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High-frequency electroencephalography (EEG) signals play an important role in research

on human emotions. However, the different network patterns under different emotional

states in the high gamma band (50–80Hz) remain unclear. In this paper, we investigate

different emotional states using functional network analysis on various frequency bands.

We constructedmultiple functional networks on different frequency bands and performed

functional network analysis and time–frequency analysis on these frequency bands to

determine the significant features that represent different emotional states. Furthermore,

we verified the effectiveness of these features by using them in emotion recognition. Our

experimental results revealed that the network connections in the high gamma band

with significant differences among the positive, neutral, and negative emotional states

were much denser than the network connections in the other frequency bands. The

connections mainly occurred in the left prefrontal, left temporal, parietal, and occipital

regions. Moreover, long-distance connections with significant differences among the

emotional states were observed in the high frequency bands, particularly in the

high gamma band. Additionally, high gamma band fusion features derived from the

global efficiency, network connections, and differential entropies achieved the highest

classification accuracies for both our dataset and the public dataset. These results are

consistent with literature and provide further evidence that high gamma band EEG signals

are more sensitive and effective than the EEG signals in other frequency bands in studying

human affective perception.

Keywords: EEG, emotion, high gamma band, functional network, fusion feature

INTRODUCTION

Emotions play an important role in our daily life; they are involved in cognitive processes such
as memory, learning, and decision-making (Zhang et al., 2015). The studies on neuroscience,
psychology, and cognitive science show that physiological signals can reflect human emotional
states (Dan, 2012). Of all physiological signals, electroencephalography (EEG) signals have the
advantage of high temporal resolution, and EEG signals are difficult to conceal; therefore, they
have been widely used in emotion recognition (Li et al., 2018).

Evidently, brain activities are usually accompanied by changes in the EEG frequency. Previous
studies have reported that alertness and motor imagery are related to low-frequency EEG signals,
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whereas attention,memory, and emotions are typically correlated
with high-frequency EEG signals (Miltner et al., 1999; Balconi
and Lucchiari, 2008; Li and Lu, 2009). In recent years,
researchers have suggested connections between high-frequency-
band activities and emotions. High-frequency-band (>30Hz)
activities reflect the characteristics of emotional integration
(Matsumoto et al., 2010); in particular, high gamma band (50–
70Hz) plays an important role in the cognitive control of
emotions (Tang et al., 2011). Certain studies have examined that
high frequency responses to affective pictures; most of these
studies described enhanced responses to emotional stimulus,
particularly against negative stimuli (Güntekin and Basar, 2007;
Julie and Scott, 2009; Martini et al., 2012). A similar response
to affective pictures in high frequency bands has also been
observed in studies using invasive intracranial EEG signals;
researchers found that emotional pictures are associated with
replicable modulations of broadband high gamma band (70–
150Hz) invasive intracranial EEG signals. Unpleasant stimuli
elicit a stronger response in the lateral–occipital and occipital–
temporal areas than neutral stimuli, and pleasant pictures elicit
stronger responses than other stimuli in the high gamma band
(Boucher et al., 2014).

Although the high frequency component of EEG signals
has been investigated in emotion processing, most of these
pioneering studies have focused on the activities of the local
brain areas involved in affective perception. The human brain is a
complex system; even a simple brain activity involves interactions
among various brain regions (Straaten and Stam, 2013; Li
et al., 2019). Emotion is a high-level cognitive function, and
the processing of emotions requires the cooperation of multiple
brain regions (Bassett and Bullmore, 2015). Brain networks (BNs)
that can describe the relationships and information interactions
among the various brain regions have been widely used in
studying the brain activity mechanism (Bassett and Gazzaniga,
2011; Straaten and Stam, 2013). Recently, various studies on
emotions have examined emotional specificity using EEG-based
functional brain connectivity. Hossein et al. proposed that
exposure to joyful stimuli elicits stronger connectivity in the
frontal inter/intra-hemispheric regions than the connectivity
elicited via exposure to neutral or melancholic stimuli (Hossein
and Sahar, 2016). Zhang et al. found that the prefrontal region
plays the most important role in emotion processing and
interacts with almost all other regions (Zhang et al., 2017).
Furthermore, Li et al. reported that connections with significant
differences between the negative and neutral valences in the
gamma band (30–48Hz) are much denser than the connections
in the beta band (12–30Hz). The connectionsmainly occur in the
right frontal and parietal–occipital lobes (Li et al., 2019). These
studies demonstrate that EEG-based functional connectivity can
effectively reflect the specificity of different emotional states.

