an N170 potential
evoked by faces in neurotypical adults (e.g., Eimer and Holmes,
2002). The rapid onset of face-directed saccades observed in
all participants may be consistent, however, with other reports
using ERP or magnetoencephalography (MEG) that have found
face-selective activation occurring at 100–120 ms (Eimer and
Holmes, 2002; Liu et al., 2002) or even as early as 30–60 ms after
stimulus onset in the ventral stream (Braeutigam et al., 2001). It is
interesting to note that early visual processing abnormalities have
been reported in adults with ASD (compared to healthy control
participants), with weaker and less lateralized MEG responses to
faces occurring around 145 ms in the ventral stream of the right
hemisphere as well as abnormal earlier responses at 30–60 ms
over temporal sites (Bailey et al., 2005).

The fast activation of neural processes subserving rapid
saccadic responses to faces that we and others have observed may
also be explained by processing that passes through subcortical
pathways, bypassing the visual cortex, through the superior
colliculus, pulvinar, and amygdala (Johnson, 2005). A dynamic
causal modeling study based on MEG data suggested that there
might be a direct pulvinar-amygdala activation that occurs as
early as 70ms, regardless of emotion or spatial frequency filtering
(McFadyen et al., 2017). Human intracranial recording has also
established a similar rapid amygdala activation specific to the
low spatial frequency components of fearful faces (Méndez-
Bértolo et al., 2016). Crucially, ASD has been associated with
structural and functional abnormalities in the amygdala (Baron-
Cohen et al., 2000), indicating that rapid subcortical activation
could explain differences in saccadic anomalies in the high AT
group in the current study. Although the amygdala has typically
been associated with threat detection, other work suggests that
the amygdala mediates goal-directed relevance detection more
generally (Sander et al., 2003). Thus, the temporal advantage that
we observed in the detection of faces, even though they had a
range of different expressions, could reflect the operation of these
amygdala-based mechanisms.

Abnormalities in the magnocellular visual system have been
reported in both ASD (e.g., Greenaway et al., 2013) and in
neurotypical individuals with higher ATs (e.g., Crewther et al.,
2015). The magnocellular system is the faster conducting of the
two largely separate geniculostriate pathways and preferentially
responds to stimuli with lower spatial- and higher temporal-
frequencies (Laycock et al., 2007). The magnocellular system
is also thought to drive the subcortical route through superior
colliculus (Schiller et al., 1979), and, of particular interest
here, has been linked to the fast subcortical face detection
pathway that subserves automatic face processing (Johnson,
2005). A number of studies in neurotypical adults have
demonstrated a link between subcortical activation for faces
with low spatial frequencies expected to bias the magnocellular
system (Johnson, 2005). There is also evidence for impairments
in face and emotion processing in ASD being linked to the

low spatial frequency content of face images (e.g., de Jong
et al., 2008). Thus, although highly speculative with regard to
the current data, it remains possible that anomalies in these
face processing mechanisms via the superior colliculus, pulvinar
amygdala pathway may contribute to the absence of a saccadic
advantage for upright compared with inverted faces in the high
AT participants.

One potential limitation of the current study is the issue of
gender and the relatively lower number of males in the low AT
group, despite this imbalance not reaching statistical significance.
It should be noted that the direction of this imbalance is
consistent with the higher incidence of males diagnosed with
ASD (Fombonne, 2005) and the higher number of ATs endorsed
by males than females in the general population (Baron-Cohen
et al., 2001). Follow-up analyses did not show any effect of gender
on task performance, a finding consistent withWyer et al. (2012),
though the current study was not sufficiently powered to include
gender in the main analysis. Thus, although it does not appear to
have done so, it remains possible that gender may have exerted
some influence on the results.

In conclusion, the current study finds evidence for differences
in saccadic processing between high and low AT participants,
that appears to be specific to face detection, and is most
pronounced in the examination of saccadic face inversion effects.
This finding reinforces the suggestion that people with high ATs
do not treat faces as a special category of object, and instead
appear to process them in the same way as they do any object.
Alternatively, it could be argued they may process any object
as they do a face, though in either case, it appears both types
of stimuli may have equal salience in these participants. Taken
together then, our findings have revealed an anomaly in the
automatic and rapid detection of upright compared with inverted
faces in individuals with high ATs.
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APPENDIX

FIGURE A1 | Reanalysis using individual median scores, rather than means
as in Figure 2. (A) Median saccade onset times (SOTs) to detect the
photograph containing a face or a car in the upright and inverted tasks for
high and low Autism Trait (AT) Groups. (B) Face and car inversion effects,
calculated as the difference in median SOTs between upright and inverted
tasks for high and low Autism Trait (AT) Groups. Error bars indicate standard
error of the mean. Error bars indicate SEM.
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