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In the last decades, several electrophysiological markers have been investigated to
better understand how humans precede a signaled event. Among others, the pre-
stimulus microstates’ topography, representing the whole brain activity, has been
proposed as a promising index of the anticipatory period in several cognitive tasks.
However, to date, a clear relationship between the metrics of the pre-stimulus
microstates [i.e., the global explained variance (GEV) and the frequency of occurrence
(FOO)] and well-known electroencephalography marker of the anticipation (i.e., the
alpha power reduction) has not been investigated. Here, after extracting the microstates
during the expectancy of the semantic memory task, we investigate the correlations
between the microstate features and the anticipatory alpha (8–12 Hz) power reduction
(i.e., the event-related de-synchronization of the alpha rhythms; ERD) that is widely
interpreted as a functional correlate of brain activation. We report a positive correlation
between the occurrence of the dominant, but not non-dominant, microstate and both
the mean amplitude of high-alpha ERD and the magnitude of the alpha ERD peak
so that the stronger the decrease (percentage) in the alpha power, the higher the
FOO of the dominant microstate. Moreover, we find a positive correlation between
the occurrence of the dominant microstate and the latency of the alpha ERD peak,
suggesting that subjects with higher FOO present the stronger alpha ERD closely to the
target. These correlations are not significant between the GEV and all anticipatory alpha
ERD indices. Our results suggest that only the occurrence of the dominant, but not non-
dominant, microstate should be considered as a useful electrophysiological correlate of
the cortical activation.

Keywords: anticipatory period, EEG, alpha rhythms, pre-stimulus microstates, semantic memory

INTRODUCTION

Electroencephalography (EEG) records the human brain electric activity with a high temporal and
a reasonably good spatial resolution. Due to its features, this is a popular neuroimaging modality
for understanding how humans precede and prepare for a signaled event, providing several
neural correlates in both time and frequency domains. In this regard, the alpha (8–12 Hz) power
reduction (event-related de-synchronization, ERD) is a typical marker of the neural mechanisms
that contribute to the development of temporal expectations, and it is widely observed in the period
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that precedes a target in a variety of cognitive tasks (Min et al.,
2008; Capotosto et al., 2009, 2015; Babiloni et al., 2014). Such
alpha power reduction is mostly observed in the upper alpha
sub-band (∼10–12 Hz), which is the sub-band thought to reflect
the task-related oscillation of specific neural systems for the
elaboration of signaled information, whereas the lower alpha
sub-band (∼8–10 Hz) is thought to reflect general arousal and
vigilance (Klimesch et al., 1998b).

Importantly, in paradigms using a fixed temporal period
between a warning and an event stimulus, the amplitude of
alpha ERD increases rhythmically and peaks just before the target
(Rohenkohl and Nobre, 2011). Among others, a clear alpha ERD
has been reported during the preparatory period of a semantic
memory task (reviewed in Klimesch et al., 2010, in which a
warning signal preceded simple semantic judgments (e.g., living
vs. non-living) and the alpha power became suppressed during
the preparatory period as the subject anticipated the beginning
of the successive trial. Accordingly, the time modulation of the
anticipatory alpha power was also observed during the execution
of a semantic memory task (Spadone et al., 2017). Although
it is widely adopted to investigate the period that precedes an
expected event, the alpha ERD measure, as other common EEG
correlates of anticipation in the time domain (i.e., contingent
negative variation, CNV), has some limitations, e.g., its regional
specificity. Moreover, this measure requires evaluation of an
epoch lasting one or more seconds. On the contrary, the whole
brain is continuously in a different state (Kondakor et al., 1997).

In recent years, similarly to the reduction of the alpha power,
another EEG correlate has been proposed for the characterization
of the brain activity in the period preceding an expected event,
i.e., the dominant pre-stimulus microstate obtained by clustering
one map from each trial in the 50 ms before the event (Croce et al.,
2018b). EEG microstate analysis considers the EEG signal from
all electrodes to create a global representation of a functional
state, thus providing an overall view of the human brain activity
in the sub-second range. The topography of the EEG microstates
in a period that precedes a signaled target has been investigated
in a series of cognitive tasks (Britz et al., 2008, 2011, 2014), and it
is considered a proper index to assess the information processing
currently performed by the brain. Albeit the increasing interest
in the study of the microstates both at rest and during the task
execution, their brain functional dynamics, also compared to
other EEG markers, are still debated.

Recently, Milz et al. (2017) explored whether the resting
state EEG microstate’s topographies are driven by specific
brain rhythm activity. They linked the emergence of the four
typical microstate topographies at rest (A, B, C, and D) with
the intra-cortical alpha oscillations, suggesting an association
between EEG frequency band-wise differences and the EEG
microstates. To date, a similar relationship is not still investigated
during the task execution although both the anticipatory alpha
de-synchronization and the pre-stimulus microstates provide
important information on the neural mechanisms relative to
the anticipatory processes. To this aim, here, we extract the
pre-stimulus microstates during the expectancy of a semantic
memory task, and we investigate the correlations between the
microstate features (i.e., the global explained variance, GEV, and

the frequency of occurrence, FOO) and the anticipatory alpha
ERD indices describing both the whole anticipatory period (mean
amplitude) and the dynamics of alpha band modulation (latency
and magnitude of the alpha ERD peak).

MATERIALS AND METHODS

Subjects and Stimuli
Eighteen right-handed (Oldfield, 1971) volunteers (mean
age ± SD = 28.5 ± 4.9 years old; 11 females), same sample
as in Capotosto et al. (2017), with no previous psychiatric
or neurological history participated in the experiment. All
experiments were conducted with the understanding and written
informed consent of each participant, according to the Code
of Ethics of the World Medical Association and the standards
established by the University of Chieti Institutional Review Board
and Ethics Committee. The experimental protocol was approved
by the Institutional Review Board and Ethics Committee of the
University of Chieti (prot. 1123/2014). Of note, whereas our
referenced study (Capotosto et al., 2017) included experimental
runs with EEG recording combined with transcranial magnetic
stimulation (TMS), here we only refer to the experimental
condition in which the interference was ineffective (i.e., Sham),
so that the present EEG signals are not contaminated by the
magnetic stimulation.