As discussed above, EEG-based functional BNs can depict
the information interaction between the brain regions during
emotion processing. However, few studies have exploited
network connection patterns under different emotional states in
the high gamma band (50–80Hz). We believe that this research
is worth pursuing because high gamma band activities are
sensitive to emotion processing, and high gamma band network

connections may show unique patterns for different emotional
states. Hence, in this study, we focus on investigating the different
emotional states using functional network analysis on different
frequency bands. We construct multiple functional networks
on different frequency bands and perform functional network
analysis and time–frequency analysis on these frequency bands
to find significant features representing the different emotional
states. Furthermore, we also verify the effectiveness of these
features by using them in emotion recognition.

MATERIALS AND METHODS

Participants
The participants were selected from local native Chinese
undergraduates or graduate students via interviews and
survey questionnaires. Beck Anxiety Inventory (Grant, 2011),
Hamilton Anxiety Rating Scale (Schneider et al., 2013),
and Hamilton Rating Scale (Hamilton, 1986) were used to
exclude individuals suffering from depression or other mental
illness. Before beginning with the experiment, all participants
were informed about the protocol, benefits, and risks of the
study, and they signed an informed consent form. Finally, 24
healthy undergraduate students participated in this experiment
(including 11 females), with a mean age of 22.3 years (range =
19–24, SD = 1.65). All participants were right-handed and had
normal or corrected-to-normal vision. After the experiment, all
the subjects were given a certain allowance for participating in
the experiment.

Stimuli
In this experiment, 180 pictures were selected from the Chinese
Affective Picture System (CAPS) based on the normative valence
and arousal ratings (Lu et al., 2005). The stimuli comprised 60
positive pictures (e.g., babies and flowers), 60 negative pictures
(e.g., war scenes), and 60 neutral pictures (e.g., household
objects). The normative ratings indicated that the stimuli had
different valence degrees (positive:M = 6.85, SD= 0.25; neutral:
M = 5.38, SD = 0.29; negative: M = 2.63, SD = 0.46) and
different arousal degrees (positive:M = 5.35, SD= 0.44; neutral:
M= 4.41, SD= 0.39; negative:M= 5.96, SD= 0.49). All pictures
were displayed in the center against a black background on a 23-
in computer screen with a refresh rate of 60Hz. The subjects were
seated∼70 cm from the computer screen during the experiment.

Experimental Procedure
The experiment began with a practice procedure to ensure that
the subjects were familiar with the task. In this procedure,
the subjects were presented with 10 additional CAPS pictures
followed by the valence and arousal self-assessment Manikin
rating scales (Morris, 1995). The pictures used in the practice
procedure were different from the 180 pictures presented in
the trials, and the EEG signals of the practice procedure were
not used for the final data analysis. As shown in Figure 1, the
formal experiment was divided into nine blocks. Each block
included 20 pictures of the same category; two pictures of the
same category did not appear in adjacent blocks. Each block
comprised 20 trials, and the trials were displayed in a random
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FIGURE 1 | Experiment protocol.

order. A single trial began by displaying a “+” sign to draw
the subject’s attention to the subsequent picture. To avoid the
anticipation effects associated with the display time of the “+”
sign, the “+” sign was presented for 2–4 s in a random manner,
and the data were used as the baseline. Then, one emotional
picture was displayed for 5 s. Subsequently, the subject was rated
on the valence and arousal rating scales, which were implemented
by pressing any of the numeric keys between 1 and 9 on the
keyboard within 10 s. A break was given between two blocks to
alleviate the influence of the last block, and the basic break time
was 2min. The subjects could control the break time by pressing
the button until they felt ready for the next block.

Data Acquisition and Preprocessing
The experiment was performed in a professional electromagnetic
shielding laboratory under suitable temperature and light
conditions. In the experiment, the subjects sat in a comfortable
chair at a distance of approximately 70 cm from the front screen.
The size of the screen was 23 in with a refresh frequency of
60Hz. EEG signals from 62 Ag/Ag-Cl scalp electrodes were
continuously recorded using the g.HIamp System (g.tec Medical
Engineering, Linz, Austria) with a sample rate of 512Hz. The
electrodes were positioned based on the 10–20 system. The Fz
electrode and right earlobe were used as recording references,
resulting in 61 effective electrodes. Online band-pass and notch
filters were adopted for all channels to filter frequencies of 0.1–
100 and 50Hz, respectively.

