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New York, New York, NY, United States, 4Ralph H. Johnson VA Medical Center, Charleston, SC, United States

Neonates born premature or who suffer brain injury at birth often have oral feeding
dysfunction and do not meet oral intake requirements needed for discharge. Low oral
intake volumes result in extended stays in the hospital (>2 months) and can lead to
surgical implant and explant of a gastrostomy tube (G-tube). Prior work suggests pairing
vagus nerve stimulation (VNS) with motor activity accelerates functional improvements
after stroke, and transcutaneous auricular VNS (taVNS) has emerged as promising
noninvasive form of VNS. Pairing taVNS with bottle-feeding rehabilitation may improve
oromotor coordination and lead to improved oral intake volumes, ultimately avoiding
the need for G-tube placement. We investigated whether taVNS paired with oromotor
rehabilitation is tolerable and safe and facilitates motor learning in infants who have
failed oral feeding. We enrolled 14 infants [11 premature and 3 hypoxic–ischemic
encephalopathy (HIE)] who were slated for G-tube placement in a prospective,
open-label study of taVNS-paired rehabilitation to increase feeding volumes. Once-daily
taVNS was delivered to the left tragus during bottle feeding for 2 weeks, with optional
extension. The primary outcome was attainment of oral feeding volumes and weight gain
adequate for discharge without G-tube while also monitoring discomfort and heart rate
(HR) as safety outcomes. We observed no adverse events related to stimulation, and
stimulation-induced HR reductions were transient and safe and likely confirmed vagal
engagement. Eight of 14 participants (57%) achieved adequate feeding volumes for
discharge without G-tube (mean treatment length: 16 ± 6 days). We observed significant
increases in feeding volume trajectories in responders compared with pre-stimulation
(p < 0.05). taVNS-paired feeding rehabilitation appears safe and may improve oral
feeding in infants with oromotor dyscoordination, increasing the rate of discharge without
G-tube, warranting larger controlled trials.

Keywords: transcutaneous auricular vagus nerve stimulation, transcutaneous vagus nerve stimulation, vagus
nerve stimulation, vagus nerve stimulation, feeding, pediatric rehabilitation, hypoxic–ischemic encephalopathy

Frontiers in Human Neuroscience | www.frontiersin.org 1 March 2020 | Volume 14 | Article 77

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2020.00077
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2020.00077&domain=pdf&date_stamp=2020-03-18
https://creativecommons.org/licenses/by/4.0/
mailto:jenkd@musc.edu
https://doi.org/10.3389/fnhum.2020.00077
https://www.frontiersin.org/articles/10.3389/fnhum.2020.00077/full
https://www.frontiersin.org/articles/10.3389/fnhum.2020.00077/full
https://www.frontiersin.org/articles/10.3389/fnhum.2020.00077/full
https://www.frontiersin.org/articles/10.3389/fnhum.2020.00077/full
https://www.frontiersin.org/articles/10.3389/fnhum.2020.00077/full
https://loop.frontiersin.org/people/787573/overview
https://loop.frontiersin.org/people/850190/overview
https://loop.frontiersin.org/people/913421/overview
https://loop.frontiersin.org/people/68691/overview
https://loop.frontiersin.org/people/9726/overview
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Badran et al. taVNS-Paired Feeding for Newborns

INTRODUCTION

In the motor task of feeding, neonates are required to coordinate
a complex and rapid sequence of sucking, swallowing, and
breathing, all integrated with a typical respiratory rate of
40 breaths per minute. This requires advanced sensorimotor
integration of muscles of the face, head, and neck with the
myelinated vagal regulation of breathing and heart rate (HR;
Porges, 1992; Portales et al., 1997; Suess et al., 2000; Porges
and Furman, 2011). Feeding difficulty is the primary reason
for delayed hospital discharge in preterm infants with brain
dysmaturation or near-term/term infants with hypoxic–ischemic
encephalopathy (HIE) who are otherwise clinically stable and
ready for discharge (Adamkin, 2006; Lau et al., 2015; Jackson
et al., 2016). This increases hospital costs and is associated
with a negative impact on long-term neurodevelopment,
particularly with receptive and expressive language deficits
(Adams-Chapman et al., 2013; Malas et al., 2015). The current
standard of treatment for infant oromotor dysfunction consists
of occupational or speech therapists feeding infants by mouth
(PO) once a day to encourage safe feeding while learning this
motor skill. However, many infants do not show improvement
by term equivalent age, even after many weeks of rehabilitation
with therapists, and have a gastrostomy tube (G-tube) placed for
adequate nutrition.

