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Introduction: Several studies explored the biological effects of extremely low-frequency
magnetic fields (ELF-MFs) in vitro, reporting the induction of functional changes in
neuronal activity. In particular, ELF-MFs can influence synaptic plasticity both in vitro and
in animal models but some studies reported an increase in long-term potentiation (LTP)
whereas others suggested its reduction. However, no specific study has investigated
such effect on humans.

Aims: To evaluate whether ELF-MFs affect the propensity of the human cortex to
undergo LTP-like plasticity.

Methods: We designed a randomized, single-blind, sham-controlled, cross-over study
on 10 healthy subjects. Cortical plasticity was induced by intermittent theta burst
stimulation (iTBS) before and after 45-min ELF-MFs (75 Hz; 1.8 mT) or sham exposure
and was estimated by measuring the changes of motor evoked potentials (MEP)
amplitude before and after each iTBS.

Results: No adverse events were reported. No significant effects of ELF-MFs on cortical
plasticity were found.

Conclusion: Whole-brain exposure to ELF-MFs (75 Hz; 1.8 mT) is safe and does not
seem to significantly affect LTP-like plasticity in human motor cortex.

Keywords: magnetic fields, brain stimulation, plasticity, long-term potentiation, low frequency, extremely low-
frequency magnetic fields

INTRODUCTION

Several studies explored the biological effects of extremely low-frequency (0–300 Hz) magnetic
fields (ELF-MFs) in vitro, reporting the induction of functional changes in neuronal activity
(Di Lazzaro et al., 2013). On human subjects, ELF-MFs can produce measurable changes in
brain electrical activity and can also influence cerebral functions such as motor control, sensory
perception, cognitive activities, sleep, and mood (Bagheri Hosseinabadi et al., 2019). More
recently, the potential application of ELF-MFs for non-invasively modulating brain activity has
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been investigated in different neuropsychiatric diseases
such as stroke (Capone et al., 2009) and depression
(Bagheri Hosseinabadi et al., 2019).

According to the most part of the studies, ELF-MFs are safe
and well tolerated (Di Lazzaro et al., 2013). However, previous
papers have showed deterioration in memory and learning
processes after ELF-MFs exposure both in animals (Jadidi et al.,
2007) and in humans (Podd et al., 2002; Corbacio et al., 2011).
Instead, other studies have reported, after chronic ELF-MFs
exposure, a positive effect in social recognition memory (Varró
et al., 2009) and spatial learning (Liu et al., 2015).

Long-term potentiation (LTP) is a form of synaptic plasticity
(Bear and Malenka, 1994) and is considered one of the
most important molecular mechanisms underlying learning and
memory. ELF-MFs affect synaptic plasticity both in vitro (Ahmed
and Wieraszko, 2008; Varró et al., 2009; Balassa et al., 2013) and
in animal models (Komaki et al., 2014), but type and significance
of such effect remain unclear. Indeed, some studies reported
an increase of LTP (Ahmed and Wieraszko, 2008; Komaki
et al., 2014) whereas others suggested its reduction (Balassa
et al., 2013). Moreover, no specific study has investigated such
effect in humans.

Recently, protocols of repetitive transcranial magnetic
stimulation (rTMS) of the brain resembling experimental LTP
models have been introduced. The rTMS paradigm known as
intermittent theta burst stimulation (iTBS) produces a prolonged
increase of cortical excitability (Huang et al., 2005). The effects of
iTBS are influenced by drugs that act at the N-methyl-D-aspartic
acid (NMDA) receptor level (Huang et al., 2007), supporting the
hypothesis that the after-effects of iTBS involve LTP-like changes.
Thus, by this technique, it is possible to evaluate, non-invasively,
synaptic plasticity in humans.

Aim of the present study was to evaluate, by means of iTBS,
whether ELF-MFs exposure affects the propensity of the cortex to
undergo LTP-like plasticity.

MATERIALS AND METHODS

We designed a randomized, single-blind, sham-controlled, cross-
over study on 10 healthy subjects (7 F, 25 ± 2 years). The study
was performed according to the Declaration of Helsinki, was
approved by the Local Ethics Committee and all participants
signed a written informed consent.

Study Design
Figure 1 graphically depicts the experimental design. Cortical
plasticity was estimated by measuring the changes of cortical
excitability induced by iTBS before and after 45 min of exposure
to ELF-MFs or to sham stimulation. All the subjects underwent
two sessions of the study (REAL or SHAM) at a distance of
at least 1 week. The order of the session was counterbalanced
between subjects.