Preprocessing procedures were performed to exclude artifacts
and unrelated data. Epochs of 5,500ms (500ms before and
5,000ms after the stimuli onset) were extracted from the raw
EEG data of each picture. The mean voltage of the 500-ms
segment before presenting the picture was subtracted as the

baseline. Low frequency drift and high frequency noise were
filtered out using a 0.1–80Hz offline band-pass filter. Global
artifacts were removed via average re-referencing. Additionally,
we applied the Fast Independent Component Analysis (Fast ICA)
algorithm (Hyvärinen, 1999) for blind-source analysis to remove
electrooculography artifacts. Finally, a threshold of±100 µv was
used to exclude artifacts with high amplitudes.

Brain Functional Network Analysis in
Different Frequency Bands
Following preprocessing, the artifact-free data were used to
construct BNs for each data segment. Based on the 5,000-ms EEG
data for each picture, we employed the coherence to measure the
relationship between two electrodes. Coherence is an effective
method commonly used to measure the function connectivity
(Lee and Hsieh, 2014), and it estimates the linear relationship at a
specific frequency between x(t) and y(t) of each pair of electrodes.
Coherence is sensitive to the amplitude and phase changes, and
its value ranges from 0 to 1. A high coherence implies that the
signals from the two electrodes are working closely together.
Coherence is denoted as follows:
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is the coherence
between x(t) and y(t) at frequency f . Then, the edge linkages
were determined by averaging the coherence values within the
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five frequency bands: theta (4–8Hz), alpha (8–13Hz), beta (13–
30Hz), low gamma (30–50Hz), and high gamma (50–80Hz).
The network of the delta frequency band (1–4Hz) has not been
discussed here because most of the EEG data did not have any
effective coherence value under 4Hz. Finally, we constructed five
(one for each frequency band) 61 × 61 connectivity matrices for
each stimulus.

According to graph theory, the functional networks of
the brain can be effectively measured in terms of network
properties (Straaten and Stam, 2013). To depict the BN, we
computed the four basic BN properties: clustering coefficient
(CC), characteristic path length (CPL), local efficiency (Le),
and global efficiency (Ge) (Bassett and Bullmore, 2006; Jiang
et al., 2009). CC and Le are measures to estimate the potential
capacity of the local information processing. CC describes the
degree of aggregation of the network nodes. Le is defined as
the average efficiency of the local sub-graphs. CPL and Ge are
used to determine the network potential for global information
processing. CPL provides the values of the shortest path lengths
between pairs of network nodes. Ge provides the capacity of
the global information processing of the entire cerebral network.
These network properties are defined by the following equations:
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Emotion Recognition Based on Fusion
Features
To investigate the effect of the EEG frequency bands on
emotion recognition, we extracted multiple features in different
frequency bands for further emotion classification. Multi-feature
fusion could provide complementary information and improve
the classification accuracy of emotion recognition. Therefore,
we proposed to combine the network connections having
significant differences among emotional states, BN properties,
and differential entropies (DEs) in each frequency band as fusion
features for emotion recognition. To remove the redundant
information and eliminate the influence of different feature
dimensions on the classification results, the maximum-relevance
minimum-redundancy (MRMR) algorithm was used to select the
top 61 features from the fusion features (Ding and Peng, 2005).
Figure 2 depicts the entire emotion recognition procedure.

First, the raw data were preprocessed to remove the artifacts;
the preprocessing details are described in the section “Data
Acquisition and Preprocessing.” Then, we extracted the top 61
important fusion features derived from the network connections
with significant differences among the emotional states, BN
properties, and DE.

For the DE feature, we used the short-time Fourier transform
(STFT) to transform the preprocessed EEG data s(t)into the
time–frequency domain. After performing STFT, we obtained the
following relationship:

STFTs,γ (t, f ) =

∫ +∞

−∞

s (τ )γ ∗ (t − τ) e−j2π f τdτ

=

∫ +∞
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s (τ )γ ∗
t,f e

−j2π f τ . (6)

From STFTs,γ (t, f ), we obtained the power of the theta (4–8Hz),
alpha (8–13Hz), beta (13–30Hz), low gamma (30–50Hz), and
high gamma (50–80Hz) bands as follows:
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DE is given as

DE = log
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The artifact-free EEG data were extracted from 61 channels;
therefore, we acquired 61 DE features in each frequency band.

To reduce the computational complexity, all features were
normalized to [0 1] by using themin–max normalization (MMN)
method. MMN, a common method to normalize data, is given
as follows:

X′(i) =
X(i)−Min

Max−Min
(9)

where X(i) denotes a feature;Min andMax are the minimum and
maximum values of all the features, respectively.

