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“Locked-in” patients lose their ability to communicate naturally due to motor
system dysfunction. Brain-computer interfacing offers a solution for their inability
to communicate by enabling motor-independent communication. Straightforward
and convenient in-session communication is essential in clinical environments. The
present study introduces a functional near-infrared spectroscopy (fNIRS)-based binary
communication paradigm that requires limited preparation time and merely nine
optodes. Eighteen healthy participants performed two mental imagery tasks, mental
drawing and spatial navigation, to answer yes/no questions during one of two auditorily
cued time windows. Each of the six questions was answered five times, resulting in
five trials per answer. This communication paradigm thus combines both spatial (two
different mental imagery tasks, here mental drawing for “yes” and spatial navigation
for “no”) and temporal (distinct time windows for encoding a “yes” and “no” answer)
fNIRS signal features for information encoding. Participants’ answers were decoded
in simulated real-time using general linear model analysis. Joint analysis of all five
encoding trials resulted in an average accuracy of 66.67 and 58.33% using the
oxygenated (HbO) and deoxygenated (HbR) hemoglobin signal respectively. For half of
the participants, an accuracy of 83.33% or higher was reached using either the HbO
signal or the HbR signal. For four participants, effective communication with 100%
accuracy was achieved using either the HbO or HbR signal. An explorative analysis
investigated the differentiability of the two mental tasks based solely on spatial fNIRS
signal features. Using multivariate pattern analysis (MVPA) group single-trial accuracies
of 58.33% (using 20 training trials per task) and 60.56% (using 40 training trials per task)
could be obtained. Combining the five trials per run using a majority voting approach
heightened these MVPA accuracies to 62.04 and 75%. Additionally, an fNIRS suitability
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questionnaire capturing participants’ physical features was administered to explore
its predictive value for evaluating general data quality. Obtained questionnaire scores
correlated significantly (r = -0.499) with the signal-to-noise of the raw light intensities.
While more work is needed to further increase decoding accuracy, this study shows
the potential of answer encoding using spatiotemporal fNIRS signal features or spatial
fNIRS signal features only.

Keywords: functional near infrared spectroscopy (fNIRS), brain computer interface, mental imagery, mental
drawing, motor imagery, spatial navigation, binary communication, yes/no decoding

INTRODUCTION

Active human communication depends fully on the functional
integrity of the motor system. When the motor system ceases to
function, e.g., due to neuromuscular impairments, consequences
can be detrimental for communication. Severe motor paralysis
most often occurs through infarction of the pons (Patterson and
Grabois, 1986) or in late stages of diseases such as amyotrophic
lateral sclerosis (ALS) and multiple sclerosis. In some cases this
leads to a state of being fully awake and aware (Laureys, 2005;
Monti et al., 2009) but without any ability to communicate in a
natural way, commonly referred to as the “locked-in” syndrome
(LIS; see Plum and Posner, 1982; Laureys, 2005; Monti et al.,
2009). In “classical” LIS, vertical eye movements and eye blinking
are spared and can thus be used for basic communication.
Nevertheless, in progressive motor-neuron disorders such as
ALS, control of the eye muscles is lost in late stages of the disease,
resulting in a “complete” or “total” LIS (Bauer et al., 1979).

In LIS patients, voluntarily evoked brain signals can be
exploited to restore basic communication independent of motor
function. This can be achieved through a brain-computer
interface (BCI), which relies on intentionally generated brain
signals that are measured with a functional neuroimaging
method, e.g., electroencephalography (EEG; Farwell and
Donchin, 1988; Leuthardt et al., 2004), magnetoencephalography
(MEG; Mellinger et al., 2007; Reichert et al., 2017) or functional
magnetic resonance imaging (fMRI; Sorger et al., 2009, 2012;
Monti et al., 2010; Bardin et al., 2011; Naci and Owen, 2013).
A BCI then processes these inputs such that they can be used for
motor control, communication, neurofeedback, etc.

EEG is the most widely used neuroimaging method for
BCI purposes. Encouraging communication results have been
reported using EEG-based BCIs (Farwell and Donchin, 1988;
Birbaumer et al., 1999; Leuthardt et al., 2004; Nijboer et al., 2008).
Recent binary communication paradigms established accuracies
consistently above 70% (Halder et al., 2010; Käthner et al.,
2015), even reaching an accuracy of 87.5% in one patient (Han
et al., 2019). EEG-based BCIs have been mainly tested with
visual paradigms using event-related potentials that, at least
partly, dependent on patients ability to fixate (Brunner et al.,
2010; Treder and Blankertz, 2010). However, the population of
LIS patients is heterogeneous, with varying degrees of visual
impairment/oculomotor control (Riccio et al., 2012), cognitive

Abbreviations: COI, channel-of-interest; MD, mental drawing; SN, spatial
navigation.

impairment (Schnakers et al., 2008; Wilson et al., 2011) and
brain areas affected. Given this patient heterogeneity, a wide
range of neuroimaging methods should be explored as each has
its limitations. In a recent hybrid EEG-functional near-infrared
spectroscopy (fNIRS) study (Rezazadeh Sereshkeh et al., 2019) it
was found that the EEG signal was detrimental in most healthy
participants. Nevertheless, certain participants truly benefited
from use of the fNIRS signal. The high spatial resolution of
hemodynamic neuroimaging, such as fMRI and fNIRS, combined
with the – typically used – auditorily guided imagery paradigms
might be beneficial for certain BCI users.

A seminal fMRI paradigm (Monti et al., 2010) enabled binary
communication in disorders of consciousness patients through
the use of tennis imagery for encoding a “yes” response and
spatial navigation imagery for a “no” response. In the 16 healthy
control subjects, a decoding accuracy of 100% was obtained.
Work from our lab has extended this type of paradigm to a
four-choice BCI (Sorger et al., 2009), with an average accuracy
of 94.9% (theoretical chance level being 25%), and a free-letter
spelling BCI (Sorger et al., 2012), with an average accuracy of
82% (theoretical chance level: ca. 3.7%), successfully tested in
healthy participants. Given the immobility of fMRI hardware, the
current challenge is to transfer these fMRI-based paradigms to
a mobile setup employing fNIRS, thereby enabling convenient
BCI-based communication of patients in daily-life settings, e.g.,
in their home environments.

The use of fNIRS as a method to measure brain signals is
gaining popularity, with the number of publications increasing
rapidly (Boas et al., 2014) since its first use in 1993 (Chance et al.,
1993; Hoshi and Tamura, 1993; Kato et al., 1993; Villringer et al.,
1993). The mobility of fNIRS hardware makes it highly suited
for bedside testing (Cutini et al., 2012; León-Carrión and León-
Domínguez, 2012), hence its growing use in brain-computer
interfacing (Zephaniah and Kim, 2014). However note that its
mobility comes at the cost of a generally lower accuracy compared
to fMRI-based paradigms. The reason for these relatively lower
classification accuracies in fNIRS-based paradigms is threefold:
(1) fNIRS possesses an inherently lower spatial resolution than
fMRI (2) fNIRS has a limited spatial coverage and is thus only able
to sample superficial regions of the cortex (3) fMRI has a higher
signal-to-noise ratio (SNR) than fNIRS (Cui et al., 2011), as fNIRS
suffers from global/physiological noise from extracranial tissue
(Zhang et al., 2016).

In the context of communication, most hemodynamic BCI
systems rely on mental imagery for intentional generation
of brain signals. Commonly used mental imagery tasks (see
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Naseer and Hong, 2015, for a more extensive review) include
mental speech (Sorger et al., 2012; Rezazadeh Sereshkeh
et al., 2018), mental calculation/counting (Naito et al., 2007;
Power et al., 2012; Sorger et al., 2009, 2012) and motor
imagery (Coyle et al., 2007; Sorger et al., 2009, 2012; Monti
et al., 2010; Abdalmalak et al., 2017a). Most fNIRS based-
BCI communication studies focus on binary communication, as
multi-class fNIRS-based BCIs are not yet enabling effective BCI
control (Power et al., 2012; Weyand and Chau, 2015).