The participants were seated on a comfortable reclining
armchair and kept their hands on the response box (Cedrus
RB-830). Stimuli were generated using E-Prime software v2.0
(Psychological Software Tools, Pittsburgh, PA, United States) and
were presented on an LCD screen placed at a distance of about
80 cm. They represented four-letter actual Italian nouns (words
were written in uppercase), drawn from a linguistic database
[Corpus e Lessico di Frequenza dell’Italiano Scritto (CoLFIS),
Bertinetto et al., 2005]. Subjects were instructed to maintain
fixation on a central black cross (subtending 0.2◦ of visual angle),
displayed on a white background at the center of the screen.
Every 4 ± 0.5 s, a cue stimulus (a small red cross) was presented
for 200 ms. After 2 s, a word was presented for 500 ms at the
center of the screen and denoted a living (50%) or a non-living
(50%) entity. Participants, within the present semantic decision
task, were instructed to make a living/non-living judgment by
pressing a corresponding button of the response box with their
left/right index finger (Figure 1) and to respond as quickly and
as accurately as possible. Of note, living/non-living subcategories
are not considered separately in the following analyses, and they
include plants (e.g., vegetables, fruits, flowers), animals (e.g.,
birds, mammals, insects), and body parts for the living category
and buildings, vehicles, apparel, music instruments, and tools for
the non-living category. Fifty trials per subject were collected, but
only correctly answered trials were kept for the following analyses
(83.7± 1.7%).

Electroencephalography Recordings
Electroencephalography data were recorded (BrainAmp;
bandpass, 0.05–100 Hz, sampling rate, 256 Hz; AC couple mode
recording; notch filter not applied during the recording) from
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FIGURE 1 | Example of the display sequence in the semantic memory task. Of note, in the present experimental paradigm, we investigated the period that precedes
the target onset (i.e., fix period in this figure).

32 EEG electrodes placed according to an augmented 10–20
system and mounted on an elastic cap. Electrode impedance
was set below 5 kOhm. The reference electrode was placed
between Fz and Cz, whereas the ground electrode was positioned
below Oz. Two electro-oculographic channels (EOG, i.e., one
horizontal and one vertical, 0.05–100 Hz bandpass) were used to
monitor eye movements and blinking. The EEG was recorded
continuously and then was off-line segmented in epochs lasting
from −1 s before and +3.5 s after cue onset. For the EEG
analyses, a second-order filter was applied, 1–40 Hz bandpass
backward–forward. EEG trials contaminated by eye movements,
blinking, or other involuntary movements (e.g., mouth, head,
trunk, or arm) were off-line rejected by visual inspection. EEG
single trials were re-referenced by the common average reference,
which includes the averaging of amplitude values at all electrodes
and the subtraction of the mean value from the amplitude values
at each single electrode. Notably, for all subjects, no bad channels
were present. Following artifact removal, an average number of
40 (±2.5) trials per subject were available for the EEG analysis.

Electroencephalography Analysis
First, we determined the peak of individual alpha frequency (IAF)
for each subject from−1 to 0 s before the cue onset (rest period).
The IAF peak was defined as the maximum power density
peak between 6 and 14 Hz considering the average of the EEG
power density across all electrodes. This frequency landmark was
well described by Dr. Wolfgang Klimesch and his workgroup
(Klimesch et al., 1998a; Klimesch, 1999). In a few words, the
IAF is defined as the frequency associated to the strongest EEG
power at the extended alpha range and is the anchor point for

distinguishing a lower from an upper alpha band. With respect
to the IAF, these frequency bands are defined as follows: (i) low
alpha, IAF –2 Hz to IAF and (ii) high alpha, IAF to IAF +2 Hz.
For example, if a subject has the IAF at 10 Hz, we averaged the
frequencies as follows: (i) for low alpha, averaging across 8, 9,
and 10 Hz; for high alpha, averaging across 10, 11, and 12 Hz;
and for the whole alpha band, across 8–12 Hz. Of note, the
mean of the low alpha band across subjects was 9.3 ± 0.8 Hz,
whereas the mean of the high alpha band across subjects was
11.3 ± 0.8 Hz. To this aim, the power spectrum was estimated
by means of a fast Fourier transform (FFT) approach (the Welch
method with a Hanning windowing function). An EEG period of
1 s was used as input for FFT. Two different power spectra were
computed: one in the “rest” period, considering EEG windows
from −1 to 0 s before the cue onset, and one in the “event”
period, i.e., from −1 to 0 s before target onset. The event-related
de-synchronization/synchronization (ERD/ERS) of alpha EEG
oscillations was obtained using

ERD% = (E− R) /R× 100

where E indicates the power density at the event (lasting 1 s)
and R the power density at the rest (lasting 1 s). Hence, negative
ERD values indicated a reduction in alpha power in the event
compared to the rest period. Notably, this stationary analysis
was performed on the regional average of five parietal-occipital
electrodes (i.e., P7, P8, O1, O2, and Oz) that were selected
as alpha activity is most consistently localized in the parietal-
occipital cortex (Vanni et al., 1997). The mean obtained with such
analysis was correlated with the metrics of the dominant and
non-dominant EEG microstates.
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Next, a time-frequency analysis was carried out to investigate
the relationship between the microstates’ metrics and the
dynamics of the alpha ERD in terms of peak latency and maximal
power decrease. To this aim, time-frequency representations
were obtained by means of the Morlet wavelets for each
individual trial and then averaged across trials (Tallon-Baudry
et al., 1997; Jensen et al., 2002). The frequency and temporal
bins were 1 Hz and 4 ms, respectively. We set the wavelet width
to seven cycles as a balance between temporal and frequency
resolution. To avoid edge effects, EEG trials were segmented
from −1.2 to 0.2 s with respect to the target onset, and after
wavelet transform, 0.2 s at both sides were discarded, obtaining a
period from −1 to 0 s before the target onset. For all subjects, we
computed the ERD/ERS of alpha EEG oscillations as a function of
frequency and time as instantaneous percentage power variations
in the pre-target period with respect to mean power in the
pre-cue period. Notably, in the low-alpha sub-band, the ERD
peak was not clearly detectable in many subjects, and several
subjects presented a tiny ERS peak. Accordingly, we observed
that the mean value of the responsive frequency of the whole
individual alpha ERD (10.9 Hz) was higher than the mean of
IAF across subjects (10.3 Hz). Thus, we calculated the latency
and the magnitude of the ERD peak on the whole individual
alpha band (from IAF−2 Hz to IAF+2 Hz) averaging across the
five frequency positions (i.e., IAF −2 Hz, IAF −1 Hz, IAF, IAF
+1 Hz, IAF +2 Hz) the percentage power variations. Individual
latencies and relative magnitude of ERD peak were automatically
measured at the global minimum of the corresponding time
course with reference to the target onset time. Of note, both
preprocessing and data analyses were performed by homemade
Matlab programs. Importantly, such time-frequency analysis was
performed on the same regional average of five parietal-occipital
electrodes (i.e., P7, P8, O1, O2, and Oz) previously used for the
stationary analysis.