Finally, the fusion features were sent to the library for support
vector machines (LIBSVM) for classification (Chang and Lin,
2011). To compare the performances of the fusion features in
different frequency bands, we implemented LIBSVM with the
linear kernel function and default parameter settings.

RESULTS

SAM Ratings
As expected, the picture categories showed significant differences
in both the valence and the arousal ratings. The valence and
the arousal ratings of all subjects were averaged, and the rating
scores of different stimulus groups were compared by post-hoc
(paired t-test) analysis; the test results were corrected by using
false discovery rate (FDR). The means and standard deviations of
all subjects for the valence and the arousal ratings are shown in
Table 1.

For the valence rating scale, the positive pictures showed
higher valence ratings than the neutral pictures (p < 0.05); the
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FIGURE 2 | Emotion recognition procedures used in this experiment. Data preprocessing, fusion feature extraction, and pattern classification are the three main steps.

TABLE 1 | Valence and arousal for positive, neutral, and negative pictures.

Category N Valence M (SD) Arousal M (SD)

Positive 24 6.6 (0.27) 5.4 (0.39)

Neutral 24 5.2 (0.24) 3.9 (0.32)

Negative 24 2.8 (0.26) 6.2 (0.33)

neutral pictures were rated as more positive than the negative
pictures (p < 0.01). For the arousal rating scale, both the positive
(p < 0.01) and the negative (p < 0.01) pictures achieved higher
arousal ratings than the neutral pictures. The arousal ratings for
the negative pictures (p < 0.05) were higher than those of the
positive pictures.

Neural Pattern Analysis in Different
Frequency Bands
We statistically analyzed the neural patterns for different
emotions using the following steps:

(1) The BN connection values for each stimulus group were
averaged for all subjects. Then, we implemented a one-way

ANOVA with three factors (positive, neutral, and negative
emotions) to test whether the BN connection strengths
between the channels were significantly different for the
positive, the neutral, and the negative emotions in the five
frequency bands. The results were corrected using FDR. Our
test results showed that several connections had significant
differences (p < 0.001) in the BN, resulting in very dense
connections, which were hard to observe in the network
details. Therefore, we selected P = 1e10-12 as the threshold
to display the most significant connections.

(2) Four BN properties for each stimulus group were averaged
for all subjects. The post-hoc test (paired t-test) was corrected
using FDR correction. The test was used to analyze the
differences of each BN property in the three groups being
compared: (i) the group with significant differences in the
BN properties between the positive and the neutral states, (ii)
the group with significant differences in the BN properties
between the positive and the negative states, and (iii) the
group with significant differences in the BN properties

between the negative and the neutral states.
(3) Besides the differences in the connection patterns, we

analyzed the scalp DE with significant differences among
the three emotions. The DE values for the categories
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of stimuli were averaged for all the subjects. Then, the
one-way ANOVA was corrected using FDR with three
factors (positive, neutral, and negative emotions); this
revealed whether the DE values of the same electrode were
significantly different for the positive, the neutral, and the
negative emotions in the five frequency bands.

Figure 3 shows the connections having significant differences (P
< 1e10-12) among the positive, the neutral, and the negative
emotions in different frequency bands. The BN connections with
significant differences among emotions mainly occurred in the
low and the high gamma bands. The connections in the high
gamma band had significant left-side effects; the connection
density of the left hemisphere was greater than that of the right
hemisphere. Network connections with significant differences
were mainly distributed in the left prefrontal lobe, the left
temporal lobe, the parietal lobe, and the occipital region. There
were long-distance connections in the high gamma band, which
mainly existed between the prefrontal and the left temporal lobes
(Fpz–FT7), the left temporal and the right parietal lobes (T7–
C6), and the left temporal and the right occipital lobes (TP7–
P6). Additionally, there were long-distance connections (AF3–
O2 and AF3–POz) from the left prefrontal lobe to the occipital
lobe across the whole brain. In the low gamma band, the left
temporal lobe was much denser than the other brain regions.
Network connections with significant differences were observed
in the prefrontal lobe, the parietal lobe, and the right temporal
lobe. Long-distance connections across the brain regions also
occurred in this band, and theymainly existed in the left posterior
frontal and the left occipital lobes (FT7–PO7), the left temporal
and the left occipital lobes (C5–PO3), the right frontal and the
occipital lobes (FT8–Pz and FT8–POZ), the right temporal lobe
and the left parietal area (TP10–CP3), and the right temporal and
occipital lobes (TP10–Oz). A few network connections exhibited
significant differences in the beta band, and the linkages mainly
existed in the temporal lobe. In the theta and the alpha bands, no
network connections existed with significant differences among
the emotional states.