In most binary fNIRS-communication paradigms, a “yes”
answer is encoded through mental imagery, whereas a “no”
answer is encoded by rest (Abdalmalak et al., 2017b; Nagels-
Coune et al., 2017; Naito et al., 2007; Naseer et al., 2014). In
healthy subjects, group average accuracies range between 62 and
82% (Naseer et al., 2014; Nagels-Coune et al., 2017). In a subset of
23 out of 40 patients, an average accuracy above 75% was found
using tasks activating prefrontal cortex such as mental calculation
or mental singing (Naito et al., 2007). Recently Abdalmalak
et al. (2017b) asked a LIS patient to imagine playing tennis for
encoding a “yes”, while resting to encode a “no”. An accuracy of
100% was reached over five repetitions of three questions. The
drawback from previously mentioned studies is that one cannot
distinguish a real “no” answer from possible disengagement from
the task. This problem can be circumvented through the use
of a different, active mental task for each answer option. The
evoked spatially different brain-activation patterns can then be
exploited for encoding two answer alternatives. Several studies
have demonstrated the potential of spatial discernibility of
mental tasks using fNIRS. For example, Sitaram et al. (2007)
were able to distinguish left- from right- hand motor imagery
with an accuracy of 73% using a support vector machine
(SVM) classification. Furthermore, Hong et al. (2015) could
distinguish mental calculation, right- and left-hand imagery
with an accuracy of 75.6% using 3-class linear discriminant
analysis (LDA). However, to our knowledge, no study has
tested the use of two mental tasks directly in a communication
experiment. In a recent study, participants imagined different
mental speech content for answering yes/no questions intuitively,
i.e., imagining saying “yes” or “no” repeatedly (Rezazadeh
Sereshkeh et al., 2018). An average accuracy of 64.1% was
attained over two experimental sessions. Note, however, that
only a 3-class (“yes”, “no” and “rest”) accuracy was reported,
thus the 2-class accuracy (“yes” vs. “no”) cannot be inferred
from the report.

The current study aimed to increase the feasibility and
success of an fNIRS-BCI in healthy participants, thereby
potentially increasing the applicability in LIS patients. We used
an approach that combines temporal encoding (distinct time
windows for encoding “yes” and “no”) with spatial encoding
(two channels, each coding for a distinct mental imagery
task, here motor imagery for “yes” and spatial navigation for
“no”), as has been done in Sorger et al. (2009, 2012) in
fMRI-based communication BCIs. In mental drawing trials,
participants were asked to imagine drawing small geometric
shapes with their right hand. In spatial navigation trials,
participants imagined walking through their home and visualized
the visual scene in different rooms. Similar tasks were previously

used in the seminal fMRI work of Monti et al. (2010) and
have been suggested to be explored in the context of fNIRS-
BCI (Abdalmalak et al., 2017a). We expected motor cortex
activation during motor imagery (Sitaram et al., 2007), and
parietal activation during spatial navigation imagery (Cabrera
and Dremstrup, 2008; McKendrick et al., 2016; Abdalmalak et al.,
2017a). To increase general fNIRS-BCI feasibility by decreasing
setup time, we opted for a sparse fNIRS optode setup with
nine optodes covering large parts of left-hemispheric fronto-
parietal cortex.

The current study included 18 healthy participants who
were briefly trained prior to undergoing the fNIRS recording
session. Participants were asked six binary questions (e.g.,
“Do you have a driver’s license?”) which they answered by
performing one of the two tasks in auditorily cued time windows.
Conventional univariate analyses were employed in simulated
real-time to decode the participants’ answers from the recorded
fNIRS data. Additionally, a multivariate approach was applied
to explore the discernibility of the two tasks based on their
spatial brain activation patterns only. Comfort ratings were
obtained throughout the experiment as other studies have
reported that participants may withdraw from fNIRS recordings
due to headset discomfort (Suzuki et al., 2010; Cui et al., 2011;
Rezazadeh Sereshkeh et al., 2018). In addition, we evaluated
whether the presence of specific physical features of participants
(e.g., hair thickness, root density, or color) affected fNIRS-
signal quality and subsequent decoding results (Koizumi et al.,
1999; Coyle et al., 2005; Cui et al., 2011; Khan et al., 2012;
Fang et al., 2018). To this end, an in-house questionnaire was
administered. Moreover, participants’ experience with the mental
tasks in terms of ease and pleasantness were assessed, since
they are known to positively correlate with decoding accuracy
(Weyand and Chau, 2015).

In summary, due to the unique combination of temporal and
spatial encoding of mental tasks, and the use of an active mental
task for each answer option, we expected that our paradigm
would outperform the standard paradigms reviewed here.

MATERIALS AND METHODS

Participants
The current dataset was collected in the same session as the
data published in a previous study by Nagels-Coune et al.
(2017). Eighteen of the twenty participants performed the present
paradigm in addition to the previously reported paradigm. The
localizer runs (see sections Localizer Block 1 and Localizer Block
2) have already been used in the context of the earlier study
(Nagels-Coune et al., 2017). All eighteen healthy participants
(eight females, age = 26.00 ± 8.19 years [mean ± SD]) reported
normal hearing. The participants’ characteristics of relevance
to the fNIRS measurements are shown in Table 1. Written
informed consent was acquired from each participant before
the experiment. The experimental procedure conformed to the
Declaration of Helsinki and was approved by the local ethics
committee. All participants were compensated with a gift voucher
for their participation.
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Participant Preparation
Introducing the Two Mental Tasks
Following the informed consent procedure, participants were
introduced to two mental imagery tasks. For the mental drawing
(MD) task, participants were instructed to imagine drawing
simple geometric shapes with their right hand. The three left-
handed participants were thus requested to imagine drawing
with their non-dominant hand. For the spatial navigation
(SN) task, participants imagined walking through their house
while vividly visualizing the visual scene of each room (see
Supplementary Material for the standardized mental task
instructions). Participants chose objects they would like to
imagine drawing and a familiar environment they would like to
imagine navigating through.

Selection of Binary Questions
Prior to the experiment, participants answered 45 unobtrusive
binary questions (see Supplementary Material), e.g., “Do you
have a driver’s license?” in a questionnaire. Six questions, three
answered with “yes” and three answered with “no”, were selected
for the main fNIRS experiment to ensure an equal distribution
of both answers.

fNIRS Suitability Questionnaire
Due to fNIRS being an optical neuroimaging
method, participants’ physical features may alter the
penetration/absorption of light and consequently signal strength
(Coyle et al., 2005). To evaluate whether this influenced
our results, we created an in-house questionnaire that

quantifies participants’ suitability for fNIRS measurements.
The questionnaire (see Supplementary Material) captured
the following physical features that are thought to influence
fNIRS signal strength via distortion of optical contact between
the skin and optodes (distortion skin-optode contact) or via
light absorption: hair length (distortion skin-optode contact),
hair color (light absorption; Koizumi et al., 1999; Coyle et al.,
2005; Lloyd-Fox et al., 2010; Khan et al., 2012), hair thickness
(light absorption affected by hair follicle density; Coyle et al.,
2005; Fang et al., 2018), hair density (distortion skin-optode
contact; Lloyd-Fox et al., 2010; Orihuela-Espina et al., 2010),
hair structure (distortion skin-optode contact; Lloyd-Fox et al.,
2010); skin color (light absorption by melanin concentration;
Orihuela-Espina et al., 2010), and head size (light absorption
affected by altered inter-optode distance). Each feature was rated
on a scale ranging from 0 (desirable feature) to a maximum of
4 (undesirable feature). Scores were summed with a maximum
score of 21. The higher the suitability score, the less suitable for
fNIRS measurement the participant was deemed.

Cap Placement and Mental Task Training
Participants’ head circumference was measured and an
appropriately sized cap was selected. Cap sizes used in this
experiment ranged from 54 to 60 cm (see Table 1). Prior to
placing the cap, participants were asked to moisten the left
side of the head to aid the placement of the optodes. Similar
to EEG cap placement, nasion-inion distance was measured to
ensure proper cap positioning. Participants were then seated
in a sound-attenuating cabin, which was kept entirely dark

TABLE 1 | Participant characteristics: Handedness, capsize (in cm) and fNIRS suitability score (max score = 21).