Microstates Analysis
Microstate pre-stimulus analysis aims to find the most
representative maps in a time interval before the stimulus.
To obtain these maps, we followed the procedure described by
Britz et al. (2014) and also applied in Croce et al. (2018a,b) by
using EEGlab microstates toolbox (Delorme and Makeig, 2004).
Standard deviation of EEG signals across electrodes is known as
global field power (GFP). Considering that the maxima of GFP
represent periods of highest topographic stability (Murray et al.,
2008), for each subject and for each trial, we extracted the map
corresponding to the maximum of the GFP in the period that
precedes the target (i.e., 50 ms before the target). Specifically,
we extracted one map for each trial for each subject. Such maps
were jointly submitted to a modified version of the k-means
algorithm proposed by Pascual-Marqui et al. (1995) varying the
number of the cluster between two and 18. Notably, the cluster
algorithm was tuned also to take into account the maps’ polarity.
The optimal number of clusters (on average, N = 10) was chosen
through the Krzanowski–Lai (KL) criterion. Considering the
number of trials per subject (N ∼ 40), an average of N = 4
maps per cluster should be expected. It can be argued that this
proportion may be too low, and in some cases, one or more

clusters may contain only one template, and then it should be
considered as an outlier. Nevertheless, using a different/lower
number of clusters, possible outliers are forced to be wrongly
assigned to other centroids, thus leading to a lower value of the
KL criterion. Furthermore, the present proportion is consistent
with the referenced study (Britz et al., 2008). Because the KL
is a relative measure of dispersion (tending to zero when the
clustering improves), the KL peaks should represent the optimal
number of clusters. However, a KL peak is often observed when
the whole set of data is separated into two clusters. Thus, as
suggested in Murray et al. (2008), we chose the second peak of
KL as representative of the optimal number of clusters.

Next, we statistically determined the most persistent
topography, comparing both the GEV and the FOO of maps
obtained from the clustering procedure. Separately for each
subject, the maps previously extracted (subject-wise pre-stimulus
templates, on average, N = 10) were assigned to each time frame
map in the 50 ms prior to the cue stimulus based on the best
spatial correlation, thus allowing the computation of the GEV
and the FOO. The GEV is defined as

GEV =
∑tmax

t=1 (GFPu (t) Cu,T)2∑tmax
t=1 GFP2

u(t)

where Cu,T is the spatial correlation between map u and template
T and GFP is the global field power at the time t.

The FOO is defined as the number of occurrences of a certain
microstate in a fixed time interval. In this step of analysis, the
number of obtained maps is different for each subject.

To differentiate the most representative maps, for each subject,
an analysis of variance (ANOVA) followed by paired t test was
performed on both GEV and FOO with the maps previously
extracted as a within-subject factor. With this procedure, we
extracted the maps that are more representative of the pre-
stimulus time interval for each subject (choosing the templates
with maximum GEV and FOO) (Figure 2A, last row). Next,
to obtain only one representative map, we grouped all subject-
wise maps obtained in the previous step and performed another
k-means clustering (Pascual-Marqui et al., 1995) searching for
four templates in order to take into account the inter-subject
variability coming from the previous clustering (Britz et al., 2011;
Figure 2B). The obtained templates (four in this case) were back-
fitted to the original data to compute GEV and FOO. Importantly,
the centroids of this second clustering were different with respect
to centroids computed individually in the first clustering, and
in this second step, the observations were forced to be assigned
to one of the four group-wise templates. Thus, at this step,
each subject presents a GEV and FOO (≥0) for each group-
wise template. Within these four templates, dominant (DT, i.e.,
the template with maximum GEV and FOO) and non-dominant
templates were statistically detected. Again, ANOVAs (within-
subject factor the four templates previously obtained) followed by
post hoc paired t tests were performed to assess that the GEV and
FOO of these templates were different (Figure 2C). Nevertheless,
we considered only three microstates (DT, C2, and C3) for
the following considerations. Within the 50-ms pre-stimulus
interval, N = 12 time frames were extracted. Thus, considering
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FIGURE 2 | Flow chart of the pre-stimulus microstate analysis procedure. (A) For each subject and for each trial, the maximum of the GFP in the 50 ms preceding
the target stimulus was submitted to a modified version of the k-means algorithm. The maps resulting from this procedure were then statistically tested (ANOVA) to
obtain a certain number of representative templates for each subject. (B) Such maps were submitted to another k-means obtaining four templates. (C) These
templates were fitted to the original data to obtain global explained variance (GEV) and frequency of occurrence (FOO). ANOVA and post hoc tests showed
significant difference of GEV and FOO across templates. Finally, the template with maximal GEV and FOO was chosen as the “dominant template.” Notably, both
GEV and FOO values have been averaged across subjects after summing all trials for each subject.

that the KL criterion detected N = 4 templates, it should be
expected that, on average, each trial contained three time frames
per template. In the case that one or more subjects did not
present at least one trial with three or more time frames, the
corresponding template was considered negligible. In particular,
in the present study, the microstate C4 was excluded because, in
several subjects, it was present less than three time frames in the
whole set of trials, and in N = 2 subjects it was often missing.
On the contrary, the dominant microstate as well as C2 and C3
occurred at least three times in one or more trials in each subject.
Importantly, in the present data set, the maximum GEV and FOO
always occurred for the same microstate.