Difficulty learning the motor sequence for oral feeding
may be due to brain injury from infection, ischemia, and
dysmaturity (Huang et al., 2015; Ismail et al., 2017). This diffuse
injury results in less myelination and fewer brainstem–cortical
connections (Duerden et al., 2015; Rocha-Ferreira and Hristova,
2016) and may lead to reduced corticobulbar regulation of
both vagal activity and the striated muscles of the face, head,
and neck (Suess et al., 2000). Atypical neural maturation with
prematurity or brain injury also leads to overactive sympathetic
inputs into the autonomic nervous system combined with lower
parasympathetic vagal tone and persistent brainstem dysmaturity
(Heilman et al., 2012; Rocha-Ferreira and Hristova, 2016). Such
reactivity and neural dysmaturation make coordinating and
learning a complex motor task even more difficult, explaining
why the feeding mechanism must be taught through feeding
rehabilitation, when it should be a normal reflex.

With improved survival rates of more critically ill neonates,
the national rate of G-tube placement has doubled from
2000 to 2012 (Hatch et al., 2018). Complications of G-tube
placement and removal often lead to subsequent hospitalizations
or procedures after discharge from the nursery (McSweeney
et al., 2015; Khalil et al., 2017; Hatch et al., 2018). At the Medical
University of South Carolina (MUSC), preterm infants who have
not reached full PO feeds by 40-week gestational age (GA) and/or
after 40 days of attempting PO feeds have a >90% chance of
eventually needing G-tube implantation to achieve full enteral
feeds (Ryan and Gehle, 2019). Any therapy that facilitates motor
learning and enhances feeding skills would have a significant
impact for infants who fail feeding rehabilitation.

Vagus nerve stimulation (VNS) paired with motor activity
enhances neuroplasticity, facilitates cortical reorganization and
neurogenesis, and improves motor function post stroke (Porter

et al., 2012; Engineer et al., 2015; Dawson et al., 2016). Recently,
a noninvasive form of VNS known as transcutaneous auricular
VNS (taVNS) targeting the auricular branch of the vagus nerve
(ABVN) has demonstrated activation of the vagal afferent and
efferent networks (Kraus et al., 2013; Garcia et al., 2017; Yakunina
et al., 2017; Badran et al., 2018a,c). In patients with limb
impairment post stroke or brain injury, pairing taVNS with
motor activation can enhance plasticity and improve functional
motor recovery (Dawson et al., 2016; Pruitt et al., 2016; Redgrave
et al., 2018). This human work extends the large animal
literature that demonstrates pairing VNS with a behavioral
intervention restores brain function (Hays et al., 2014a,b;
Khodaparast et al., 2014, 2016). Therefore, both animal and
adult human data support the likely efficacy of VNS-paired with
motor rehabilitation.

We applied this model of taVNS paired with a motor
behavior to neonates who have failed to learn the oromotor
skill of feeding. We conducted a prospective, open-label trial
exploring the use of once-daily taVNS-paired rehabilitation
training to enhance oral feeding behavior in neonates with
oromotor dyscoordination. We hypothesized that taVNS paired
with bottle feeding may function in a similar mechanism
by enhancing cortical plasticity in neonates with oromotor
deficits, resulting in improved acquisition of the sensorimotor
skill of feeding. With a favorable safety profile in adults and
the ability to treat noninvasively at the bedside, taVNS is an
attractive therapeutic option for neuromodulation therapies in
this vulnerable population.

MATERIALS AND METHODS

Study Overview
This study was conducted at the MUSC and was approved by
the MUSC Institutional Review Board. After obtaining parental
consent, we enrolled 14 participants who were consulted for
G-tube placement in a prospective, open-label phase 0 trial to
determine the feasibility, safety, and potential clinical benefit
of a novel taVNS-paired oromotor rehabilitation paradigm
in neonates with oromotor dyscoordination. We reported
on five of the participants in this trial in an earlier brief
communication (Badran et al., 2018b). Our primary clinical
outcomes were improved PO feeding volumes and attaining
full PO feeds adequate for discharge, thereby avoiding G-tube
implantation (Figure 1).

Participants
We included infants who were born premature at ≤33 weeks’
gestation at birth (n = 11) or suffered global HIE (n = 3) and who
failed to make progress in PO volumes. Importantly, all enrolled
participants were clinically determined to require a G-tube due
to failure to achieve oral feeds sufficient for discharge from the
hospital. Parents of all 14 infants had been approached about
G-tube placement by the clinical teams prior to enrollment.
Historically at MUSC, these infants would have <10% chance
of avoiding a G-tube. We excluded infants who were clinically
unstable, were unable to attempt every feed PO, were on
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FIGURE 1 | Experimental overview.

significant respiratory support with frequent bradycardia or
apnea events, or had cardiomyopathy.