Participant Handedness Cap size fNIRS
suitability

score

Mental drawing COI Spatial navigation COI

HbO HbR HbO HbR

01 Right 56 12 CP3-CP5 CP3-CP5 FC3-FC1 CP3-CP5

02 Right 56 14 FC3-FC1 C3-C1 C3-FC5 FC3-FC5

03 Right 56 13 FC3-FC5 CP3-CP5 CP3-CP5 FC3-C5

04 Right 56 10 C3-FC5 FC3-C5 FC3-C5 FC3-C5

05 Left 56 10 C3-FC5 FC3-FC1 CP3-CP5 CP3-CP5

06 Right 56 16 CP3-C5 C3-C5 CP3-C5 CP3-C5

07 Right 56 14 FC3-FC5 FC3-FC5 FC3-FC5 FC3-FC5

08 Right 56 1 C3-FC5 C3-FC5 FC3-C1 C3-FC1

09 Right 56 13 C3-CP5 CP3-CP1 C3-FC5 CP3-C1

10 Right 56 14 C3-C5 C3-CP5 FC3-FC1 FC3-FC1

11 Right 56 10 FC3-C5 CP3-CP1 CP3-CP5 C3-C1

12 Right 58 17 FC3-FC5 FC3-FC5 FC3-FC5 FC3-FC1

13 Right 56 13 C3-C1 C3-C1 FC3-FC5 FC3-FC5

14 Right 58 14 CP3-CP1 C3-C5 C3-C5 C3-C5

15 Right 60 17 C3-C5 C3-C5 FC3-FC5 C3-C1

16 Right 56 10 CP3-CP1 C3-C5 FC3-FC5 C3-C1

17 Left 56 13 FC3-FC5 CP3-CP5 FC3-FC1 FC3-FC1

18 Left 56 13 C3-CP1 C3-C1 FC3-C5 FC3-C5

The last four columns show the channels-of-interest (COIs), selected on the basis of the data of localizer runs in block 1. Abbreviations: HbO, oxygenated hemoglobin;
HbR, deoxygenated hemoglobin.
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during the fNIRS measurement as ambient light can influence
near-infrared spectroscopy measurements (Kovalenko et al.,
2014; Pinti et al., 2018). While the optodes were placed in optode
holders, participants were given the opportunity to practice
the two mental tasks. This procedure took on average 17 min
(standard deviation: ± 8 min).

fNIRS-Based Communication Paradigm
We employed an auditorily cued encoding paradigm in which
fNIRS signals were evoked through differently timed (temporal
encoding) mental imagery tasks (spatial encoding). The auditory
cues, i.e., concise spoken commands, guided participants’ mental
imagery by indicating the start and end of each encoding
window. The cues and their accompanying time point triggers
were presented using an in-house software (StimulGL; Gijsen,
2015). Our design encompassed two localizer runs (block 1), six
encoding runs, and finally another two localizer runs (block 2).

Localizer Block 1
In the two localizer runs, participants performed the two tasks
in a fixed order, with the MD run preceding the SN run.
These localizer runs were conducted to gauge participant’s
hemodynamic responses to the mental tasks and select task-
sensitive channels for answer decoding. In the first localizer run,
participants performed 20 MD trials with a duration of 10 s each,
interleaved with 20 s rest periods. The localizer started with an
initial rest period of 20 s, after which the participants heard the
auditory cue “start”. This cue marked the start of the MD task,
by which participants were instructed to perform the mental
imagery task until they heard the cue “rest”. They then halted
the mental imagery and remained at rest for 20 s, until the next
“start” cue urged them to commence the mental imagery again.
This procedure was repeated 20 times, resulting in 20 MD trials.
The second localizer followed the same protocol.

Six Answer Encoding Runs
In this stage of the experiment, participants were asked to answer
binary questions by performing one of two mental tasks in
a particular time window. Participants were informed that to
encode a “yes” answer, they had to perform MD imagery when
they heard “yes”. In the “yes” encoding runs, participants were
instructed to ignore the “no” cues and to not perform SN (or
any other task). Conversely, to encode a “no” answer, they had
to perform SN imagery when they heard “no”. In this case, the
“yes” cues were ignored (see Figure 1).

Six questions were asked, each at the start of a separate
answer encoding run. The question was read aloud through a
microphone by the experimentor. The fNIRS recording started
when the participant reported having his/her answer, i.e., “yes” or
“no”, and the corresponding task, i.e., MD or SN, clearly in mind.
The time intervals within which a “yes” or “no” answer could be
given followed 20 s after termination of the question. The “yes”
interval was initiated by the auditory “yes” cue and terminated
10 s later by an auditory “stop” cue. The “yes” interval always
proceeded the “no” interval, which was marked by the auditory
cue “no” and “stop” 10 s later. Hence, if participants had chosen
to answer “yes”, they started performing the MD. If participants

had chosen to answer “no”, they ignored the “yes” cue. The cue,
“stop”, indicated participants to stop the mental imagery. Again,
if participants had chosen to answer “no”, they also ignored this
“stop” cue and remained at rest until they heard the cue “no”. At
this point they started performing the SN task until the “stop” cue
was heard. This procedure was repeated five times per encoding
run, resulting in five “yes” and five “no” trials.

Summarized, participants thus answered questions by
performing the MD mental task within a first time interval
marked by “yes” and “stop” cues, or the SN mental task within a
second time interval marked by “no” and “stop” cues.

Localizer Block 2
The procedure in localizer block 1 was repeated to increase the
amount of available data for classifier training. This repetition
was warranted, as we were unsure with respect to the minimum
amount of data necessary for effectively training the classifier in
the multivariate approach.

Comfortability Ratings
In between the ten fNIRS runs, participants were allowed to
take a short break to slightly adjust their body posture, or drink
some water. After each run, participants were asked to give a
comfortability rating between 0 and 10, with 0 meaning “very
uncomfortable” and 10 being “very comfortable”.

Ease and Pleasantness of the Mental
Tasks
After the ten fNIRS runs, the cap was removed and participants
were asked to rate the ease and pleasantness of the MD and SN
tasks with a score from 0 to 10. An easiness rating of 0 indicated
great difficulty of mental task execution, whereas a rating of 10
indicated extreme ease of task execution. A pleasantness rating of
0 indicated an extremely unpleasant experience when performing
the mental task, whereas a score of 10 indicated an extremely
pleasant experience.

fNIRS Data Acquisition
Hemodynamic signals were obtained using a continuous-wave
fNIRS system (NIRScout-816 system, NIRx Medizintechnik
GmbH, Berlin, Germany; RRID: SCR_002491) and NIRStar (v.
12.0) software (NIRx Medizintechnik GmbH, Berlin, Germany;
RRID: SCR_014540). Three source optodes, LEDs emitting light
with wavelengths of 760 and 850 nm, were used in combination
with six detector optodes. These nine optodes were placed in
optode holders on the cap according to the international 10-
20 EEG system. The three sources optodes were positioned
on FC3, C3, and CP3, whereas the six detector optodes were
positioned on FC5, C5, CP5, FC1, C1, and CP1 (see Figure 2).
Defining a channel as a unique source and detector optode pair,
this setup resulted in 18 channels. Channels FC3-CP1, FC3-
CP5, CP3-FC1, and CP3-FC5 were excluded from all analyses,
as the spatial separation between the sources and detectors
exceeded 60 mm in the largest cap size (60 cm) used in this
experiment. An optode separation of that size was considered
undesirable since it largely exceeds the recommended inter-
optode distance of 30 mm and gives rise to noisy and unstable
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FIGURE 1 | Encoding scheme for answering a binary question. The red periods require mental drawing (MD) imagery, whereas the green periods required spatial
navigation (SN) imagery. If participants chose to answer “yes”, they started performing the MD task when they heard a “yes”, halted their imagery when they heard
the cue “stop”, and ignored the auditory cues related to the “no” response. The hypothesized HbO response for a “yes” answer is shown by the upper white
waveform. If participants chose to answer “no”, they started performing the SN task when they heard a “no”, halted their imagery when they heard the cue “stop”,
and ignored the auditory cues related to the “yes” response. The hypothesized HbO response for a “no” answer is shown by the lower white waveform.

signals (Gratton et al., 2006). The remaining 14 channels analyzed
in this experiment are depicted by the red connecting lines in
Figure 2. This optode montage covered a confined area above
the left-hemispheric fronto-parietal (sensorimotor) cortex. The
frontal optodes covered brain areas commonly associated with
motor imagery, such as premotor cortex and possibly parts of
the supplementary motor areas in certain head sizes (Sitaram
et al., 2007; Koessler et al., 2009; Abdalmalak et al., 2016). The
posterior optodes captured part of the parietal cortex, expected
to be associated with SN imagery (Cabrera and Dremstrup, 2008;
McKendrick et al., 2016; Abdalmalak et al., 2017a). Optical signals
were recorded with a sampling rate of 12.5 Hz.

Data Analysis
Analyses of the fNIRS Signal
The main outcome of the spatiotemporal encoding
paradigm, i.e., communication accuracy, was obtained
with a General Linear Model (GLM) approach (univariate
analysis). In addition, spatial discernibility of the two
mental tasks was investigated using a SVM (multivariate
analysis). See Figure 3 for an illustration of the
analyses workflow.