In addition to analyzing the network connections with
significant differences among the three emotions, we also
investigated the significant differences in the BN properties
between the two emotions in different frequency bands. Table 2
shows the post-hoc test (paired t-test) results of the BN properties
in three comparison groups of different frequency bands. In
Table 2, we can see that the differences in the BN properties
for emotions were more significant in the high frequency bands
than in the low frequency bands. In the high gamma band, the
differences were most significant. In almost all bands, significant
differences existed in the BN property between the positive and
the neutral emotional states and between the negative and the
neutral emotional states. However, significant differences could
be observed between the positive and the negative emotional
states only in the high gamma band. Ge could discriminate
between the positive and the negative emotional states better
than other BN properties, and it showed significant differences
between the positive and the negative emotional states in the beta
band, the low gamma band, and the high gamma band.

FIGURE 3 | Connections with significant differences (P < 1e10-12) among the

positive, neutral, and negative emotional states in different frequency bands.

The subfigures (A–C) depict network connections with significant differences

among the positive, neutral, and negative emotional states in the beta, low

gamma, and high gamma bands, respectively.
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TABLE 2 | Differences of brain network properties in three comparison groups of different bands.

Frequency bands Theta Alpha Beta Low gamma High gamma

Groups 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

CC – – * – – – ** – *** *** – *** ** ** ***

CPL – – * * - * ** – *** ** – *** *** * ***

Le – * * * - * ** – *** *** – *** *** ** ***

Ge – – - ** * – * *** * *** * *** *** * ***

–, no significant difference.

*P < 0.05; **P < 0.01; ***P < 0.001; 1, positive–neutral; 2, positive–negative; 3, negative–neutral.

FIGURE 4 | Average values for the four brain network properties in the high

gamma band under positive, neutral, and negative emotional states. The error

bars represent the standard deviations of the average values across all

subjects.

Figure 4 shows all the subjects’ average values of CC, CPL,
Le, and Ge for different emotions in the high gamma band. The
positive and the negative emotional states possessed a higher
CC, Le, and Ge (p < 0.01) and a smaller CPL (p < 0.01)
than the neutral emotional states. This might indicate that the
information interaction rates of the brain under the positive and
the negative emotional states were higher than the rate for the
neutral emotional states. In addition, exposure to negative stimuli
gave higher CC, Le, and Ge (p < 0.05) values than exposure
to positive stimuli. However, the CPL (p < 0.05) value of the
negative stimuli was less than that of the positive stimuli, i.e.,
the information interaction rate of the network for the negative
stimuli was higher than that for the positive stimuli.

After analyzing the network connection patterns, we analyzed
the topological differences of the DE distributions under various
emotional states in different frequency bands. Figure 5 shows
the DE distribution with significant differences (p < 0.01)
among the three emotional states in each frequency band. We
discovered that the DE distribution with significant differences
mainly existed in the high frequency bands, and most of the
electrodes with significant differences were in the high gamma
band. These electrodes were mainly distributed on the prefrontal

lobe, the bilateral temporal lobe, the parietal lobe, and the right
occipital region.

Emotion Classification Results on Our
Dataset and Public Dataset
Apart from the statistical analysis, the performances of features
under different frequency bands were compared in the emotion
recognition experiment. The emotion classification procedures
are shown in Figure 2. Based on the results of the statistical
analysis, we combined the network connections that showed
significant differences for the three emotional states, DE, and Ge
in each frequency band, and we formed fusion features. The top
61 important features were selected in each frequency band via
MRMR for the final emotion classification.

The classification results are shown in Figure 6. The highest
classification accuracy of 87.27% was obtained for the high
gamma band fusion features. The features in the high frequency
bands performed better than the features in the low frequency
bands; this was consistent with the results of the above-described
statistical analysis.