Transcutaneous Auricular Vagus Nerve
Stimulation-Paired Feeding Protocol
We delivered taVNS once a day during a bottle feed, timed with
observed sucking and swallowing for 30 min or the duration
of the feed. Stimulation was paired with nutritive sucking
and swallowing and was paused during rest or burping. The
treatment period was 2 weeks, with the possibility to continue
for an additional 2 weeks if substantial progress was made. If
PO feeds had not progressed after 2 weeks of taVNS treatment,
the parents and the clinical team made decisions about timing of
G-tube placement.

Transcutaneous Auricular Vagus Nerve Stimulation
Setup and Technique Refinement
We delivered taVNS using a constant current electrical nerve
stimulator (Digitimer DS7AH, Digitimer LTD) connected to
custom-designed neonatal ear electrodes (Figure 2). Electrodes
targeted the anterior wall of the ear canal (anode) and
the tragus (cathode). Stimulation was triggered manually for
participants 1–7 or via a novel closed-loop electromyography
(EMG) triggering system for participants 8–14 (Cook et al., 2020

under review, Brain Stimulation). The closed-loop trigger system
was developed to more accurately pair stimulation trains with
coordinated suck–swallow oromotor activation, to increase ease
of use and to decrease operator tasks. Real-time EMG recordings
were used to trigger taVNS stimulation based on masseter
activation during suck–swallow. EMG leads were placed on the
masseter muscle (recording), frontal eminence (reference), and
center of the forehead (common).

We also refined the EMG-triggered pulse train for optimal
pairing of stimulation with the sensorimotor sequence required
for efficient feeding. This includes the pre-motor stage of sensing
the nipple in the mouth, expressing and sensing milk on the
tongue, and subsequent activation of multiple pharyngeal and
hyoid muscles that effect swallowing. Many of these muscles are
innervated by branches of the vagus nerve. With a 3-s pulse train
following the EMG trigger, sucks that occurred at the end of the
taVNS train did not receive stimulation (n = 4 participants). By
lengthening the pulse train to 10 s, we achieved better pairing of
stimulation with suck bursts (n = 3 participants).

Transcutaneous Auricular Vagus Nerve Stimulation
Dosing
Stimulation parameters were as follows: frequency −25 Hz,
pulse width −500 µs, and current intensity −0.1 mA below
perceptual threshold (PT). We determined PT by increasing the
stimulation current in 0.1-mA increments while monitoring for
indication that the infant perceived the stimulation, indicated by
shrugging, change in facial expression, or fidgety movements.
A neonatologist and a technician performed the stimulation.
During treatment, infants were fed by occupational or speech
therapists, staff, or parents. A custom MATLAB program
recorded pulses and current intensity delivered during each
session. We recorded PO volume intake during taVNS feed, total
daily PO volume, and any adverse events.

Safety Monitoring and Target Engagement
The neonatal and infant pain scale (NIPS) scores (Lawrence et al.,
1993; Witt et al., 2016) were recorded at initiation, midway, end,
and 5 min after each treatment session. If NIPS scores increased
greater than three points or the infant appeared to be sensing the
stimulation, we decreased the current intensity by 0.1 mA. We
monitored redness and skin irritation at electrode site and HR on
bedside monitors for bradycardia, defined per nursery protocol
as<80 bpm for 5 s. For target attainment, we recorded the lowest
HR within the first 60 s of stimulation, the time to the lowest HR,
and the rebound HR, to verify target engagement of vagus nerve
using the parasympathetic response as an indicator (Badran et al.,
2018c). We also recorded HR in 60-s epochs during taVNS-
paired feeds and non-stimulation (control) feeds.

Primary Outcome Measures
The primary safety outcomes were bradycardia events and NIPS
score increase of greater than or equal to 3 points due to taVNS
stimulation. The primary clinical outcome of this study was
a binary endpoint of full oral feeds or G-tube implantation.
Responders were participants who were able to increase and
maintain full daily PO intake for 4 days (>120 ml/kg/day) and
weight gain adequate for discharge (>20 g/day). Infants who
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FIGURE 2 | (A) Auricular vagus nerve fibers (He et al., 2012). (B) Close-up photo of the left ear with attached custom, 3D-printed transcutaneous auricular vagus
nerve stimulation (taVNS) electrodes attached. (C) Photo of the taVNS-paired feeding session with stimulation delivered concurrently with bottle feeding (written
informed consent was obtained from the legal guardians for the publication of this image).

received G-tubes for inadequate intake after taVNS treatment
were classified as non-responders. Other outcomes were rate of
increase of daily oral feeding volumes and length of time to
achieve full oral feeds.