General data (pre)-processing
FNIRS time series were analyzed in simulated real-time using
Turbo-Satori software (v1.2.8, Brain Innovation B.V., Maastricht,
Netherlands). In the first pre-processing step, raw wavelengths
were converted to optical densities. The optical density data
were then converted to oxygenated hemoglobin (HbO) and
deoxygenated hemoglobin (HbR) values using the modified Beer-
Lambert law. Linear trend removal and moving average filtering
(low-pass cut-off frequency: 0.3 Hz, filter order: 2; high-pass
cut-off frequency: 0.01 Hz, filter order: 1) were applied. The low-
pass filter aimed to remove high-frequency artifacts induced by
heartbeat and breathing, whereas the high-pass filter served to
remove low-frequency drifts.

FIGURE 2 | Optode setup with three source and six detector optodes, placed
on nine points according to the international 10-20 EEG system. Large orange
dots represent reference points of the 10-20 system, whereas small orange
dots represent reference points of the extended 10-10 EEG system
(Oostenveld and Praamstra, 2001). The red lines represent 14 source-detector
pairs (each forming an fNIRS channel). Image created using NIRSite (v.1)
software (NIRx Medizintechnik GmbH, Berlin, Germany; RRID: SCR_002491).

Communication accuracy (univariate analysis)
Channel exclusion. To ensure proper signal quality, we excluded
channels showing a signal-to-noise ratio below a given criterion
value. To that aim, the channel-wise coefficient of variance
percentage (CV%) was calculated on the unfiltered raw
wavelength data by dividing the temporal standard deviation by
the mean value (see Piper et al., 2014, for a detailed description).
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FIGURE 3 | Schematic depiction of the fNIRS signal analyses. The two main pipelines were univariate analysis and multivariate analysis. Each pipeline resulted in
four accuracy outcomes. These outcome variables are represented in gray colored boxes. CV, coefficient of variance; OD, optical density; HbO, oxygenated
hemoglobin; HbR, deoxygenated hemoglobin; SVM20-20, support vector machine with 20 training trials of each task; SVM40-40, support vector machine with 40
training trials of each task.

A CV% higher than 15 indicates insufficient signal-to-noise ratio
(Schmitz et al., 2005; Schneider et al., 2011; Piper et al., 2014;
Pfeifer et al., 2018). Consequently, all channels with a CV%
higher than 15 for either one or both wavelengths in the first
two localizers (block 1) were excluded from channel-of-interest
selection. This channel-wise exclusion was also performed on
the last set of localizers (block 2) to gauge the intra-individual
variability in channel exclusion across all localizer runs.

Given the limited number of 14 channels in the current
experiment, one runs the risk of excluding a potentially
informative channel due to its high CV%. Therefore, all
univariate analyses were repeated omitting the CV% criterion,
thus allowing different channels to be selected for subsequent
analyses (see Supplementary Material). Only when the overall
accuracy differed significantly between both approaches, the

accuracies of the analyses without the CV% criterion are also
reported in the results section.

Channel selection. From the channels that were not excluded in
the previous step, a single channel was chosen for each mental
imagery task (MD and SN) based on the data of localizer block
1. HbO and HbR signals were analyzed separately. Four GLM
analyses (HbO/HbR × MD/SN) were conducted with a predictor
for the mental imagery trials and applying the contrast “MD/SN
vs. rest”. The four channels with the highest t-value in each of the
four GLM analyses were coined “channels of interest” (COIs) and
were considered for the following single- and multi-trial analyses
of the answer encoding data.

Answer decoding. Participant’s answers were decoded through
comparison of the five individual trial pairs (single-trial
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approach) or through comparison of the integrated five trials per
answer option (multi-trial approach).

In the single-trial approach a GLM analysis was run with
the statistical contrast “yes” vs. “no” for each yes/no trial
pair (5 trial pairs per encoding run). This resulted in four
t-values per trial pair, one for each COI (HbO/HbR ×

SN/MD), based on mental task predictors that encompassed
two individual trials. These t-values were used to decode
the participants’ answer as follows: When the t-value of
the MD COI was larger than the t-value of the SN COI,
a “yes” answer was decoded. Whereas when the t-value
of the MD COI was smaller than the t-value of the SN
COI, a “no” answer was decoded. The single-trial approach
resulted in 30 decoded answers (6 runs × 5 trial pairs)
per participant. The decoded answers were compared to the
originally encoded answers and each individual participant’s
accuracy was calculated.

In the multi-trial approach, a GLM analysis was run with
the statistical contrast “yes” vs. “no”. The five trials per
answer option were used to infer a t-value for each COI
(HbO/HbR × SN/MD). Decoding followed the same rationale
of t-value comparison as in the single-trial approach. This
procedure was repeated for all six answer-encoding runs
for both the HbO and HbR signal separately. The decoded
answers were compared to the originally encoded answers
and each individual participant’s accuracy was calculated. The
multi-trial approach resulted in 6 decoded answers (6 runs)
per participant. The decoded answers were compared to the
originally encoded answers and each individual participant’s
accuracy was calculated.

To assess the significance of the participants’ decoding
accuracies in the univariate analyses, we determined the empirical
chance level based on binomial distributions (Noirhomme et al.,
2014). The following settings were determined: α = 0.05, number
of independent outcomes k = 2 and number of independent
trials n = 30 or n = 6 for single- and multi-trial accuracies
respectively. The resulting upper-bound empirical chance levels
for evaluating single- and multi-trial accuracies were therefore
19 trials (63.33%) and 5 trials (83.33%) respectively. If 19 or
more trials were decoded correctly in the single-trial approach,
this was considered a significant result. If 5 or more trials were
decoded correctly in the multi-trial approach, this was considered
a significant result.

The rate of correct detection of “yes”/“no” answers was
calculated by dividing the amount of correctly detected
“yes”/“no” answers by the total amount of encoded “yes”/“no”
answers per participant, i.e., 15 for the single-trial and 3 for the
multi-trial analysis.

Multivariate analyses
Single-trial results. Two classifiers were trained to discriminate
the spatial activation patterns in all 14 channels induced by
the two different mental tasks. This was done using either 20
or 40 trials of each mental task. One classifier was trained on
two runs: one for MD (MD1) and one for SN (SN1), with
each 20 trials (SVM20-20). The other classifier was trained on
four runs: two for MD (MD1 and MD2) and two for SN (SN1

and SN2), resulting in 40 trials for each task (SVM40-40). We
considered a temporal window spanning -2 s to 20 s (where 0–
10 s corresponds to the trial interval) and linearly fitted each
HbO/HbR concentration channel time course separately with
a design matrix consisting of a double-gamma hemodynamic
response function per trial and an additional linear confound
predictor. Resulting estimates were t-values which were stored
in volume map files for each time course. These files were used
as input for the classifier testing on an independent dataset, i.e.,
the six answer-encoding runs’ data. Per answer-encoding run, the
five “active” trials, i.e., trials in which we knew the participant
was performing a task, were tested. The five “inactive” trials in
which participants rested were not analyzed. This resulted into
a total of thirty testing trials (6 runs × 5 “active” trials) per
participant. The proportion of testing trials for which the decoded
answer matched the true answer was subsequently calculated.
Lastly, to determine the empirical chance level for each individual
participant, permutation testing was performed with an in-house
MATLAB script (ver. R2015a). To this end, task labels were
randomly reassigned to each trial in the training dataset, on which
the classifier was subsequently trained. Testing was then done on
an independent, non-permuted testing dataset. This procedure
was repeated 2000 times. Chance level was calculated as the
proportion of permutations revealing accuracies lower or equal
to the accuracy obtained using the real (non-permuted) dataset.

The rate of correct detection of MD/SN was calculated by
dividing the amount of correctly detected MD/SN patterns by the
total amount of encoded MD/SN trials, i.e., 15 per task.

Multi-trial results. Multi-trial accuracies were derived from the
single-trial multivariate results reported above. The five yes/no
decisions per run were integrated using majority voting (e.g.,
three answers encoded as “yes” and two answers encoded as
“no” were considered as a “yes” answer, and vice versa). The
proportion of decoded answers matching with the true answer
was calculated for each participant. The upper-bound empirical
chance level for each individual participant was 83.33%, based on
binomial distributions.