We further investigated the classification performances of
the proposed fusion features in different frequency bands on
Zhuang’s dataset (Zhuang et al., 2018). This dataset includes
emotional EEG signals recorded for 30 healthy subjects. During
the experiment, the subjects watched 18 movie clips with six
emotion tags: joy, neutrality, sadness, disgust, anger, and fear.
After watching each movie clip, the subjects were asked to recall
a scene from the movie to self-elicit emotion. Therefore, each
subject recorded two types of EEG data: movie clip-elicited and
self-elicited. In this work, we only use the movie clip-elicited EEG
signals. The EEG signals were recorded using g.HIamp System at
a sampling rate of 512Hz from 62 electrodes positioned based
on the 10–20 system. The emotion recognition procedures were
similar to those shown in Figure 2. For the preprocessing of the
EEG data (following Zhuang’s work), we first extracted the last
50 EEG signals of each movie clip. Then, we used the 0.1–80Hz
band-pass filter, Fast ICA, and baseline correction to remove
the noise and the artifacts. For each subject, the preprocessed
data were segmented into 882 samples using a 2-s window
with half overlap between two consecutive windows. Then, the
coherence functional network connection, DE, and Ge were
calculated in the five frequency bands, and these features were
combined as fusion features. Finally, the top 61 important fusion
features selected by MRMR in each frequency band were sent
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FIGURE 5 | Scalp difference of the DE distribution among positive, neutral, and negative emotional states in different frequency bands. The yellow electrodes denote

DE with statistically significant differences (P < 0.01) among the three emotional states. The subfigures (A–E) depict the DE distribution with significant differences

among the positive, neutral, and negative emotional states in the theta, alpha, beta, low gamma, and high gamma bands.

into LIBSVM to classify the emotions into the abovementioned
six categories.

The classification results are displayed in Figure 7. We found
that these classification results were consistent with the results

obtained for our dataset; the features of the high gamma band
still achieved the highest accuracy. In addition, the fusion feature
used in our current work was superior to the features extracted
by Zhuang; the accuracy of the high gamma band fusion feature
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FIGURE 6 | Average accuracies for the classification of emotions into three

categories based on the proposed fusion features. The five accuracy bars

represent the average accuracies (48.14, 56.83, 78.36, 83.44, and 87.27%) in

different frequency bands. The error bars represent the standard deviations of

the average accuracies across all subjects.

FIGURE 7 | Average accuracies for the classification of emotions into six

categories on the public dataset. The error bars represent the standard

deviations of the average accuracies across all subjects. The top five accuracy

bars represent the average accuracies (56.23, 57.43, 59.15, 61.28, and

63.36%) of the proposed fusion feature in different frequency bands. The last

accuracy bar named ROZ represents the average accuracy (55.65%) in

Zhuang’s study.

was nearly 7% higher (p < 0.01) than that in Zhuang’s research
(Zhuang et al., 2018).

In each frequency band, the fusion feature had 183
dimensions, which included 61 dimensions each of brain network
connections, Ge, and DE. We selected the top 61 features from
the 183 fusion features via MRMR to classify the emotions into
six discrete categories. The most selected 30 features in the high
gamma band are shown in Table 3.

DISCUSSION

Neural Signature of Emotional States in the
High Gamma Band
High-frequency EEG signals have been widely used for
studying advanced cognitive functions such as emotions. In this

TABLE 3 | Most selected features by maximum-relevance minimum-redundancy

in the high gamma band.

Feature

types

Selected features

Ge T7, TP8, PO8, TP10

DE Fp2, FC6, FT8, T7, C5, T8, TP8, Oz, TP9, TP10

BNC Fpz-Fp2, Fpz-AF4, Fpz-Fp1, Fpz-AF7, Fp2-AF4, Fp2-Fp1,

AF4-F4, AF3-F5, F7-FC5, F7-T7, F7-F5, F1-FCz, F6-F8, F8-FC6,

FC1-C1, FC4-FT8

research, we analyzed the network connections having significant
differences and the potential relationships between the BN
properties and emotions. We also investigated the topographical
differences of the DE distribution among emotional states
in five frequency bands. Our results proved that the high-
gamma-band EEG signals were more closely related to the
emotional states.

Connections in the high frequency band have been reported
to be important for the processing of emotional states (Flores-
Gutiérrez et al., 2007; Hossein and Sahar, 2016). In this study,
we observed that connections with significant differences among
the positive, the neutral, and the negative emotions were denser
in the high gamma band than in the low gamma band. These
denser connections with significant differences between the
emotional states in the high frequency bands may indicate that
high frequency components in EEG could mediate information
transmission when the brain concentrates on processing the
emotion-related activities (Li et al., 2019).

Further, connections with significant differences among the
positive, the neutral, and the negative emotions exhibited left-
side effects. The different connections mainly occurred in the
left prefrontal, the left temporal, the parietal, and the occipital
regions. Left hemisphere activation has been associated with
positive emotions and right hemisphere activation has been
related to negative emotions in the literature (Müller et al., 1999;
Flores-Gutiérrez et al., 2007). Costa et al. also reported that
sadness is associated with a wider synchronization between the
right and the left frontal sites within the left hemisphere (Costa
et al., 2006). The connection patterns observed in this experiment
further demonstrated the existence of side effects in the brain
when dealing with different emotions.