Statistical Analyses
We analyzed group HR effects that compared HR measured
before taVNS (or control) feed, the lowest HR at onset of
taVNS (or control) feed, and during taVNS-paired feeding (or
control) feeds using a one-way ANOVA. We then investigated
the within-individual changes in HR using a paired t-test to
compare each participant’s baseline and the lowest HR prior
to feed to the lowest HR during PT within taVNS or control
feeds, and unpaired t-tests for HR differences across taVNS
or control feeds. Behavioral feeding data were analyzed by
comparing the slopes of the linear regression generated from the
rate of daily PO volume in two different time periods: (1) the
30 days before taVNS; and (2) taVNS-paired feeding period.
We compared both between- and within-group subjects in a
2 × 2 design (pre/post taVNS and responder/non-responder).
Videofluoroscopic swallow study (VFSS) scores prior to taVNS
treatment initiation were compared with treatment period
according to response group via unpaired t-test.

RESULTS

Demographics
We enrolled 11 preterm and 3 near-term/term HIE infants.
Clinical characteristics are noted in Table 1. Central nervous
system (CNS) insults were prevalent (11/14) and consisted of
intraventricular hemorrhage (IVH) or cerebellar hemorrhage,
white matter infarction or periventricular leukomalacia (PVL),
lenticulostriate vasculopathy (LSV), and acute moderate-

to-severe HIE. A majority of infants (9/14) had sepsis
complicating their neonatal course, which is associated with
white matter neuroinflammation and infarction, and worse
neurodevelopmental outcomes (Alshaikh et al., 2013; Bakhuizen
et al., 2014; Bright et al., 2017; Dubner et al., 2019).

PO feeds were attempted for a mean (SD) of 49 ± 24.3 days
before study enrollment in these 14 preterm and HIE infants. At
study entry, most preterm infants were more than 44-week GA,
well past term equivalent age, and had been trying to learn to
feed for more than 40 days, at which point >90% of preterm
infants at MUSC have attained full PO feeds (Ryan and Gehle,
2019). Prior to enrollment in this research trial, the clinical
team had approached all parents about the need for a G-tube
(Figure 1).

Thirteen out of 14 infants had clinical studies of
videofluoroscopic barium swallow (VFSS, n = 11) or an
impedance probe (n = 2) prior to enrollment. Six infants also
had upper gastrointestinal (UGI) contrast studies. Eight infants
had gastroesophageal reflux documented on one or more of
these studies and were treated with histamine or proton pump
antagonists. The VFSSs were performed and scored by three
pediatric speech language pathologists using the Rosenbek scale
(Rosenbek et al., 1996). Mean (SD) penetration and aspiration
scores were 6 ± 3 with thin liquids (range 1–8). Six infants had
maximum scores of 8, indicating aspiration below vocal folds
with no attempt to eject liquid: three of these infants were trialed
with thickened feeds prior to beginning the study; two infants
continued to attempt with thin maternal breast milk, which
could not be adequately thickened during the taVNS treatments;
one infant showed dramatic improvement in oral feeding
volumes to 100 ml/kg/day after 2 weeks of taVNS treatments but
had persistent coughing during feeds and was transitioned to
thickened feeds near the end of the treatment course.
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TABLE 1 | Infant demographics.

taVNS-treated infants Preterm (n = 11) Term HIE (n = 3)

Sex M/F 5/6 0/3
Mean GA at birth (weeks) 28 ± 3 36 ± 0.5
Mean birth weight (g) 1,027 ± 453 2,600 ± 697
Mean GA at enrollment (weeks) 45 ± 5 40 ± 2
Mean days attempting PO
before taVNS

57 ± 22 24 ± 10

Sepsis (including NEC,
pneumonia, UTI, viral infections)

9 0

CNS abnormalities 8 3
IVH or other intracranial bleed
(grade)

6 (grades 1 and 2) 1 (grade 3)

HIE (term HIE stage 2 n = 1), 3
(n = 1); preterm HIE stages not
validated)

2 2

White matter infarction or PVL 2 1
Lenticulostriate vasculopathy 1 1
Infants of diabetic mothers 3 1
Hypoglycemia 4 1
Hyperglycemia 4 0
Gastroesophageal reflux
requiring treatment

8 0

Aspiration on MBSS 5 1

Note. GA, gestational age; NEC, necrotizing enterocolitis; UTI, urinary tract infection; PVL,
periventricular leukomalacia; taVNS, transcutaneous auricular vagus nerve stimulation;
HIE, hypoxic–ischemic encephalopathy; GA, gestational age; MBSS, modified barium
swallow study.

Safety
We monitored for bradycardia during both PT and during the
stimulation-paired feed. There was only one bradycardia adverse
event during a taVNS-paired feeding, likely unrelated to the
stimulation as it was associated with choking and emesis, and
readily rebounded with pausing the bottle feed.