The rate of correct detection of MD/SN was calculated by
dividing the amount of correctly detected MD/SN patterns by the
total amount of encoded MD/SN runs, i.e., 3 per task.

fNIRS Suitability Questionnaire and Signal Quality
The total fNIRS suitability score was obtained by summing
all features, with a maximum score of 21 (see Table 1 for
suitability score per participant). This score was correlated
with the number of channels with a CV under 15%, which
is a metric for fNIRS signal quality (Balardin et al., 2017),
through calculation of a one-tailed Pearson’s r in SPPS
(ver. 22). Furthermore linear regression analyses were
performed using SPPS (ver. 22). FNIRS signal quality
(i.e., SNR) was treated as predictor variable and the eight
decoding accuracies obtained from the univariate analyses
(single-/multi-trial × HbO/HbR) and multivariate analyses
(single-/multi-trial × SVM20-20/SVM40-40) were treated as
criterion variables.
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Comfortability, Ease and Pleasantness Ratings
Mean and standard deviation are reported for comfortability,
ease and pleasantness ratings. Pearson’s r was calculated
between ease and pleasantness and accuracy outcomes
of all univariate (single-/multi-trial × HbO/HbR) and
multivariate (single-/multi-trial × SVM20-20/SVM40-40)
analyses. Statistical significance was evaluated using a criterion
of α = 0.05.

RESULTS

Communication Accuracy (Univariate
Analysis)
Channel Exclusion
On average 37% of channels were excluded due to their low
SNR in localizer block 1. Descriptively, the channels with a
relatively longer source-detector distance, e.g., diagonal channels
such as FC3-C1, as compared to the shorter optode distances, e.g.,
straight channels such as FC3-FC1, were excluded more often.
Large variation was observed between individual participants,
ranging from 0 to 13 excluded channels. In contrast, the
SNR measure was highly consistent across the four localizer
runs (block 1 and block 2) within individual participants (see
Supplementary Figure S1).

Channel Selection
The four COIs selected for further data-analysis steps are
reported per participant in Table 1. In the HbO selection,
the same channel was selected for mental drawing and spatial
navigation imagery in three participants, i.e., participant 6, 7, and
12. In the HbR selection the same channel was selected for both
tasks in four participants, i.e., participant 1, 4, 7, and 14. Overall
the channel selection was quite variable across participants (see
Table 2). For the MD task, channels FC3-FC5 (HbO) and C3-C5
(HbR) were chosen most frequently. For the SN task, channels
FC3-FC5 (HbO) and FC3-FC5, FC3-C5, FC3-CP1, and C3-CP3
(HbO) were chosen most frequently. The event-related averages
of the four channels-of-interest are depicted for two exemplary
participants, participant 4 and 17 (Figures 4, 5).

Single-Trial Results
Univariate analysis of single-trial data resulted in an average
decoding accuracy of 56.85% (SD = 11.17%) and 54.81%
(SD = 13.58%) for HbO and HbR respectively (see Figure 6).
Individual accuracies ranged from 33.33 to 90%. Two
participants’ HbO data decoding accuracy was significant
(indicated with a � symbol in Figure 6). The average rate of
correct detection of “yes” answers in the HbO signal was 60.00%,
whereas “no” answers were correctly detected 53.70% of the time.
The HbR decoding accuracy was significant in four participants
(indicated with a � symbol in Figure 6). Participant 4 was the
sole significant participant in both HbO and HbR accuracies.
The average rate of correct detection of “yes” answers in the HbR
signal was 62.22%, whereas “no” answers were correctly detected
47.41% of the time.

TABLE 2 | Frequency table of channel-of-interest selection in 18 participants.

Channel
(source-detector) l

Absolute frequency

Mental drawing Spatial navigation

HbO HbR HbO HbR

FC3-FC5 4 2 5 3

FC3-C5 1 1 2 3

FC3-FC1 1 1 3 3

FC3-C1 0 0 1 0

C3-FC5 3 1 2 0

C3-C5 2 4 1 1

C3-CP5 1 1 0 0

C3-FC1 0 0 0 1

C3-C1 1 3 0 3

C3-CP1 1 0 0 0

CP3-C5 1 0 1 1

CP3-CP5 1 3 3 2

CP3-C1 0 0 0 1

CP3-CP1 2 2 0 0

Total 18 18 18 18

A channel is formed by the combination of two optodes (source-detector).
Abbreviations: HbO, oxygenated hemoglobin; HbR, deoxygenated hemoglobin.

Multi-Trial Results
Univariate analysis of multi-trial decoding resulted in an average
accuracy of 66.67% (SD = 20.6%) and 58.33% (SD = 32.96%) for
HbO and HbR respectively (see Figure 6). The control analysis
without channel exclusion yielded a significantly lower group
average of 58.33% (SD = 25.73%) for the HbO data (paired
samples t-test; t = 2.70; p = 0.015 (see Supplementary Material
and Supplementary Figure S2). In the main analysis, i.e., with
channel exclusion, individual accuracies ranged from 0 to 100%.
Six participants’ HbO data decoding accuracy was found to be
significant (indicated with a ∗ symbol in Figure 6). The answers
by participants 4 and 9 were decoded with 100% accuracy.
The average rate of correct detection of “yes” answers in the
HbO signal was 83.33%, whereas “no” answers were correctly
detected in 50.00% of the cases. The HbR decoding accuracy
was significant in six participants (indicated with a ∗ symbol
in Figure 6), with 100% accuracy in participants 4, 8, 9, and
11. The answers of participants 4, 9, and 14 were significantly
decoded in both HbO and HbR signal. For illustrative purposes
the event-related averages of a “yes” and a “no” answer are
depicted for participant 4 and 17 in Figures 7, 8. The average
rate of correct detection of “yes” answers in the HbR signal
was 72.22%, whereas “no” answers were correctly detected
44.44% of the time.

Multivariate Analyses
Single-Trial Results
The SVM20-20 classifier achieved an accuracy of 58.33%
(SD = 13.05%). Individual accuracies ranged from 33.33 to
76.67%. Spatial activation patterns could be distinguished
significantly above chance level, assessed by permutation testing,
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FIGURE 4 | Event-related averages of channels of interest in participant 4. The two graphs on the left are event-related averages from the first localizer run (mental
drawing; MD). The two graphs on the right are event-related averages from the second localizer run (spatial navigation; SN). The top two graphs depict the
oxygenated hemoglobin (HbO) response, whereas the bottom two graphs depict the deoxygenated hemoglobin (HbR) response. Each graph is the event-related
average of 20 individual trials, with the darker average signal line and its standard deviation (lighter colored band surrounding the average signal line). Notice the clear
and typical hemodynamic response during both tasks: a positive deflection in HbO and a negative deflection in HbR. The gray band from 0 to 10 s signifies the
mental imagery time interval.

in four out of 18 participants (indicated with a ◊ symbol
in the top plot in Figure 9). The average rate of correct
detection of MD was 52.59%, whereas SN was correctly detected
64.07% of the time.

The SVM40-40 classif ier achieved an accuracy of 60.56%
(SD = 13.15). Individual accuracies ranged from 30.00 to 83.33%.
Spatial activation patterns could be distinguished significantly
above chance level, assessed by permutation testing, in seven out
of 18 participants (indicated with a ◊ symbol in the bottom plot
in Figure 9). The average rate of correct detection of MD was
59.26%, whereas SN was correctly detected 62.59% of the time.

Multi-Trial Results
The SVM20-20 classifier achieved an accuracy of 62.04%
(SD = 27.30%). Individual accuracies ranged from 0 to 100%.
Spatial activation patterns discernibility was significant in eight
out of 18 participants (indicated with a ∗ symbol in the top
plot in Figure 9). The average decoding accuracy of these eight

participants was 85.42% (SD = 5.89%). The average rate of correct
detection of MD was 59.26%, whereas SN was correctly detected
64.81% of the time.

The SVM40-40 classifier achieved an accuracy of 75.00%
(SD = 21.58%). Individual accuracies ranged from 16.67 to 100%.
Spatial activation patterns discernibility was significant in ten out
of 18 participants (indicated with a ∗ symbol in the bottom plot
in Figure 9). The average rate of correct detection of MD was
72.22%, whereas SN was correctly detected 77.78% of the time.

fNIRS Suitability Questionnaire and
Signal Quality
We found that SNR, as measured by the number of channels
passing the CV% criterion, was significantly correlated with
fNIRS suitability scores (r = -0.499, n = 18, p = 0.018;
see Supplementary Figure S3). Participants with low fNIRS
suitability scores (indicating highly suitable participants) thus
typically had good fNIRS signal SNR.
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FIGURE 5 | Event-related averages of channels of interest in participant 17. The two graphs on the left are event-related averages from the first localizer run (mental
drawing; MD). The two graphs on the right are event-related averages from the second localizer run (spatial navigation; SN). The top two graphs depict the
oxygenated hemoglobin (HbO) response, whereas the bottom two graphs depict the deoxygenated hemoglobin (HbR) response. Each graph is the event-related
average of 20 individual trials, with the darker average signal line and its standard deviation (lighter colored band surrounding the average signal line). Notice the
absence of a typical hemodynamic response during both tasks: there is no clear positive deflection in HbO, nor a negative deflection in HbR. The gray band from 0
to 10 s signifies the mental imagery time interval.