First, within each data set (i.e., the four alpha ERD
indices and the two metrics of the three microstates), we
tested for outliers with Dixon’s test. Then, we investigated the
link between the different EEG markers, computing several
correlations (Spearman rank, p < 0.05) between the alpha
ERD indices (i.e., mean amplitude, peak magnitude, and peak
latency) and the dominant and non-dominant microstates’

features (i.e., the GEV and the FOO). Of note, compared to
Pearson’s correlation coefficient, Spearman’s rank correlation
provides a more robust measurement, especially using small
samples, such as N = 18 (Schwarzkopf et al., 2012), and
it is less sensitive to strong outliers. Then, we applied FDR
correction considering the 24 correlations performed. Moreover,
to verify whether the above correlations are specific for the
dominant microstate, we statistically compared (i.e., Olkin’s
test; Marshall and Olkin, 1967) the power of correlations
of dominant and non-dominant microstates. Specifically, we
tested the equality of the two correlation coefficients (dominant
vs. non-dominant C2 and dominant vs. non-dominant C3
microstates) obtained from the same sample, considering that
the two correlations share one variable (the alpha ERD indices).
Finally, the features showing significant correlation (i.e., the
occurrence of dominant microstate vs. the mean amplitude of
high-alpha ERD, magnitude, and latency of the ERD peak)
were linked to behavioral effects. Specifically, to assess the
functional significance of these electrophysiological correlates,
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we estimated the Spearman rank correlation (p < 0.05)
between EEG properties and behavior performance (i.e., reaction
time and accuracy).

RESULTS

Dominant and non-dominant pre-stimulus microstates were
extracted in the period that precedes the semantic memory task
(see section “Materials and Methods” and Figure 2 for a complete
description). In this period, we observed the maximum of the
GFP at about 24± 1.4 ms (median latency of 24.5 ms, minimum–
maximum: 19 ms, 29 ms). Figure 3A shows the time course
of the GFP in the period of interest (i.e., 50 ms before the
target onset). Next, we identified the subject-wise pre-stimulus
maps. The KL criterion provided an average number of optimal
templates of 10.5 ± 2 per subject, explaining 78.9 ± 2.85 of the
global variance. To compute both individual GEV and FOO,
all subject-wise pre-stimulus maps were fitted to the original
data. Specifically, we statistically determined the most persistent
topography comparing both GEV and FOO obtained from the
clustering procedure. The average number across subjects of these
maps was 2 ± 1 with on average p value < 0.02. Such maps
were then submitted to another k-means clustering algorithm
searching a fixed number of clusters (i.e., N = 4). The GEV,
considering the four templates, was 90.4%. Figure 2C shows
the topography of the four maps (i.e., DT underlined and the
three non-dominant microstates: C2, C3, and C4) obtained along
with the values of GEV and FOO. Occurrence values considered
for the correlation analysis are the sum of the occurrences
of each trial. Such individual sums were then averaged across
subjects. Notably, for the following correlations, we considered
only three microstates (DT, C2, and C3) as explained in the
Methods section.

For illustrative purpose, Figure 3B shows the group-averaged
time-frequency pattern for the alpha band, and Figures 3C,D
show the grand average ERD waveform in the low- and high-
alpha sub-bands, respectively. It can be noted that the power
decrement in the alpha band preceding the presentation of the
target is as expected in a paradigm using a fixed cue–target
interval. Moreover, the alpha power does not continue to decrease
after the target onset. In particular, in what follows, we report
the mean values and standard errors of the ERD indices: mean
amplitude of the low-alpha ERD – 4.9 ± 5.9%; mean amplitude
of the high-alpha ERD – 16.5± 4.9%; the magnitude of the alpha
ERD peak – 21.3 ± 6.5%; the latency of the alpha ERD peak –
0.25± 0.06 s (i.e., the target onset is presented at 0 time).

The correlations between the metrics of the pre-stimulus
microstates and the features of alpha power reduction (i.e.,
mean amplitude of the low- and high-alpha ERD and latency
and magnitude of the alpha ERD peak) were investigated
with Spearman’s rank, which is less sensitive to strong outliers
compared to other correlation analyses (i.e., Pearson’s correlation
coefficient). Before evaluating such a relationship, we computed
Dixon’s test to check for possible outliers within each data set
(i.e., the four alpha ERD indices and the two metrics of the three
microstates). Results showed no significant outliers (p > 0.1)

in all data sets except for one (tendency) outlier in the high-
alpha mean amplitude (p = 0.051). For sake of clarity, the ERD
amplitude values have been ranked from the minimum to the
maximum decrease (percentage) in the alpha power (i.e., from
0 to 100% of power decrease).

In Figure 4A, the significant positive Spearman rank
correlation between the mean amplitude of high-alpha ERD and
the occurrence of the dominant microstate considered as the
sum of the occurrences across trials (r = 0.644, p = 0.004) is
reported. Notably, such correlation remains significant (p < 0.01)
with a group of N = 17 subjects after removing the “partial”
outlier. Interestingly, this correlation is lost when we considered
the low-alpha ERD (p = 0.6). Consistently, Figure 4B shows
the significant positive Spearman rank correlation between the
magnitude of the alpha ERD peak and the occurrence of the
dominant microstate (r = 0.68, p = 0.002). The above two
significant correlations suggest that the stronger the decrease
(percentage) in the alpha power ERD (both mean amplitude
and peak magnitude of alpha ERD), the higher the FOO of the
dominant microstate. Furthermore, we observed a significant
positive Spearman rank correlation between the alpha ERD peak
latency and the occurrence of the dominant microstate (r = 0.636,
p = 0.005), showing that subjects with higher FOO tend to peak
more in proximity to the target (Figure 4C). Conversely, there
are no significant correlations between the alpha ERD indices and
the GEV. Moreover, for both the FOO and the GEV of the non-
dominant microstates, we observed no statistically significant
correlation with any of the anticipatory alpha ERD indices (i.e.,
mean and peak amplitude and latency). Notably, the p values
of all correlations between alpha ERD indices and microstate
metrics are reported in Table 1.

Next, we applied FDR correction (Benjamini and Hochberg,
1995) considering the 24 correlations performed. To be
statistically significant after such correction, a correlation should
present a p value < 0.005. As can be observed in Table 1, the
three significant correlations (i.e., mean amplitude of high-alpha
ERD, latency and magnitude of the alpha ERD peak with the
occurrence of the dominant microstate) discussed above remain
statistically significant. Notably, because the correlation between
the mean amplitude of low alpha and the microstate metrics
was not significant, this ERD index was not considered in the
following analyses.