There were no episodes of tragus irritation or redness at
the electrode site. Discomfort with stimulation remained low,
with the median NIPS scores [interquartile range (IQR)] of
0 (0, 1.0) before, during, and after the taVNS-paired feeding.
Out of a total of 228 taVNS-paired feeding sessions, there
were 10 sessions (4.3%) during which NIPS scores increased
greater than or equal to 3 points from pre-stimulation to during
taVNS-paired feeding. In seven instances, the fussiness resolved
quickly, and in three instances (1.3%), stimulation current
intensity was decreased for a persistent NIPS score increase. In
16 instances (7%), we decreased stimulation when we believed it
was possible that the infant was feeling stimulation but did not
demonstrate a change in NIPS score. Four feeds were stopped
in one infant for excessive fussiness that did not resolve after
stopping stimulation, related to reflux (pH probe was in place for
one instance).

Heart Rate as a Putative Biomarker of
Vagus Target Engagement
We performed a detailed analysis of HR changes in seven
consecutive participants (#8–14), averaging 60-s HR data over
the 5 min prior to PT and for the first 5 min of treatment. The
mean HR before taVNS, compared with the onset of taVNS,
revealed non-significant differences in physiology resulting from
stimulation. The mean HR during the first 5 min before

FIGURE 3 | Box and whisker plots for heart rate (HR) data collected during
taVNS and control feeds (min to max). (A) taVNS with these parameters
induces immediate, safe reductions in HR that recover during feeding (n = 7,
39 total feedings in seven participants). For the 5-min epochs prior to
perceptual threshold (PT) and during taVNS-paired feeding, HR was averaged
in 60-s intervals for a total of 5 min. (B) The mean lowest HR during PT was
calculated from real-time HR monitor recorded during onset of stimulation to
determine the PT. taVNS induced significant reductions in HR compared with
those in pre-stimulation baseline (p < 0.0001); however, these reductions
recovered to baseline levels immediately during the taVNS-paired feeding.
There was no significant reduction in HR during control feeds (feeding HR
recorded without taVNS administered, n = 7, 19 feeds).

taVNS-paired feeding was 161 ± 11.7 bpm, compared with
159.6 ± 11.22 bpm during feeding (n = 39 feedings, seven
participants, Figure 3A). For control feeds without stimulation,
mean HR similarly does not change as a function of feeding.
The mean HR was 156.7 ± 15.27 bpm for 5 min before the feed
and 162.5 ± 15.98 bpm for the first 5 min during the feed, both
non-significantly different from taVNS feeds.

The lowest HR was inspected as an indicator of safety profile.
We compared the lowest HR before feed and the lowest HR
during feeds. For the seven patients during taVNS feeds, the
lowest HR before feed was 151.3 ± 15.1, and the lowest HR
during onset of taVNS was 142.3 ± 16.9 (p = 0.0005). For control
feeds, the lowest HR prior to feed was mean (SD) of 146.2± 14.6,
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and the lowest HR during feed was mean (SD) = 152.5 ± 15.7,
and we found no significant difference between timepoints
(Figure 3B).

When determining the PT, we consistently observed a
decrease in HR with onset of stimulation. The transient HR drop
was so common and predictable that we checked impedance and
the earlobe contact, and electrode position if no HR decrease
was observed. During determination of PT, HR decreased a
mean of 20.5 ± 10.6 bpm or 12.6 ± 6.5% of the pre-taVNS HR
(n = 105 taVNS sessions). In contrast, during control feeds, the
HR decreased from before feed to the lowest HR during feed by
a mean of 3.9 ± 6.4 bpm (n = 19 feeds, n = 7 subjects). The
HR decrease with onset of taVNS stimulation was significantly
greater than the HR change with control feeds (p < 0.00001).
The comparison of the lowest HR before feed and with the lowest
HR with taVNS onset vs. control feeds yielded similar results
(Table 3).

We observed this HR decrease as a rapid effect after taVNS
onset. To determine the time frame of the HR changes, we
recorded the time to the lowest HR and HR every 12 s during
entire taVNS-paired feeds in three participants (n = 48 sessions).
In these three participants, the mean HR decreased 16 ± 9 bpm
or 10 ± 3% baseline HR within 26 ± 8 s of stimulation
onset, followed by an HR rebound to or above baseline within
60 s from stimulation onset, which was maintained during the
taVNS-paired feeding. These measurements were reproducible
within and between individuals (Figures 4A–C), replicating our
group’s prior HR findings in an adult human taVNS study
(Badran et al., 2018c).