Regression analyses with accuracy as the criterion variable
and SNR as the predictor variable revealed the following results
(see Supplementary Figure S4). Approximately 31% of the
variation in HbR multi-trial accuracy could be attributed to the
variation in SNR (R2 = 0.309 with F17 = 7.165, p = 0.017). In
contrast, SNR was no significant predictor for any other criterion
variable: HbR single-trial accuracy (R2 = 0.083 with F17 = 1.442,
p = 0.247), HbO single-trial accuracy (R2 = 0.045 with F17 = 0.755,
p = 0.398), HbO multi-trial accuracy (R2 = 0.029 with F17 = 0.480,
p = 0.499), single-trial SVM20-20 (R2 = 0.135 with F17 = 2.494,
p = 0.134), multi-trial SVM20-20 (R2 = 0.041 with F17 = 0.676,
p = 0.423), single-trial SVM40-40 (R2 = 0.009 with F17 = 0.144,
p = 0.709) and multi-trial SVM40-40 (R2 = 0.147 with F17 = 2.767,
p = 0.116).

Comfortability, Easiness and
Pleasantness
Participant’s comfortability rating started out fairly high
(8.03 ± 1.27) and then decreased over the remaining fNIRS
runs (see Figure 10). The last run shows lowered although
still acceptable comfort scores (6.53 ± 1.55). Not a single

participant indicated a comfortability score lower than 5
during the experiment.

Overall both tasks were deemed easy and pleasant. On
average the SN task was considered more difficult to perform
(6.28 ± 1.32) and less pleasant (6.61 ± 1.45) than the MD task
(7.94 ± 1.48; 7.28 ± 1.49). The difference between the two tasks in
terms of ease was statistically significant (t = 4.70, p< 0.001). The
difference in pleasantness showed a similar trend, yet it was not
statistically significant (t = 1.86, p = 0.081). Ease and pleasantness
ratings correlated significantly with the accuracy of the SVM40-
40 analysis, whereas all other correlations were not significant
(see Table 3 for all correlations).

DISCUSSION

We presented a novel binary communication paradigm that
aimed to exploit spatiotemporal characteristics of fNIRS signals
evoked by differently timed mental imagery tasks. The paradigm
involved minimal training and a sparse optode setup of only
nine optodes (three sources, six detectors). Participants were
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FIGURE 6 | Decoding accuracies of individual participants and the sample mean obtained with the single-trial (light-colored bars) and the multi-trial (dark-colored
bars) univariate approach. Decoding accuracies were attained through channels-of-interest, preceded by a channel exclusion step. The upper plot show results
based on analysis of HbO data (red bars), the lower plot is based on HbR data (blue bars). The � symbol indicates participants whose single-trial accuracy was
significant, whereas the * symbol indicates those participants whose multi-trial accuracy was significant.

TABLE 3 | Correlation table of ease and pleasantness ratings with the eight accuracy outcomes variables.

Pearson’s p
p-value

Multi-trial
HbO

Multi-trial
HbR

Single-trial
HbO

Single-trial
HbR

Single-trial
SVM 20-20

Multi-trial
SVM 20-20

Single-trial
SVM 40-40

Multi-trial
SVM40-40

Ease MD 0.288, 0.123 0.220, 0.190 0.101, 0.345 0.034, 0.447 0.010, 0.484 0.017, 0.945 0.508, 0.016* 0.383, 0.117

Ease SN 0.360, 0.071 0.147, 0.281 0.156, 0.268 0.041, 0.435 0.325, 0.094 0.364, 0.137 0.609, 0.004* 0.499, 0.035*

Pleasantness MD 0.320, 0.098 0.210, 0.202 0.127, 0.308 −0.051, 0.421 −0.116, 0.323 −0.208, 0.408 0.736, 0.000* 0.748, 0.000*

Pleasantness SN 0.295, 0.117 0.023, 0.464 0.023, 0.464 −0.163, 0.259 0.145, 0.283 0.076, 0.765 0.637, 0.002* 0.423, 0.080

Abbreviations: MD, mental drawing; SN, spatial navigation; HbO, oxygenated hemoglobin; HbR, deoxygenated hemoglobin; SVM, support vector machine; * = correlation
is significant at 0.05 level (1-tailed).

asked to perform mental drawing (MD) for encoding a “yes”
answer and spatial navigation (SN) for encoding a “no” answer
in different auditorily cued time windows. The applied goal was
to test decoding success and feasibility of the current paradigm
compared to previous paradigms. Answers were decoded in
simulated real-time using a set of predefined fNIRS channels and
a univariate analysis approach. We also performed an explorative
multivariate analysis on the data from all channels to investigate
the differentiability of the two mental tasks based solely on spatial
fNIRS signal features. In addition, the link between participants’
physical characteristics and the fNIRS signal was explored with a
novel fNIRS suitability questionnaire.

Univariate Analysis
Channel Selection
We hypothesized that relatively frontal optodes covered brain
regions commonly associated with motor imagery, whereas
posterior optodes covered brain areas associated with SN imagery

(see section fNIRS Data Acquisition). On a group level, we found
that frontal optodes were selected most often, irrespective of the
type of task. However, note that a channel exclusion step was
performed before the channel selection step, thus one should
interpret these findings with caution. On an individual level,
spatially different channels were selected as COI for each task
in most participants. The absence of a spatial encoding aspect
(i.e., selecting the same COI for both tasks) in a few participants
(three in HbO and four in HbR; see Table 1) posed no decoding
problem. Our paradigm aimed at exploiting spatial as well as
temporal characteristics of fNIRS signals. Hence, in those few
participants we solely relied on the temporal aspect, the fNIRS
signal evoked by differently timed mental imagery tasks, to
decode participant’s answers. For example, participant 4 had the
same COI for both tasks in the HbR signal but had a decoding
accuracy clearly above chance level, with a single-trial accuracy
of 90% and a multi-trial accuracy of 100%. The incorporation of
both spatial and temporal features is an experimental safeguard
in the presented fNIRS paradigm.
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FIGURE 7 | Event-related averages of channels-of-interest in participant 4. The two graphs on the left are event-related averages from the first answer decoding run,
in which the participant encoded a “yes” answer. The two graphs on the right are event-related averages from the sixth answer decoding run, in which the participant
encoded a “no” answer. The top two graphs depict the oxygenated hemoglobin (HbO) response, whereas the bottom two graphs depict the deoxygenated
hemoglobin (HbR) response. Each graph is the event-related average of five individual trials, with the darker average signal line and its standard deviation (lighter
colored band surrounding the average signal line). Notice the clear and typical hemodynamic response function during both tasks: a positive deflection in HbO and a
negative deflection in HbR. The gray band from 0 to 10 s signifies the mental imagery time interval.

Communication Accuracy
The single-trial GLM approach, with average decoding
accuracies of 56.85% (HbO) and 54.81% (HbR), enabled
effective communication in a limited subset of participants.
In the fNIRS literature, no univariate single-trial accuracies
have been previously reported. Multiple trials seem to be
necessary at the current time, unfortunately at the cost of a
lower information transfer rate. The multi-trial GLM approach
resulted in higher group decoding accuracies in comparison to
the single-trial approach. In four participants a 100% decoding
accuracy was reached in the multi-trial approach, which was
not attained in any participant using a single-trial approach.
Average multi-trial decoding accuracy was higher in HbO
(66.67%) than in HbR (58.33%), but on an individual level
the same number of participants (six) reached significance.
The similar individual decoding results across HbO and HbR
were an unexpected finding. Generally, the lower amplitude
and SNR of HbR, as compared to HbO, is thought to hinder
detection of task-evoked changes (Leff et al., 2011). In line
with this, it has been demonstrated that HbO signal is more

robust than HbR for motor imagery specific activation (Mihara
et al., 2012). Likewise, Rezazadeh Sereshkeh et al. (2018)
reported that HbO signals yielded the highest accuracies in
their 3-class BCI using imagined speech, and Hwang et al.
(2016) reported that HbO features yield more discriminative
information than HbR features in 2-class communication.
Despite this previous work, here we find individual HbR multi-
trial decoding accuracies that are similar to the ones seen in
the HbO signal. It could be that the negative effect of the low
SNR of the HbR signal is compensated by the relatively low
sensitivity to physiological noise, i.e., systemic artifacts in both
extra-cerebral and intra-cerebral compartments, as compared
to HbO (Kirilina et al., 2012). In the current study we could
not correct for physiological noise, which might have been
a disadvantage for the HbO signal especially. Whether the
differential sensitivity to physiological noise should influence
researchers’ decision to select either HbO or HbR for BCI
purposes should be investigated further. Therefore, in line with
Pinti et al. (2018), we encourage future studies to report both
HbO and HbR results.
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FIGURE 8 | Event-related averages of channels-of-interest in participant 17. The two graphs on the left are event-related averages from the fifth answer decoding
run, in which the participant encoded a “yes” answer. The two graphs on the right are event-related averages from the sixth answer decoding run, in which the
participant encoded a “no” answer. The top two graphs depict the oxygenated hemoglobin (HbO) response, whereas the bottom two graphs depict the
deoxygenated hemoglobin (HbR) response. Each graph is the event-related average of five individual trials, with the darker average signal line and its standard
deviation (lighter colored band surrounding the average signal line). Notice the absence of a typical hemodynamic response function during both tasks: there is no
clear positive deflection in HbO, nor a negative deflection in HbR. The gray band from 0 to 10 s signifies the mental imagery time interval.