Evaluation of Cortical Plasticity
For the evaluation of cortical excitability, magnetic stimulation
was performed with a high-power Magstim 200 (Magstim Co.,

Whitland, Dyfed, United Kingdom). A figure-of-eight coil, with
external loop diameter of 9 cm, was held over the motor
cortex at the optimum scalp position to elicit motor evoked
potentials (MEPs) in the contralateral first dorsal interosseous
muscle (FDI). The induced current flowed in a postero-anterior
direction. MEPs were recorded via two 9-mm-diameter Ag–AgCl
surface electrodes with the active electrode over the motor point
of the FDI and the reference on the metacarpophalangeal joint of
the index finger. The EMG was amplified and filtered (bandwidth
3 Hz–3 kHz) by D360 amplifiers (Digitimer, Welwyn Garden
City, Herts, United Kingdom). Data were collected on a computer
with a sampling rate of 10 kHz per channel and stored for later
analysis using a CED 1401 A/D converter (Cambridge Electronic
Design, Cambridge, United Kingdom).

At baseline, we measured motor thresholds and MEP
amplitude bilaterally. Resting motor threshold (RMT) was
defined as the minimum stimulus intensity that produced a
liminal MEP (about 50 µV in 50% of ten trials) at rest. Active
motor threshold (AMT) was defined as the minimum stimulus
intensity that produced a liminal MEP (about 200 µV in 50%
of ten trials) during isometric contraction of the tested muscle.
A constant level of voluntary contraction was maintained with
reference to an oscilloscope display of the EMG signal in front
of the subject. Auditory feedback of the EMG activity was also
provided. RMT and AMT are given in percentage of maximum
stimulator output (% MSO). For MEP amplitude, the responses
to 15 stimuli at an intensity of 120% RMT were averaged at rest
(Di Lazzaro et al., 2008, 2011). Trials contaminated by EMG
activity were discarded.

Intermittent theta burst stimulation was delivered over the
right motor cortex “hotspot” for MEPs in the contralateral FDI
muscle using a DUOMAG XT stimulator (DEYMED Diagnostic,
Czech Republic) and a figure-of-eight shaped coil, with the
handle pointed posteriorly and approximately perpendicular to
the central sulcus. The initial direction of the current induced
in the brain was anterior to posterior. The magnetic stimulus
had a biphasic waveform with a pulse width of about 280 µs
and maximum magnetic field strength of 1.5 T. The stimulation
intensity was defined in relation to AMT evaluated using the
MagPro stimulator. An intensity of 80% AMT was used. We
used the iTBS protocol in which 10 bursts of high frequency
stimulation (3 pulses at 50 Hz) are applied at 5 Hz every 10 s for
a total of 600 pulses (Huang et al., 2005).

ELF-MFs Exposure
The system for delivering pulsed ELF-MFs is described in Capone
et al. (2009). It consists of a custom-made rectangular, flexible
coil kept in place by a Velcro strap and positioned tangential
to the inion and to a point 3 cm above nasion. The magnetic
pulse generator (B-01; IGEA, Carpi, Italy) supplied the coil with a
single-pulsed signal at 75± 2 Hz, with a pulse duration of 1.3 ms.
The peak intensity of the magnetic field was 1.8 ± 0.2 mT. For
sham exposure, the coil was applied in the same position but
the pulse generator was not turned on. Subjects were blinded
for stimulation conditions. ELF-MFs exposure does not give any
sensation; for this reason, it is impossible for the subject to
distinguish between real from sham exposure.
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FIGURE 1 | Experimental design. Cortical plasticity was induced by iTBS before and after 45-min ELF-MFs/sham exposure and was estimated by measuring the
changes of motor evoked potentials (MEP) amplitude before and after each iTBS.

Statistics
The sample size was set to be 25% larger than similar previous
studies (Siebner, 2004).

Cortical plasticity was estimated as difference in cortical
excitability before and after iTBS. The following measures were
therefore computed for both hemispheres:

1MEPpre = MEPpre2 −MEPpre1;

1MEPpost = MEPpost2 −MEPpost1

where pre represents the values obtained before ELF-MFs
exposure (pre1 before iTBS and pre2 after iTBS) and post
represents the values recorded after ELF-MFs exposure (post1
before iTBS and post2 after iTBS). The effect of ELF-MFs on
cortical plasticity was tested with a repeated measure ANOVA for
each hemisphere, with two factors: stimulation (two levels: Real
and Sham) and Time (Pre and Post). The significance level was
set to p < 0.05.

RESULTS

No adverse events or discomfort sensations were reported.
The effects of iTBS and ELF-MFs exposure are illustrated
in Figure 2. The database with MEP amplitude raw data
is available as Supplementary Material. No significant main
factors or interactions were found for both the right and left
hemispheres (Figure 3).