The HR decrease was likely due to vagus target engagement,
as it was significantly different than the change in HR
before and during control feedings without stimulation. During
non-stimulation control feedings, the HR changed by a mean
of −2.3 ± 14.0 bpm from HR before feed to the lowest HR
during feed (n = 23, ns), compared with the rapid, transient mean
HR decrease upon stimulation with taVNS (−20.5 ± 10.6 bpm,
n = 104 feeds, p < 0.00001, t-test).

Feeding Outcomes
Of the 14 participants enrolled, who had all failed to attain
feeding after an average of 49 days trying (Table 1), eight
infants attained full oral feeds with weight gain adequate for
discharge from the hospital after a course of taVNS-feeding
paired rehabilitation (responders), and six did not receive a
G-tube (non-responders). This 57% response rate is higher
than our institutional historical controls and published rates for
preterm infants (Howe et al., 2007a,b; Jackson et al., 2016; Ryan
and Gehle, 2019).

We examined whether the responders were starting to
improve oral feeds prior to enrolling in the trial. Although
there is day-to-day variability in feeding volumes, the baseline
rate of change of daily PO volume, averaged over 5 days
immediately prior to taVNS treatment, was not significantly
different between responders and non-responders (p = 0.15,
Figure 5). With taVNS treatment, the rate of change of daily
PO volume increased significantly in responders when compared
with that in pre-treatment (p = 0.035). In non-responders, the

TABLE 2 | Clinical condition and treatment characteristics by responders and
non-responders.

taVNS-treated infants Responders
n = 8

Non-responders
n = 6

p

Preterm (mean GA at
birth, birth weight)

6 (27 weeks, 877 g) 5 (29 weeks,
1,107 g)

Term HIE 2 1
Male sex 3 2
Mean days attempting
PO pre-taVNS

48 ± 29 49 ± 16 ns

Mean PO volume over
5 days pre-taVNS

52 ± 22 ml/kg/day 45 ± 26 ml/kg/day ns

Mean # taVNS
treatments

16 ± 6 17 ± 3 ns

Average mA current
intensity

0.82 ± 0.2 0.75 ± 0.2 ns

Total pulses all
treatments (105)

2.9 ± 1.7 2.2 ± 0.5 ns

IDM 1 3
GERD requiring
treatment

4 4

VFSS: mean (SD) PAS
scores

6 ± 3 4 ± 3 ns

Aspiration on VFSS 5 1
Esophagitis 1 2
Periventricular
leukomalacia

1 2

Lenticulostriate
vasculopathy

0 2

Note. taVNS, transcutaneous auricular vagus nerve stimulation; GA, gestational age;
HIE, hypoxic–ischemic encephalopathy; GERD, gastroesophageal reflux disease; VFSS,
videofluoroscopic swallow study; IDM, Infants of diabetic mothers; PAS, Penetration-
Aspiration scale.

TABLE 3 | Lowest HR for 5 min prior to and during onset of taVNS vs. control
feeds (n = 7 subjects).

Lowest HR before Lowest HR during

taVNS-Paired feed 151.3 ± 15.1 142.3 ± 16.9 p = 0.0005
Control feed 146.2 ± 14.6 151.3 ± 15.1 p = 0.2

Note. HR, heart rate; taVNS, transcutaneous auricular vagus nerve stimulation.

mean rate of change of daily PO feeding volumes did not change
from pre-treatment to during treatment (p = 0.29). Responders
and non-responders did not differ in the number of taVNS
treatments, average current intensity, or total pulses over all
treatments (Table 2).

The VFSS scores prior to taVNS treatment were not different
between response groups (p = 0.3). Among the six infants who
demonstrated aspiration below the vocal cords without effort to
eject the liquid, five were responders. Of the responders with
aspiration, three were taking thickened feeds prior to starting the
study, two continued on thin maternal breast milk feeds with
pacing, and one infant on breast milk feeds was transitioned
to thickened feeds during the taVNS treatment period, after
making significant progress to 100 ml/kg/day but demonstrating
persistent coughing.

DISCUSSION

In this phase 0 pilot trial, one taVNS-paired feeding per day
was safe and well tolerated in infants who had failed to achieve
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FIGURE 4 | Reproducibility and reliability of individual HR change. (A) Individual HR change from baseline with onset of stimulation and during taVNS -paired
feeding by individual subject. HR is averaged over all taVNS-paired feedings for each individual subject. (B,C) HR data from individual treatment sessions in two
representative participants. HR changes are shown for each individual taVNS-paired feeding session over 5 min before and during taVNS-paired feedings and the
lowest HR recorded during onset of stimulation with PT determination.

full PO feeds and were referred for G-tube placement. Fifty-
seven percent of treated infants were able to take all feeds by
mouth within a mean of 16 days of treatment. taVNS-paired oral
rehabilitation increased the likelihood of discharge without the
need for G-tube implantation than did a historical retrospective
comparison cohort who received standard feeding rehabilitation
(Ryan andGehle, 2019). A retrospective study of neonatal feeding
outcomes at our institution built a predictive model that shows a
minimal chance of reaching the required PO intake for discharge
if the neonate has not reached 80 ml/kg/day by the 20th day
attempting PO (Ryan and Gehle, 2019). Our cohort attempted
PO for a mean of 49 ± 24.3 days prior to taVNS treatment, for
which the in-house model predicts a spontaneous recovery rate
of less than 10%.