As in previous fNIRS-BCI studies, only a subset of our
participants reached an acceptable criterion for communication
(Naito et al., 2007; Nagels-Coune et al., 2017; Rezazadeh
Sereshkeh et al., 2018). The multi-trial approach enabled effective
communication in six participants in the HbO signal, i.e.,
participants 3, 4, 9, 13, 14, 15, and six participants in the HbR
signal, i.e., participants 4, 6, 8, 9, 11, and 14. When taking the
HbO and HbR results together, effective communication was
reached in half of our participants. Therefore, as stated above,
we recommend reporting BCI success for both HbO and HbR in
future studies. Note that our use of the empirical chance level as
a criterion is significantly stricter than the commonly used “70%”
criterion that signifies a sufficient accuracy for communication
in an individual user (Kubler et al., 2006). Our paradigm thus
enables effective communication, greatly exceeding the common
criterion of 70% for effective communication (Kubler et al., 2006),
in a subset of participants.

Our multi-trial accuracies of 66.67% (HbO) and 58.33%
(HbR) are low compared to those reported in other binary
communication paradigms (Naseer et al., 2014; Rezazadeh
Sereshkeh et al., 2018). This could be due to our sparse approach

of a single session. Other studies encompassed multiple sessions
(Rezazadeh Sereshkeh et al., 2018) or separate training sessions
(Naseer et al., 2014). More training of our participants and more
experimental trials could have resulted in better BCI performance
(Kaiser et al., 2014) but would require more time investment,
which in turn might affect the clinical applicability.

Our paradigm is the first to attempt using two active mental
tasks to differentiate two answer options. However the low
correct detection rate of the “no” answers, ranging from 44.44
to 53.70%, implies that the motor imagery task has mainly
driven our univariate results. This finding questions the effective
contribution of the spatial navigation task in our univariate
analyses. Efforts have been made to investigate SN in naturalistic
environments (McKendrick et al., 2016) and virtual reality
environments (Kober et al., 2013) using fNIRS. However, to our
knowledge no previous fNIRS study has explored the fNIRS
signal in response to SN imagery. This study thus constitutes
the first exploration of SN imagery in fNIRS. Future studies
should investigate this mental task more thoroughly using an
extended optode setup, as it is possible that our optode setup
was not suited for SN. Alternatively, other promising mental
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FIGURE 9 | Decoding accuracies of individual participants and the sample mean obtained with the single-trial (light-colored bars) and the multi-trial (dark-colored
bars) multivariate approach. The upper plot shows decoding accuracies of the SVM20-20 classifier, the lower plot shows decoding accuracies of the SVM40-40
classifier. The ◊ symbol indicates participants whose accuracy reached significance, as tested with permutation testing (for evaluating single-trial accuracies),
whereas the * symbol indicates those participants whose multi-trial accuracy was significant. Abbreviations: SVM20-20 = support vector machine with 20 training
trials of each task; SVM40-40 = support vector machine with 40 training trials of each task.

FIGURE 10 | Mean comfortability rating over time (fNIRS runs). A comfortability rating of 0 corresponds to “very uncomfortable” and 10 to “very comfortable”. The
ten fNIRS runs are depicted in the order they were conducted in the experiment. The first two runs, MD1 and SN2, were localizer runs (block 1) for mental drawing
(MD) and spatial navigation (SN). The following six runs, Q1, Q2, Q3, Q4, Q5, Q6, represent the answer decoding runs, with a Q as an abbreviation for “question
run”. The last two runs, MD2 and SN2, were localizer runs (block 2). Error bars reflect standard deviations.

imagery tasks can be explored. With respect to the spatial
encoding aspect of the current paradigm (two distinct mental
tasks and associated channels-of-interest for encoding “yes” and
“no” encoding), follow-up work is required to ensure effective
and balanced contributions of both tasks.

Multivariate Analysis
The multivariate analysis explored the possibility of
distinguishing the spatial patterns induced by MD vs. SN,
disregarding any temporal information. From a clinical
perspective, we compared the classifier results for both a limited
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(localizer block 1) and a full (localizer block 1 and 2) training set.
Both our single-trial decoding accuracies, 58.33% (SVM20-20)
and 60.56% (SVM40-40), were rather low in comparison with
previous studies. Classification results of 73% in two-class
discrimination (Sitaram et al., 2007) and 64.1 to 75.6% in three-
class discrimination (Hong et al., 2015; Rezazadeh Sereshkeh
et al., 2018) are reported. However, the limited amount of trials
in the current study should be noted, whereas other studies
have trained and tested their classifiers on a significantly higher
number of trials. In addition, our setup of nine optodes is quite
sparse in comparison to previous work (Sitaram et al., 2007;
Hong et al., 2015; Rezazadeh Sereshkeh et al., 2018). Note that
the correct detection of the MD and SN tasks was more balanced,
as compared to the univariate analyses. Correct detection of
MD ranged from 52.59 to 72.22%, while correct detection of SN
ranged from 62.59 to 77.78%. This implies effective contribution
of both mental imagery tasks in our multivariate analyses.

Interestingly, in the current experiment, a simplistic majority
voting approach applied on the single-trial SVM decisions,
resulted in heightened accuracies of 62.04% (SVM20-20) and 75%
(SVM40-40). This type of trial combination is rarely reported in
BCI literature (Nagels-Coune et al., 2017), but it seems to affect
the decoding accuracy in a positive manner and could potentially
be useful in clinical BCI applications.

A limitation of our multivariate approach is that the two
mental imagery tasks never co-occurred within localizer runs.
Classifiers were thus trained on each distinctive task in one
(SVM20-20) or two (SVM40-40) separate runs. In hindsight, it
would have been better to perform both mental tasks within
a run, as has been done by e.g., Valente et al. (2019) in an
MVPA-based BCI control study using fMRI.

Uni- vs. Multivariate Results
Comparisons between the univariate and multivariate results
should be drawn with caution given the fundamentally different
nature of the methods. In the univariate analyses, the data
from four channels-of-interest were considered, whereas all
channels were considered in the multivariate analyses. Each
analysis approach has its drawbacks for future BCI use, with
the SVM approach requiring more measurement points and the
GLM approach being dependent on a small subset of channels.
There is no clear superiority of one approach over the other
and one could think of these methods as two alternatives that
can be explored depending on the BCI user’s preferences and
performance. Despite similar average decoding accuracies across
uni- and multivariate analyses, accuracies varied largely within an
individual participant. For example, the surprisingly low multi-
trial decoding accuracy of 0% in HbR for participants 17 and
18 is in stark contrast with their MVPA accuracy. In Figures 5,
8, one cannot recognize the expected hemodynamic response
(positive HbO deflection and negative HbR deflection) or any
other response in the signal of participant 17. The 0% finding
in the HbR signal for the multivariate analyses is thus probably
due to noisy signal in combination with a low number of trials
(6 trials), as both participants attain an accuracy of 33.33% in
the single-trial analysis. In addition, suboptimal channel selection
due to our sparse optode setup might have contributed to these

findings. Nevertheless, when looking at the multivariate results
of participant 17 and 18, we see responses above chance level.
These diverging results between uni- and multivariate analyses
imply that our general linear model approach, with its focus on
a single channel-of-interest for each task, was not well suited to
disentangle the differential spatial features of the fNIRS signal in
certain participants.