DISCUSSION

This is the first study that has evaluated the effect of ELF-
MFs on cortical plasticity in the intact human brain. In a
previous study, conducted on a different sample using the
same technique, we explored the effect of ELF-MFs on TMS
measures of cortical excitability (Capone et al., 2009). We found
a pronounced increase in intracortical facilitation (ICF) while
other parameters such as RMT, AMT, short-interval intracortical

FIGURE 2 | Effects of ELF-MFs on cortical plasticity. ELF-MFs were
performed on both hemispheres simultaneously. iTBS was applied over the
right hemisphere before (Pre) and after (Post) ELF-MFs. iTBS-related effects
were estimated on both right and left hemispheres as MEP amplitude
difference post iTBS – pre iTBS (1 MEP). Each bar represents a 1 MEP.
Green bars refer to Sham ELF-MFs, red bars refer to Real ELF-MFs.
Inter-subjects’ variability is expressed as 2 standard errors of the mean. No
significant effects of ELF-MFs on cortical plasticity were found.

inhibition (SICI) and short-interval afferent inhibition (SAI)
remained unchanged. Since ICF mainly reflects excitatory
neurotransmission mediated by the NMDA receptors (Di
Lazzaro et al., 2008), we hypothesized that ELF-MFs may produce
a selective enhancement of glutamatergic activity in human brain.

In the present study we evaluated the effect of ELF-MFs
on cortical plasticity, in terms of changes induced by iTBS on
TMS measures of cortical excitability. Taken together, our results
suggest that although ELF-MFs can influence glutamatergic
neurotransmission, they do not affect the propensity of the
motor cortex to undergo LTP-like plasticity in vivo. Several
in vitro studies have demonstrated that ELF-MFs modulate the
activity of different molecules involved in the mechanisms of
LTP such as cAMP (Siebner, 2004), glutamate (Hogan and
Wieraszko, 2004), and NMDA receptors (Wieraszko et al., 2005).
Moreover, they can influence synaptic plasticity toward an
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FIGURE 3 | Motor evoked potentials in baseline conditions and after iTBS, before and after ELF-MFs exposure. This figure shows right hemisphere MEP recorded in
one representative subject. Each trace is the average of 15 sweeps. (A) The baseline evaluation of cortical plasticity: MEP amplitude was measured before (i.e.,
MEP_PRE1/blue line) and after iTBS (i.e., MEP_PRE2/orange line). After ELF-MFs exposure, the same evaluation was performed again, as shown in (B). Once again,
MEP amplitude was measured before (i.e., MEP_POST1/blue line) and after iTBS (i.e., MEP_POST2/orange line).
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increase (Varró et al., 2009) or a decrease (Balassa et al., 2013)
of synaptic strength according to the structural features and
neuronal network investigated in the model. Discrepancies
between in vivo and in vitro findings could suggest that the
effect of ELF-MFs on synaptic plasticity could be counteracted,
in vivo, by homeostatic plasticity phaenomena that occur in
the intact brain, as already demonstrated for other non-invasive
brain stimulation techniques (Müller-Dahlhaus and Ziemann,
2015). This hypothesis is mainly supported by animal studies
showing that ELF-MFs exposure has different effects when
applied on brain slices as opposed to whole brain (Varró
et al., 2009) and by human studies where ELF-MFs modulate
glutamatergic neurotransmission without inducing changes in
plasticity (Capone et al., 2009).

Other possibilities should be also considered. Since both
iTBS and ELF-MFs seem to act on glutamatergic transmission,
therefore it is possible that previous exposure to iTBS precludes
the development of further plasticity induced by ELF-MFs
(ceiling effects/metaplasticity) (Manikonda et al., 2007). Finally,
we cannot rule out that the simultaneous excitatory stimulation
of both hemisphere by ELF-MFs could produce a null net effect
because of an interhemispheric interaction.

Our study has a number of limitations. First, the small sample
size of this proof-of-concept study preclude us to draw any
definitive conclusions. Second, we explored only the effect of
ELF-MFs on motor cortex, while not considering other brain
areas (e.g., prefrontal and frontal cortex, somatosensory cortex).
Third, the influence of ELF-MFs on cortical plasticity was
estimated by measuring the changes in MEP amplitude without
considering other important parameters such as input/output
curves, RMT, and AMT. Moreover, the number of TMS responses
(15) averaged for obtaining MEP amplitude, although in line with
previous similar studies (Di Lazzaro et al., 2008, 2011) could be
insufficient to capture the effect of ELF-MFs exposure. Finally,
we did not perform neuropsychological tests to evaluate the effect
of ELF-MFs on cognitive functions related to LTP-like plasticity
such as memory or learning processes, but we only relied on
neurophysiological measures.

CONCLUSION

In conclusion, this pilot study did not unveil any significant
effect of 45-min whole-brain exposure to ELF-MFs (75 Hz,
1.8 mT) on LTP-like plasticity in motor cortex. In light of these
results, the effects of ELF-MFs on memory and learning reported
by some previous studies could depend on: (a) modulation of

plasticity mechanisms different from those explored by iTBS
(Zhu et al., 2015), (b) selective influence on brain regions
specifically involved in memory such as hippocampus (not
investigated in this study), (c) the differential characteristics of
ELF-MFs used in the different studies. Additional studies in larger
sample and with different exposure systems (e.g., different non-
invasive brain stimulation techniques protocols) are mandatory
to confirm our results and to better understand the effect of
ELF-MFs on the human brain.
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