Comparable published data indicate that preterm infants
born at 25–32 weeks’ gestation, with respiratory complications
of bronchopulmonary dysplasia, attained full oral feeds at
38.5 ± 2.8 weeks’ gestation, whereas those without BPD did so
at 35.5 ± 1.7 weeks’ gestation (Howe et al., 2007b). In one large
retrospective study of 560 preterm infants born at 32–36 week’s
gestation, the median time to achieve full oral feeds was 12 days
overall (Jackson et al., 2016). Although our taVNS-paired feeding
study was non-randomized, our rate of successful attainment of
full oral feeds is promising when compared with our historical
control data as well as those from other observational studies.

Infants must develop oromotor skills of ‘‘suck–swallow’’
coordination in a particular sequence in order to feed effectively
(Lau et al., 2003). Postmature infants (>41-week GA) who were
born preterm and are not able to take full feeds by mouth may
not be able to start oral feeds during a critical developmental
window of oromotor neuroplasticity for learning feeding motor
skills (Huang et al., 2015; Ismail et al., 2017). Sick newborns of
term age (37- to 41-week GA) who have had critical illnesses
frequently do not exhibit a suck–swallow reflex for feeding
and may also have to learn this motor sequence, similar to
preterm infants.

Both preterm and HIE infants suffer brain injury, triggering
excessive stimulation of inflammatory pathways, impairing
normal developmental functions of directing neuronal
integration and foundational brain circuitry. After birth,
the cortex and basal ganglia (BG) undergo significant integrative
connectivity associated with shaping of central motor pathways.
Disturbance of these processes leads to abnormal connections
(Rocha-Ferreira and Hristova, 2016), and along with decreased
populations of myelinating cells and inter-neurons, results in
brain dysmaturity in preterm infants (Duerden et al., 2015) or
overt brain injury in term HIE infants and subsequent motor,
cognitive, and neurobehavioral impairments (Rocha-Ferreira
and Hristova, 2016). Although postnatally the developing brain
is more plastic than the adult brain and thus might be expected to
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FIGURE 5 | Daily PO intake feeding volumes in ml/kg/day for both responders (full PO feeds without G-tube) and non-responders (G-tube placement). The data
demonstrate no significant difference in feeding trajectories between groups in the pre-stimulation phase but significant differences in trajectories between
responders and non-responders upon initiation of taVNS-paired feeding.

have better recovery following injury, we engage the developing
brain to a very limited extent with clinical rehabilitation therapy
while infants are still in the nursery.

The data in both animals and adult humans are convincing
in that VNS paired with a stimulus improves functioning (Porter
et al., 2012; Khodaparast et al., 2013, 2014, 2016; Dawson et al.,
2016; Capone et al., 2017; Meyers et al., 2018). In our neonates
with brain dysmaturity or overt brain injury, neuromodulation of
abnormal circuits may positively influence neuronal connectivity
and neuroplasticity (Kilgard, 2012; Meyers et al., 2018). If we
can influence the circuitry early, before motor patterns are
fixed, we may improve the developmental deficits that these
children experience, starting with feeding delays in the nursery.
With approximately 380,000 preterm infants and 4,000 term
infants with HIE born in the USA per year, this therapy may
translate to a large number of infants and have major impact on
their outcomes.

Decreasing G-tube placement and length of stay due to
feeding delays is a significant, longer-term goal of these studies.
The time to attain full feeds accounted for 90% of variance
in length of stay in two reports (Adamkin, 2006; Jackson
et al., 2016). Earlier discharge without a G-tube may reduce
medical complications for the patients and decrease costs, while
offering substantial benefit to families waiting to bring their
children home. Beyond feeding and earlier discharge, reinforced

plasticity of oromotor function may impact short- and long-term
neurodevelopment, particularly language skills.

Even late preterm infants can have difficulty learning to feed.
In one retrospective study, one third of 35–36 weeks’ gestation
infants had feeding problems, and 76% of these had delayed
discharge due to poor oromotor coordination (Wang et al.,
2004). Also, males may have more difficulty as they have been
shown to have later emergence of oral–lingual movements and
pharyngeal activity than do females (Miller et al., 2006). In our
study, we limited inclusion to preterm infants less than or equal
to 33-week GA at birth or near-term to term infants with HIE.
In the future, we need to enroll infants of wider GAs, conduct
randomized controlled trials with sham stimulation, and enroll
sufficient numbers for evaluation of sex differences.