Furthermore, to verify the specificity of the above significant
correlations for the dominant microstate, we used the Olkin’s test
(Marshall and Olkin, 1967) comparing the power of correlations
of dominant and non-dominant microstates for dependent
correlations. Results reported in Table 2, after FDR correction,
show that the correlations between the three alpha ERD indices
(i.e., high-alpha mean amplitude, alpha peak latency, and alpha
peak magnitude) and the occurrence of the dominant microstate
are significantly different (p < 0.05) from the correlations
between these alpha ERD indices and the occurrence of the non-
dominant microstate except for the high-alpha mean amplitude
showing a difference between dominant and non-dominant C3
microstate tending toward significance (p = 0.052).

Finally, we investigated the presence/absence of
brain/behavioral correlations for both the three alpha ERD
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FIGURE 3 | (A) Time course of the global field power in the 50 ms preceding the target onset. (B) Time–frequency representation averaged across subjects of the
ERD in the whole alpha band in the period that precedes the target. Notably, negative values indicate a reduction in alpha power in the pre-stimulus interval (i.e.,
event period) compared to rest period. (C) Grand average ERD waveform in the low-alpha band. (D) Grand average ERD waveform in the high-alpha band.

markers and the occurrence of the dominant microstate. Results
reported in Table 3 show a negative correlation between reaction
time and the mean of high-alpha ERD (r = −0.59, p = 0.01) and
the peak magnitude of the alpha ERD (r = −0.64, p = 0.005),
indicating that subjects with stronger de-synchronization tend to
respond more rapidly. On the contrary, a similar correlation was
not observed between reaction time and the occurrence of the
dominant microstate and the alpha ERD peak latency (p > 0.05).
Also, for this set of correlations, the FDR correction was applied.

Overall, these results show that only the occurrence of the
dominant microstate is linked with the alpha ERD markers.

DISCUSSION

In the present study, we aimed at investigating the link between
the pre-stimulus EEG microstates and other well-known EEG

markers during a semantic memory task. To this aim, we
investigated the correlations between the features (i.e., the GEV
and the FOO) of the dominant and non-dominant pre-stimulus
microstates and the anticipatory alpha power reduction that is
widely interpreted as a marker of an activated cortical region with
increased excitability (Pfurtscheller, 2001). On the contrary, an
increment of the alpha power has been proposed as a functional
correlate of inhibition in different cognitive tasks (Pfurtscheller,
2001). We observed a positive correlation between the occurrence
of the dominant microstate and the three ERD indices (i.e.,
mean amplitude of the high-alpha ERD and peak magnitude and
latency of the alpha ERD). Conversely, no significant correlation
was reported between the GEV and any of the anticipatory alpha
ERD indices nor between any of the non-dominant microstate
features and any of the alpha ERD indices. The present results
suggest that only the occurrence of the dominant pre-stimulus
microstate has to be considered a valid indicator of the human
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FIGURE 4 | (A) Scatterplot showing the positive Spearman’s rank correlation
between the mean amplitude of high-alpha ERD and the occurrence of the
dominant microstate. (B) Scatterplot showing the positive Spearman’s rank
correlation between the magnitude of the alpha ERD peak and the occurrence
of the dominant microstate. (C) Scatterplot showing the positive Spearman’s
rank correlation between the alpha ERD peak latency and the occurrence of
the dominant microstate. On note, these p values are statistically significant
after FDR correction.

cortical activation such that a higher number of occurrences
in the period preceding a signaled target suggests a stronger
cortical activation.

Compared to other EEG correlates that are local and require
a period of a certain minimum duration, the EEG microstates

TABLE 1 | P and r values of Spearman-rank correlations between alpha ERD
indices and microstate metrics.

DT-occ C2-occ C3-occ DT-gev C2-gev C3-gev

p value

Low-alpha 0.618 0.720 0.548 0.742 0.761 0.462

High-alpha 0.004 0.486 0.151 0.348 0.773 0.558

Peak-latency 0.005 0.731 0.179 0.300 0.393 0.603

Peak-magnitude 0.002 0.766 0.402 0.314 0.530 0.417

r value

Low-alpha 0.126 0.091 0.152 0.084 0.077 −0.185

High-alpha 0.644 0.176 0.353 −0.234 0.073 −0.148

Peak-latency 0.636 0.087 0.331 −0.259 −0.214 0.131

Peak-magnitude 0.676 0075 0.211 −0.251 −0.158 0.203

Correlations with p value < 0.005 are significant after FDR correction,
corresponding to a FDR adjusted p value of 0.05. Note: p values are in italicized
font and significant values are marked in bold.

TABLE 2 | P values of comparison between correlations with Olkin’s test.

DT-C2 DT-C3

High-alpha 0.033 0.052

Peak-latency 0.017 0.046

Peak-magnitude 0.009 0.006

P values≤ 0.033 indicate a statistically significant difference between dominant and
non-dominant microstates after FDR correction, corresponding to an FDR-adjusted
p value of 0.05. Significant values are marked in bold.

TABLE 3 | P and r values of Spearman-rank correlations between microstate and
alpha de-synchronization features (occurrence of the dominant pre-stimulus
microstate, mean amplitude of high-alpha ERD, and peak magnitude and latency
of the alpha ERD) and behavioral performance (accuracy and reaction time).

DT-occ High-alpha Peak-latency Peak-magnitude

p value

Accuracy 0.419 0.672 0.754 0.912

Reaction Time 0.253 0.011 0.569 0.005

r value

Accuracy −0.203 −0.107 −0.079 +0.028

Reaction Time −0.284 −0.593 −0.144 −0.641

Correlations with p values ≤ 0.011 are significant after FDR correction.

have been proposed as a widespread measure of the temporary
human brain activity that does not change continuously but
remains quasi-stable for epochs of about 80–120 ms (Lehmann
et al., 2005). The topography of the EEG microstates has been
deeply investigated at rest (Britz et al., 2010; Croce et al.,
2018a), and several studies associated such topographies with
other EEG correlates and with BOLD activity. Specifically, Britz
et al. (2010) reported a link between the BOLD activations
in areas belonging specifically to human networks and the
four common resting EEG microstate topographies (A, B,
C, and D), and more recently, the emergence of these four
microstate topographies at rest was linked with intra-cortical
alpha oscillations (Milz et al., 2017). Parallel, several other studies
have investigated the topographies of the microstates during a
variety of tasks (Britz et al., 2008, 2011, 2014; Croce et al., 2018b)
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showing that the topography that immediately precedes a
stimulus influences the post-stimulus event-related potential
maps (Lehmann et al., 1994) such that the global temporary
human brain state plays a relevant role in information processing
(Kondakor et al., 1997). Notably, the A, B, C, and D labeling
used at rest was not applied to the pre-stimulus microstates.
Although there are increasing numbers of studies investigating
the pre-stimulus microstates during the task execution, no
direct link with other EEG markers has been yet reported.
Importantly, microstate analysis allows us to compute different
metrics, such as the GEV and the FOO. In particular, it is
commonly accepted that the FOO of a microstate can be
thought of as the tendency of its neural generators to become
more active. On the other hand, the GEV, indicating the
percentage of total variance explained by a specific microstate
(Brodbeck et al., 2012), is interpreted to reflect the relative time
coverage of its subtended neural generators compared to others
(Khanna et al., 2015).