Inter-Subject Variability
The inter-subject variability in our sample was substantial, both
in terms of signal quality and accuracy outcomes. The large
variability between participants has been recognized in other
fNIRS studies (Holper et al., 2011; Power et al., 2012; Rezazadeh
Sereshkeh et al., 2018). We have explored a few subject-specific
factors that potentially influence the fNIRS signal quality and
accuracy, such as hair and skin features (fNIRS suitability
questionnaire) and subjective ease and pleasantness ratings of
the mental tasks.

fNIRS Suitability Questionnaire
We developed an fNIRS suitability questionnaire to explore
whether physical features such as hair and skin could predict
fNIRS signal quality. In the current study, we found that
participants who were deemed less suitable for fNIRS (as
measured by our in-house questionnaire), generally had less
channels with a sufficient SNR (as operationalized by CV%).
The resulting significant correlation constituted a first indicator
of the questionnaire’s usefulness. Furthermore, the variation in
SNR across participants could explain approximately 31% of
the variance in the HbR multi-trial accuracies (R2 = 0.309 with
F17 = 7.165, p = 0.017). Note however that the fNIRS suitability
questionnaire administered in the current study is an exploratory
instrument and further work is needed to establish its validity and
reliability. In addition, it should be noted that we used common
optode holders, as opposed to spring-loaded optode holders, in
the current experiment. Common optode holders are thought to
be more sensitive to signal disturbance due to hair than spring-
loaded optode holders. It is thus expected that the established
relationship between physical features and fNIRS signal quality
will weaken in an experimental set-up with spring-loaded optode
holders. However, given the participant discomfort they often
cause (Lloyd-Fox et al., 2010), non-spring loaded optode holders
will continue to be used in studies involving children, patients
and other vulnerable populations. More extensive exploration
of the effects of participants’ hair, skin and head size on signal
quality is required in the future. Ideally one would determine a
suitability criterion that ensures sufficient SNR and thus enables
detection of intentional brain activation.

Comfort, Ease, and Pleasantness
Our participants generally experienced the fNIRS setup as
comfortable. Despite the average decrease of comfortability
across time, participants still felt comfortable in the
last fNIRS runs and not a single participant indicated
discomfort at any point.

Participants considered the MD significantly easier to perform
than the SN. In addition the SN task was considered less pleasant
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than the MD task. Despite a clear trend, this difference did
not reach significance. Ease and enjoyment have been shown
to correlate with fNIRS decoding accuracy (Weyand and Chau,
2015). In line with these observations, ease and pleasantness
correlated significantly with the SVM40-40 accuracies in the
current study (see Table 3).

Unexplored User Characteristics
In half of our participants, the paradigm did not enable effective
communication. While this may in part be due to the poor signal
quality of the current data set, with on average 37% of channels
rejected per participant, other studies have similarly identified
subgroups of participants in which fNIRS-BCI failed to work
(Naito et al., 2007; Rezazadeh Sereshkeh et al., 2018). Given the
general recognition of substantial inter-subject variability, the
current challenge in fNIRS-based BCI research is to investigate
what enables certain participants to use the BCI successfully but
also what factors are hindering BCI success in other participants.
Given the known correlations between EEG-BCI success and
user characteristics (Weyand and Chau, 2015), a systematic
investigation of user characteristics in relation to fNIRS-BCI
performance is due. Factors that are thought to influence fNIRS
hemodynamic signatures are age (Zich et al., 2017), handedness
(Kempny et al., 2016), user training (Kaiser et al., 2014),
vividness of mental imagery (Cui et al., 2007), imagery content
in combination with idiosyncratic cognitive abilities (Holper and
Wolf, 2011) and mental fatigue (Sargent et al., 2018). Lastly, there
is notable inter-subject variability in brain activation patterns
elicited by certain mental tasks (Power et al., 2012; Weyand
and Chau, 2015). Therefore, an individualized combination of
two tasks may be most effective for controlling a binary BCI in
individual users. A first effort to explore each participant’s best
discriminating subset of mental tasks has shown encouraging
results (Weyand and Chau, 2015).

Limitations and Future Work
In the current study, three left-handed participants, i.e.,
participants 5, 17, and 18, were asked to perform motor
imagery with their non-dominant hand. Given the established
hemispheric asymmetry related to handedness (Maruff et al.,
1999; Lee et al., 2019; Yokoyama et al., 2019), it is plausible
that left hand imagery combined with right hemisphere fNIRS
recordings would have resulted in heightened BCI decoding
accuracies for these three participants. When excluding these
three participants from our univariate analyses, single-trial
accuracies rose to 58.44% (HbO) and 58.00% (HbR), previously
56.85 and 54.81%. Multi-trial accuracies rose to 70.83% (HbO)
and 62.50% (HbR), previously 66.67 and 58.33% respectively.

The signal quality in the current data set may have been
limited by our use of non-spring loaded optode holders. Recently
the use of spring loaded optode holders is on the rise, as they
are known to improve signal quality. Unfortunately the type of
optode holders is not systematically reported in fNIRS studies,
thereby limiting systematic comparison. Nevertheless, given the
discomfort they often cause (Lloyd-Fox et al., 2010), non-spring
loaded optode holders will continue to be used in patient studies.
Therefore the current data might be representative for data we

might encounter in patient population. It is known that the
signal-to-noise ratio of fNIRS measurement remains a challenge
in ecologically valid environments (Zephaniah and Kim, 2014;
Pinti et al., 2017). Our presented fNIRS suitability questionnaire
should be developed further and would ideally identify those
participants with an insufficient SNR before the start of the
experiment. Given this information, efforts can be made to ensure
good signal quality by for example tracking the optode-to-scalp
coupling in real-time (Pollonini et al., 2016).

Another drawback of the current study is the absence of
additional physiological measures. Taking measures of blood
pressure, respiration and heart rate (Bauernfeind et al., 2014),
and regressing out these factors from our HbO and HbR signals
might have improved our detection of task-specific activation.
Moreover, given the absence of short-separation channels in
the current study, we could not remove the influence of extra-
cerebral tissue changes on the fNIRS signal (Brigadoi and Cooper,
2015). Methods such as the global component removal by Zhang
et al. (2016) require optodes to cover a much larger area than
the expected activated area and could thus not be applied. Mayer
waves might thus have occurred in our dataset and have possibly
reduced our decoding accuracies (Yucel et al., 2016). This might
be especially the case for HbO as compared to HbR, given its
higher sensitivity to physiological noise (Kirilina et al., 2012).
Future studies should incorporate short-separation channels, as
this can result in a significant improvement in both accuracy and
reliability of fNIRS measurements (Brigadoi and Cooper, 2015).
Such improvements are warranted for transference of fNIRS-
BCI to clinical populations, as there is empirical evidence from
EEG-based BCI that accuracies tend to be lower in patients as
compared to healthy participants (Halder et al., 2010).

We advise future studies that employ a similar paradigm to
focus on multi-trial decoding accuracies, as these proved most
promising in our univariate analysis. This general linear model
approach using a small set of fNIRS channels has enabled effective
communication in half of our participants in either HbO or HbR
signal. The good HbR decoding accuracies were an unexpected
finding and we thus advise future experiments to report both
HbO and HbR signal outcomes. In addition, future experiments
should perform online, real-time, analysis. This would enable
direct within-session feedback, which may heighten motivation
in the participants and subsequently BCI performance (Kleih
et al., 2010; Nijboer et al., 2010). Lastly, efforts to combine fNIRS
with other modalities, such as EEG, have shown to improve
classification accuracy significantly (Fazli et al., 2012; Zephaniah
and Kim, 2014; Shin et al., 2018; Rezazadeh Sereshkeh et al., 2019)
and are worth further investigation.

CONCLUSION

The presented binary communication paradigm aimed to
exploit spatiotemporal characteristics of fNIRS-signals evoked
by differently timed mental imagery tasks. In various univariate
analyses, the group average decoding accuracy was limited and
did not exceed previously reported paradigms. The mental
drawing imagery mainly drove our decoding results in the
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univariate analyses. Spatial navigation imagery should be
explored more extensively in the context of fNIRS. Despite the
rather low group average accuracies or number of participants
exceeding chance level, it bears mention that those participants
with a significant decoding accuracy performed excellent,
with participants reaching decoding accuracies of 100%. The
multivariate results showed potential spatial discernibility in a
subset of participants. Integration of the single-trial multivariate
outcomes using a majority voting approach resulted in
encouraging decoding accuracies. The hypothesized link between
participants’ physical characteristics and the fNIRS signal was
confirmed with our novel fNIRS suitability questionnaire.
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