Moreover, if taVNS is successful in the targeted motor
behavior of feeding, we will extend investigation of early
neuromodulatory therapy in high-risk infants to prevent or
mitigate other life-long motor problems, such as cerebral palsy.
This taVNS pilot trial, the first in human neonates, may provide
a foundation for application of these therapies to infants at high
risk for motor problems who have few alternative treatments.

Our HR data suggest that taVNS engages the vagal
parasympathetic system. A rapid, transient HR decrease of 12%
from baseline at the onset of taVNS stimulation was reproducible
and reliable. The observedHR change suggests vagus nerve target
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engagement by taVNS-paired feeding in neonates and may be
useful in multi-day trials.

Vagal efferent HR change is useful as a stimulation indicator
if it is not harmful. Safety is the foremost consideration
for treatments in vulnerable infants who are premature or
have suffered HIE, who have often recovered from significant
respiratory, cardiovascular, or CNS conditions. We did not
observe adverse effects of bradycardia or rebound tachycardia
that were solely related to stimulation, or any other adverse
effects. Mean neonatal discomfort scores measured with the
NIPS did not significantly increase during stimulation in over
200 treatment sessions, and we decreased current intensity in
only three instances for possible stimulation-induced increase in
NIPS scores. No parent withdrew their infant from the study, and
parents and staff accepted the treatment as well as tolerated by
the infants.

It is unclear why some participants did not respond.
Systemic and neuro-inflammation or medications that inhibit
synaptic plasticity and learning (e.g., mineralocorticoid receptor
inhibitors) may impair learning this motor skill (Favrais
et al., 2011; Kuban et al., 2014; Leviton et al., 2016; Kelley
et al., 2017). Alternatively, other negative sensory inputs of
reflux or esophagitis may counteract positive sensorimotor
circuit stimulation (Wingenfeld and Otte, 2019). Half of the
non-responders (3/6) and only one of eight responders were
infants of diabetic mothers with poor glucose control during
pregnancy, which induces a pro-oxidative state for the mother
and fetus known to be associated with immune activation,
endothelial cell injury, and worse fetal and neonatal outcomes
(Teodoro et al., 2013; Durga et al., 2018). A larger sample size
may identify specific predictors for responder status leading to a
decrease in variance in treatment response.

Further investigation and refinement of treatment parameters
will likely also improve treatment response. Although these
stimulation parameters were partially optimized in adults and to
some extent in this trial, the potential responsiveness of specific
circuits is likely determined by the sum as well as timing of
stimulatory and inhibitory impulses. For example, we initially
tested a pulse-train length of 3 s with the EMG closed-loop
system, which proved too short for rhythmic suck–swallow
sequences in some infants. We then increased to a 10-s train with
each EMG-driven stimulation.

LIMITATIONS

The taVNS methodology was adjusted over the course of
this study to more closely pair stimulation with feeding
(Cook et al., 2020 in press Brain Stimulation). In participants
1–7, researchers activated taVNS manually when the infant
was seen to be actively feeding; in participants 8–14, an
EMG triggered taVNS-paired stimulation to sucking motor
function. The latter would be expected to have better feeding
outcomes, if learning depends on the precision of timing
the stimulation with the motor activity. Over the study, we
also developed several different ear electrodes to maximize
contact and minimize the need for readjustment during feeds.
All were confirmed by HR and resistance tests to deliver

current to the tragus. We did not perform VFSS on every
baby and did not explore the physiologic impairments in
swallowing or causes of penetration/aspiration in this pilot
trial. In future studies, we intend to document specific changes
in swallowing function before and after taVNS-paired feeding
treatment using a more precise scale adapted for infants
(Martin-Harris et al., 2019). We also did not perform sham
stimulation, to compare the lowest HR during sham and active
taVNS stimulation. However, the HR changes with feeds in
the control group indicate that HR usually increases during
feeding, compared with the rapid decrease seen with PT in the
taVNS feeds.

CONCLUSION

This is the first study investigating taVNS paired with the motor
sequence of suck, swallow, and breath to potentially enhance
oromotor learning in neonates and infants. In infants who had
failed oromotor rehabilitative feeding techniques by therapists,
taVNS treatments resulted in 57% achieving full oral feeds
adequate for discharge without needing a G-tube. Further, taVNS
appeared safe in neonates and infants with no adverse effects.
Target engagement may be determined at each session by a brief
HR decrease. Further investigations and a randomized trial are
needed to confirm our promising results of improved feeding
outcomes in infants treated with taVNS.
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