Here, as a first interesting result, we report a positive
correlation of the occurrence of the dominant microstate with
the mean amplitude of high-alpha ERD but not with that of
the low alpha. Such specificity was not investigated in the time-
frequency analysis because, in the low-alpha sub-band, a clear
ERD peak was not detectable in the majority of subjects, and
some of them presented an ERS peak. It was widely suggested
that the high-frequency alpha rhythms would reflect task-related
oscillations of selective neural systems involved in the processing
of task-specific information, whereas the low-frequency alpha
rhythms would extensively regulate global human brain arousal
and alertness (Klimesch et al., 1998a; Foxe and Snyder, 2011).
Interestingly, we previously reported that the topography of the
pre-stimulus microstate is related to the current task (Croce
et al., 2018b) rather than it having a general functional role for
event anticipation and preparation. Specifically, when subjects
performed a visuospatial or a semantic memory task, respectively,
we reported two distinct pre-stimulus microstate’s topographies.
Thus, the specificity of the present correlations with the high-
alpha ERD, at least in the stationary analysis, suggests that
only the occurrence of the dominant pre-stimulus microstate is
strictly linked to the present task rather than a general functional
role. Furthermore, a stronger positive correlation between the
occurrence of the dominant microstate and the peak magnitude
of the alpha ERD was reported. It should be noted that the
present paradigm used a fixed cue-target period. Hence, a
precise temporal alignment of a preparatory set for the task
execution was allowed by the informative cue. Studies using
similar paradigms have previously observed that the preparatory
alpha ERD tends to increase (in absolute value), rhythmically
peaking in proximity to the target onset (Rohenkohl and Nobre,
2011; Spadone et al., 2017). This is important for our study
because the dominant pre-stimulus microstate has been located
in the latter part of the expectancy period (i.e., 50 ms before
the event; Croce et al., 2018b), and the present paradigm allows
us to correlate the characteristics of the dominant pre-stimulus
microstates with different anticipatory alpha ERD measures, thus
providing a more robust result in support of our conclusion. In
this regard, the stronger correlation observed with the peak value

of alpha ERD rather than its mean value is consistent with the
idea that attention can be entrained to the temporal structure
of timely stimulus onset, and as observed in the anticipatory
alpha ERD, also the dominant pre-stimulus microstate closely
tracks the development of temporal expectations. This result is
also supported by the positive correlation between the occurrence
of the microstate and the alpha ERD peak latency. Because
the topography of the microstates provides an overall view of
the brain activity in the sub-second range compared to the
alpha ERD that requires a period of one or more seconds,
the present findings seem to suggest that it can be used to
study the dynamics of cortical activation patterns better than
other, more local EEG correlates. On the other hand, it can be
argued that the significant brain/behavior correlation observed
between the alpha ERD indices (i.e., mean and peak amplitude)
with the reaction time was lost when the behavioral response
was correlated with the occurrence of the dominant microstate,
thus suggesting a limitation for this EEG marker. Nevertheless,
also for the alpha de-synchronization, such correlation is not
consistent across neuroimaging studies. For example, within
the attention domain, in two studies of our group requiring
the execution of two slightly different visuospatial attention
tasks, we reported the presence (Capotosto et al., 2009) or
the absence (Capotosto et al., 2017), respectively, of significant
correlation between alpha ERD and behavioral results. With
this point of view, the lack of relationship between microstates
and behavior might not be general but limited to the present
experimental task. Future studies might address this issue using a
dedicated paradigm involving semantic decisions as well as other
cognitive domains. Moreover, these studies should also consider
collecting a larger number of data to enhance the proportion of
trials per template that might be considered as a limitation of
the present study.

Finally, because, in the present study, we reported that the
non-dominant microstates also occurred frequently (at least C2
and C3), it could be argued that they should have a functional role
related to the present task. At this stage of the research, we cannot
speculate on this issue because it is not possible to disentangle
results from possible different cognitive processes (i.e., motor,
linguistic, attention) present within the current semantic memory
task, but future studies, employing a dedicated paradigm in which
distinct cognitive processes may be isolated, will assess whether
the non-dominant microstate in one task becomes dominant for
the other one and vice versa.

CONCLUSION

The present study showed a monotonic relationship between
the occurrence of the dominant pre-stimulus EEG microstates
and the alpha ERD indices during the execution of a
semantic memory task, suggesting that only this characteristic
of the microstates should be considered as a promising
electrophysiological correlate of the cortical activation. This study
paves the way to further investigation aiming to correlate the
features of the microstates to other EEG markers during different
cognitive tasks.

Frontiers in Human Neuroscience | www.frontiersin.org 9 May 2020 | Volume 14 | Article 182

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-14-00182 May 26, 2020 Time: 17:15 # 10

Spadone et al. EEG Microstates and Alpha Rhythms

DATA AVAILABILITY STATEMENT

The dataset generated during the current study is available from
the corresponding author on reasonable request.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Institutional Review Board and Ethics Committee
of the University of Chieti (Prot. No. 1123/2014). The
patients/participants provided their written informed consent
to participate in this study.

AUTHOR CONTRIBUTIONS

PCa recorded and collected EEG data. SS and PCr performed
the data analysis. All authors participated in the study design,
scientific discussion, and manuscript preparation.

FUNDING

This work was supported by the “Departments of Excellence
2018–2022” initiative of the Italian Ministry of Education,
University and Research for the Department of Neuroscience,
Imaging and Clinical Sciences (DNISC) of the University
of Chieti-Pescara.