Interestingly, long-distance connections exist with significant
differences among the emotional states of the various brain
regions (Fpz–FT7, T7–C6, TP7–P6, and AF3–Cz); such
differences are even observed among the long-distance
connections across the whole brain regions (AF3–O2 and
AF3-POz) in the high gamma band. Long-distance connections
in the high frequency band have been reported to be associated
with complex cognition activities. Rodriguez et al. analyzed
Mooney face-induced EEG network connections in the gamma
band (30–80Hz) and discovered synchronized and asynchronous
connections between the parietal, the occipital–temporal, and
the frontal–temporal lobes; they believed that the long-range
character of phase asynchrony may be a mechanism that
subserves large-scale cognitive integration (Rodriguez et al.,
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1999). High-order long-range phase synchrony was also observed
between the anterior delta and the posterior gamma oscillations
in musicians when they listened to music (Bhattacharya and
Petsche, 2005). Emotion is a complex cognitive activity; these
highly integrated long-distance connections may indicate that
a functional cooperation exists between the frontal and the
occipital lobes, which can improve the information integration
efficiency of the brain (Flores-Gutiérrez et al., 2007). Studies
have proposed that the visual attention involved in watching
emotional pictures is controlled by both top–down cognitive
factors and bottom–up sensory factors. These two types of
process mechanisms are reflected in the frontal–parietal,
the temporal–parietal, and the parietal–occipital activities
(Desimone and Duncan, 1995; Clark and Hillyard, 1996; Li et al.,
2010; Müsch et al., 2017). Therefore, long-distance connections
among the frontal, the parietal, the temporal, and the occipital
lobes may reflect the bottom–up and top–down mechanisms
during affective stimuli processing.

The BN properties in almost all frequency bands showed
significant differences between the neutral emotional state and
the positive and the negative emotional states. However, for
low frequency band BN properties, no significant difference was
observed between the positive and the negative emotions. In the
high gamma band, there were significant differences (p< 0.05) of
BN properties between the positive and the negative emotional
states. These results indicated that the positive and the negative
emotional states shared the same BN connection pattern or there
was similar network efficiency in the low frequency bands. In the
high gamma band, more differences existed between the positive
and the negative emotional states (Lindquist et al., 2016).

Consistent with the results of network connections, the
DE distribution differences among the emotional states mainly
occurred in the high gamma band. The differences mainly
existed in the frontal, the temporal, the parietal, and the right
occipital lobes, which were consistent with the results of Zhuang
et al. (2018) who observed that DE from the channels located
on the frontal, the temporal, and the occipital lobes exhibits
more significant differences among the emotional states. These
results further demonstrate that the high gamma components in
EEG are associated with emotion processing. Differences exist
in the DE distribution in multiple brain regions, which also
demonstrates that emotional activity requires the cooperation
of multiple related brain regions (Bassett and Bullmore, 2006;
Zhang et al., 2017).

Relationships Between BN Properties and
Emotion Arousal
The potential relationship between the BN properties and stimuli
arousal in different frequency bands was also investigated. As
shown in Table 4, in each frequency band, all BN properties were
significantly related to picture arousals (p< 0.01), and in the high
gamma band, the relationship was most significant. In addition,
CC, Le, and Ge were positively correlated (p < 0.01) with the
arousal, whereas CPL was negatively correlated (p < 0.01) with
the arousal. This showed that the CC, Le, and Ge values were
higher, and the CPL value was smaller for high arousal rating

TABLE 4 | Pearson correlation coefficients between the brain network properties

and picture arousal in different frequency bands.

BN

property

Theta Alpha Beta Low

gamma

High

gamma

CC R = 0.278* R = 0.354* R = 0.536** R = 0.608** R = 0.588**

CPL R = −0.265* R = −0.25* R = −0.586** R = −0.602** R = −0.638**

Le R = 0.294* R = 0.314* R = 0.565** R = 0.611** R = 0.624**

Ge R = 0.216* R = 0.226* R = 0.513** R = 0.462* R = 0.603**

*P < 0.05; **P < 0.01.

stimuli as compared with low arousal stimuli. The high CC, Le,
and Ge values and the small CPL value represented the high
information processing efficiency of the brain (Li et al., 2015).
In addition, Figure 3 shows the connections with significant
differences (P < 1e10-12) among the positive, the neutral, and
the negative emotional states in different frequency bands. The
subfigures (A), (B), and (C) depict network connections with
significant differences among the positive, the neutral, and the
negative emotional states in the beta, the low gamma, and the
high gamma bands, respectively.