REFERENCES
Babiloni, C., Del Percio, C., Arendt-Nielsen, L., Soricelli, A., Romani, G. L.,

Rossini, P. M., et al. (2014). Cortical EEG alpha rhythms reflect task-specific
somatosensory and motor interactions in humans. Clin. Neurophysiol. Off. J.
Int. Fed. Clin. Neurophysiol. 125, 1936–1945. doi: 10.1016/j.clinph.2014.04.021

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a
practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B
Methodol. 57, 289–300.

Bertinetto, P. M., Buran, C., Laudanna, A., Marconi, L., Ratti, D., Rolando, C., et al.
(2005). Corpus e Lessico di Frequenza dell’Italiano Scritto (CoLFIS). Available
online at: http://linguistica.sns.it/CoLFIS/Home.htm

Britz, J., Díaz Hernàndez, L., Ro, T., and Michel, C. M. (2014). EEG-microstate
dependent emergence of perceptual awareness. Front. Behav. Neurosci. 8:163.
doi: 10.3389/fnbeh.2014.00163

Britz, J., Landis, T., and Michel, C. M. (2008). Right parietal brain activity precedes
perceptual alternation of bistable stimuli. Cereb. Cortex 19, 55–65. doi: 10.1093/
cercor/bhn056

Britz, J., Pitts, M. A., and Michel, C. M. (2011). Right parietal brain activity
precedes perceptual alternation during binocular rivalry. Hum. Brain Mapp. 32,
1432–1442. doi: 10.1002/hbm.21117

Britz, J., Van De Ville, D., and Michel, C. M. (2010). BOLD correlates of EEG
topography reveal rapid resting-state network dynamics. Neuroimage 52, 1162–
1170. doi: 10.1016/j.neuroimage.2010.02.052

Brodbeck, V., Kuhn, A., von Wegner, F., Morzelewski, A., Tagliazucchi, E., Borisov,
S., et al. (2012). EEG microstates of wakefulness and NREM sleep. Neuroimage
62, 2129–2139. doi: 10.1016/j.neuroimage.2012.05.060

Capotosto, P., Babiloni, C., Romani, G. L., and Corbetta, M. (2009). Frontoparietal
cortex controls spatial attention through modulation of anticipatory alpha
rhythms. J. Neurosci. 29, 5863–5872. doi: 10.1523/JNEUROSCI.0539-09.
2009

Capotosto, P., Baldassarre, A., Sestieri, C., Spadone, S., Romani, G. L., and Corbetta,
M. (2017). Task and regions specific top-down modulation of alpha rhythms in
parietal cortex. Cereb. Cortex N. Y. 27, 4815–4822. doi: 10.1093/cercor/bhw278

Capotosto, P., Spadone, S., Tosoni, A., Sestieri, C., Romani, G. L., Della
Penna, S., et al. (2015). Dynamics of EEG rhythms support distinct visual
selection mechanisms in parietal cortex: a simultaneous transcranial magnetic
stimulation and EEG study. J. Neurosci. 35, 721–730. doi: 10.1523/JNEUROSCI.
2066-14.2015

Croce, P., Zappasodi, F., and Capotosto, P. (2018a). Offline stimulation of human
parietal cortex differently affects resting EEG microstates. Sci. Rep. 8:1287.
doi: 10.1038/s41598-018-19698-z

Croce, P., Zappasodi, F., Spadone, S., and Capotosto, P. (2018b). Magnetic
stimulation selectively affects pre-stimulus EEG microstates. Neuroimage 176,
239–245. doi: 10.1016/j.neuroimage.2018.04.061

Delorme, A., and Makeig, S. (2004). EEGLAB: an open source toolbox for
analysis of single-trial EEG dynamics including independent component
analysis. J. Neurosci. Methods 134, 9–21. doi: 10.1016/j.jneumeth.2003.
10.009

Foxe, J. J., and Snyder, A. C. (2011). The role of alpha-band brain oscillations as
a sensory suppression mechanism during selective attention. Front. Psychol.
2:154. doi: 10.3389/fpsyg.2011.00154

Jensen, O., Gelfand, J., Kounios, J., and Lisman, J. E. (2002). Oscillations in
the alpha band (9-12 Hz) increase with memory load during retention in a
short-term memory task. Cereb. Cortex N. Y. N 1991, 877–882. doi: 10.1093/
cercor/12.8.877

Khanna, A., Pascual-Leone, A., Michel, C. M., and Farzan, F. (2015). Microstates in
resting-state EEG: current status and future directions. Neurosci. Biobehav. Rev.
49, 105–113. doi: 10.1016/j.neubiorev.2014.12.010

Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and
memory performance: a review and analysis. Brain Res. Rev. 29, 169–195.
doi: 10.1016/S0165-0173(98)00056-3

Klimesch, W., Doppelmayr, M., Russegger, H., Pachinger, T., and Schwaiger, J.
(1998a). Induced alpha band power changes in the human EEG and attention.
Neurosci. Lett. 244, 73–76. doi: 10.1016/s0304-3940(98)00122-0

Klimesch, W., Freunberger, R., and Sauseng, P. (2010). Oscillatory mechanisms
of process binding in memory. Neurosci. Biobehav. Rev. 34, 1002–1014. doi:
10.1016/j.neubiorev.2009.10.004

Klimesch, W., Russegger, H., Doppelmayr, M., and Pachinger, T. (1998b).
A method for the calculation of induced band power: implications for
the significance of brain oscillations. Electroencephalogr. Clin. Neurophysiol.
Potentials Sect. 108, 123–130. doi: 10.1016/S0168-5597(97)00078-6

Kondakor, I., Lehmann, D., Michel, C. M., Brandeis, D., Kochi, K., and Koenig.
(1997). Prestimulus EEG microstates influence visual event-related potential
microstates in field maps with 47 channels. J. Neural Transm. 104, 161–173.
doi: 10.1007/BF01273178

Lehmann, D., Faber, P. L., Galderisi, S., Herrmann, W. M., Kinoshita, T., Koukkou,
M., et al. (2005). EEG microstate duration and syntax in acute, medication-
naive, first-episode schizophrenia: a multi-center study. Psychiatry Res. 138,
141–156. doi: 10.1016/j.pscychresns.2004.05.007

Lehmann, D., Michel, C. M., Pal, I., and Pascual-Marqui, R. (1994). Event-related
potential maps depend on prestimulus brain electric microstate map. Int. J.
Neurosci. 74, 239–248. doi: 10.3109/00207459408987242