The average CC, Le, and Ge values in the high gamma band
for the positive and the negative stimuli were higher than those
for the neutral stimuli, whereas the average CPL value for the
positive and the negative stimuli was smaller than that for the
neutral stimuli. These results further demonstrate that the BNs
of the positive and the negative stimuli were more efficient than
those for the neutral stimulus (Zhang et al., 2017). Furthermore,
the CC, Le, and Ge values for the negative pictures were higher (p
< 0.01) than those for the positive picture; the negative pictures
had a smaller (p < 0.01) CPL value than the positive pictures.
This proves that the brain was more active and more efficient
in responding to the negative stimuli than to the positive ones.
Other researchers have also reported that negative emotional
activity required more attention, and the cortical activity was
enhanced when the brain responded to negative stimuli (Ning,
2012; Jin et al., 2014; Ding et al., 2017).

Superiority of High Gamma Band Features
in Emotion Recognition
The classification results demonstrated that high gamma band
features were more effective in emotion recognition. Our
proposed fusion features received the highest classification
accuracy in the high gamma band for both our dataset and
the public dataset. The results obtained for emotion recognition
are consistent with the neural signature analysis results, which
state that features in the high gamma band can more effectively
reflect the differences between various emotions than features
in the low gamma band. On the public dataset, we obtained
the highest accuracy of 63.36% with high gamma band fusion
features, which was 7% higher than Zhuang’s results (Zhuang
et al., 2018). The classification results also demonstrated that
the features of the high gamma band EEG were superior
to those in the other frequency bands. The classification
improvement on the public dataset can be attributed to the

Frontiers in Human Neuroscience | www.frontiersin.org 10 March 2020 | Volume 14 | Article 89

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Yang et al. High-Gamma EEG Related to Emotion

complementary information of fusion features. The results in
Table 3 show that the fusion features selected by MRMR include
the compensative features derived from the brain function
network and DE. The BN connections and Ge could reflect the
information transmission and processing of the whole brain.
DE represented the activation patterns of each channel while
the brain processed the emotional activity. Therefore, the fusion
feature has the advantage of involving a single feature that
provides complementary information for emotion recognition.
The public dataset included EEG signals recoded under six
discrete emotional states; these discrete emotions were different
in both the valence and the arousal dimensions (Dan, 2012). The
statistical analysis results showed that the BN properties were
significantly related (p < 0.05) to arousal and showed significant
differences (p < 0.05) among the different valence ratings of
emotions in the high frequency bands. Therefore, the fusion
feature could discriminate among emotions not only from the
valence dimension but also from the arousal dimension. Another
point is that we selected only Ge from the four BN properties as a
component of fusion feature for emotion recognition. According
to the graph theory, Ge represents the information integration
and the exchange efficiency of the whole network (Li et al.,
2016). The statistical results showed that Ge was more sensitive
than other BN properties in depicting the differences among
the different emotional states. Ge was more effective in emotion
recognition. In addition, network connections were proposed as
a feature for emotion recognition, and the classification results
demonstrated that network connections were effective features
for emotion recognition. In short, the features extracted based on
BN are effective and crucial for emotion recognition.

Previous event-related potential research have reported that
significant differences of EEG signals among emotional states
can be observed in P2 and P3 and slow-wave time windows
(Ding et al., 2017; Wang and Li, 2017). However, the network
connections and information processing and propagation in
these time windows remain unclear. In the future, we will
construct time-varying BNs (Li et al., 2016) and investigate the
neural mechanism of the brain in more precise time windows.

CONCLUSION

In this research, we investigate the network connection patterns
under different emotional states in the high gamma band
(50–80Hz). Functional BNs were constructed in different
frequency bands based on EEG signals induced by positive,
neutral, and negative pictures. We performed network
connection and time–frequency analysis on different frequency

bands to determine the significant features representing
different emotional states. The results showed that the network
connections in high frequency bands with significant differences
among the positive, the neutral, and the negative emotional
states showed left-side effect, and these networks were much
denser than the network connections in other frequency bands.
Long-distance connections with significant differences among
the emotional states were also observed in the high frequency
bands. Additionally, high gamma band fusion features derived
from Ge, network connections, and DE achieved the highest
classification accuracies on both our dataset and the public
dataset. These results provide further evidence that high-
gamma-band signals are more sensitive and effective in emotion
analysis than low-frequency signals.
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