Marshall, A. W., and Olkin, I. (1967). A multivariate exponential distribution.
J. Am. Stat. Assoc. 62, 30–44. doi: 10.1080/01621459.1967.10482885

Milz, P., Pascual-Marqui, R. D., Achermann, P., Kochi, K., and Faber, P. L.
(2017). The EEG microstate topography is predominantly determined by
intracortical sources in the alpha band. Neuroimage 162, 353–361. doi: 10.1016/
j.neuroimage.2017.08.058

Min, B.-K., Park, J. Y., Kim, E. J., Kim, J. I., Kim, J.-J., and Park, H.-J. (2008).
Prestimulus EEG alpha activity reflects temporal expectancy. Neurosci. Lett.
438, 270–274. doi: 10.1016/j.neulet.2008.04.067

Murray, M. M., Brunet, D., and Michel, C. M. (2008). Topographic ERP analyses:
a step-by-step tutorial review. Brain Topogr. 20, 249–264. doi: 10.1007/s10548-
008-0054-5

Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh
inventory. Neuropsychologia 9, 97–113. doi: 10.1016/0028-3932(71)9
0067-4

Frontiers in Human Neuroscience | www.frontiersin.org 10 May 2020 | Volume 14 | Article 182

https://doi.org/10.1016/j.clinph.2014.04.021
http://linguistica.sns.it/CoLFIS/Home.htm
https://doi.org/10.3389/fnbeh.2014.00163
https://doi.org/10.1093/cercor/bhn056
https://doi.org/10.1093/cercor/bhn056
https://doi.org/10.1002/hbm.21117
https://doi.org/10.1016/j.neuroimage.2010.02.052
https://doi.org/10.1016/j.neuroimage.2012.05.060
https://doi.org/10.1523/JNEUROSCI.0539-09.2009
https://doi.org/10.1523/JNEUROSCI.0539-09.2009
https://doi.org/10.1093/cercor/bhw278
https://doi.org/10.1523/JNEUROSCI.2066-14.2015
https://doi.org/10.1523/JNEUROSCI.2066-14.2015
https://doi.org/10.1038/s41598-018-19698-z
https://doi.org/10.1016/j.neuroimage.2018.04.061
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.3389/fpsyg.2011.00154
https://doi.org/10.1093/cercor/12.8.877
https://doi.org/10.1093/cercor/12.8.877
https://doi.org/10.1016/j.neubiorev.2014.12.010
https://doi.org/10.1016/S0165-0173(98)00056-3
https://doi.org/10.1016/s0304-3940(98)00122-0
https://doi.org/10.1016/j.neubiorev.2009.10.004
https://doi.org/10.1016/j.neubiorev.2009.10.004
https://doi.org/10.1016/S0168-5597(97)00078-6
https://doi.org/10.1007/BF01273178
https://doi.org/10.1016/j.pscychresns.2004.05.007
https://doi.org/10.3109/00207459408987242
https://doi.org/10.1080/01621459.1967.10482885
https://doi.org/10.1016/j.neuroimage.2017.08.058
https://doi.org/10.1016/j.neuroimage.2017.08.058
https://doi.org/10.1016/j.neulet.2008.04.067
https://doi.org/10.1007/s10548-008-0054-5
https://doi.org/10.1007/s10548-008-0054-5
https://doi.org/10.1016/0028-3932(71)90067-4
https://doi.org/10.1016/0028-3932(71)90067-4
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-14-00182 May 26, 2020 Time: 17:15 # 11

Spadone et al. EEG Microstates and Alpha Rhythms

Pascual-Marqui, R. D., Michel, C. M., and Lehmann, D. (1995). Segmentation of
brain electrical activity into microstates: model estimation and validation. IEEE
Trans. Biomed. Eng. 42, 658–665. doi: 10.1109/10.391164

Pfurtscheller, G. (2001). Functional brain imaging based on ERD/ERS. Vis. Res. 41,
1257–1260. doi: 10.1016/S0042-6989(00)00235-2

Rohenkohl, G., and Nobre, A. C. (2011). α oscillations related to anticipatory
attention follow temporal expectations. J. Neurosci. Off. J. Soc. Neurosci. 31,
14076–14084. doi: 10.1523/JNEUROSCI.3387-11.2011

Schwarzkopf, D. S., De Haas, B., and Rees, G. (2012). Better ways to improve
standards in brain-behavior correlation analysis. Front. Hum. Neurosci. 6:200.
doi: 10.3389/fnhum.2012.00200

Spadone, S., Sestieri, C., Baldassarre, A., and Capotosto, P. (2017). Temporal
dynamics of TMS interference over preparatory alpha activity during semantic
decisions. Sci. Rep. 7:2372. doi: 10.1038/s41598-017-02616-0

Tallon-Baudry, C., Bertrand, O., Delpuech, C., and Permier, J. (1997). Oscillatory
gamma-band (30-70 Hz) activity induced by a visual search task in humans.

J. Neurosci. Off. J. Soc. Neurosci. 17, 722–734. doi: 10.1523/JNEUROSCI.17-02-
00722.1997

Vanni, S., Revonsuo, A., and Hari, R. (1997). Modulation of the parieto-occipital
alpha rhythm during object detection. J. Neurosci. 17, 7141–7147. doi: 10.1523/
JNEUROSCI.17-18-07141.1997

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Spadone, Croce, Zappasodi and Capotosto. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Human Neuroscience | www.frontiersin.org 11 May 2020 | Volume 14 | Article 182

https://doi.org/10.1109/10.391164
https://doi.org/10.1016/S0042-6989(00)00235-2
https://doi.org/10.1523/JNEUROSCI.3387-11.2011
https://doi.org/10.3389/fnhum.2012.00200
https://doi.org/10.1038/s41598-017-02616-0
https://doi.org/10.1523/JNEUROSCI.17-02-00722.1997
https://doi.org/10.1523/JNEUROSCI.17-02-00722.1997
https://doi.org/10.1523/JNEUROSCI.17-18-07141.1997
https://doi.org/10.1523/JNEUROSCI.17-18-07141.1997
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles

	Pre-stimulus EEG Microstates Correlate With Anticipatory Alpha Desynchronization
	Introduction
	Materials and Methods
	Subjects and Stimuli
	Electroencephalography Recordings
	Electroencephalography Analysis
	Microstates Analysis

	Results
	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References


