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Various methods have been employed to investigate different aspects of brain activity
modulation related to the performance of a cycling task. In our study, we examined
how functional connectivity and brain network efficiency varied during an endurance
cycling task. For this purpose, we reconstructed EEG signals at source level: we
computed current densities in 28 anatomical regions of interest (ROIs) through the
eLORETA algorithm, and then we calculated the lagged coherence of the 28 current
density signals to define the adjacency matrix. To quantify changes of functional network
efficiency during an exhaustive cycling task, we computed three graph theoretical
indices: local efficiency (LE), global efficiency (GE), and density (D) in two different
frequency bands, Alpha and Beta bands, that indicate alertness processes and motor
binding/fatigue, respectively. LE is a measure of functional segregation that quantifies
the ability of a network to exchange information locally. GE is a measure of functional
integration that quantifies the ability of a network to exchange information globally.
D is a global measure of connectivity that describes the extent of connectivity in a
network. This analysis was conducted for six different task intervals: pre-cycling; initial,
intermediate, and final stages of cycling; and active recovery and passive recovery.
Fourteen participants performed an incremental cycling task with simultaneous EEG
recording and rated perceived exertion monitoring to detect the participants’ exhaustion.
LE remained constant during the endurance cycling task in both bands. Therefore, we
speculate that fatigue processes did not affect the segregated neural processing. We
observed an increase of GE in the Alpha band only during cycling, which could be due
to greater alertness processes and preparedness to stimuli during exercise. Conversely,
although D did not change significantly over time in the Alpha band, its general reduction
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in the Beta bands during cycling could be interpreted within the framework of the
neural efficiency hypothesis, which posits a reduced neural activity for expert/automated
performances. We argue that the use of graph theoretical indices represents a clear
methodological advancement in studying endurance performance.

Keywords: EEG, cycling, functional connectivity, source level, Graph Theory, efficiency, endurance task

INTRODUCTION

Studies performed in the last decade have assessed that cycling
induces specific changes in brain cortical activity (Schneider et al.,
2009, 2013; Ludyga et al., 2016; Bao et al., 2019). These changes
can be measured by electroencephalography (EEG), and various
methods have been employed to investigate different aspects of
modulation in regional brain activity related to the performance
of a cycling task.

For instance, Maceri et al. (2019) focused on the variations of
signal power (quantified by means of power spectral density—
PSD) in the prefrontal and the motor cortex during an
incremental cycling test and found a significant increase of PSD
in the Alpha and Beta bands in association with an increase
of exercise intensity, particularly during the last two stages
of the incremental test. Other studies employed independent
component analysis (ICA) and models of signal sources to
identify the brain areas maximally involved in a cycling task,
such as in the study by Enders et al. (2015), who applied ICA
and an equivalent current dipole model to the EEG signals
recorded during a time-to-exhaustion test. They identified four
cortical areas (two in the parietal cortex and two in the frontal
cortex) showing a significant increase in signal power, which
is likely due to fatigue developed during the exercise. On the
other hand, Brümmer et al. (2011) used the low-resolution brain
electromagnetic tomography (LORETA) technique to analyze
low-resolution EEG data and to investigate the effect of increasing
cycling intensity on the magnitude and the location of the
changes in electrocortical current density, showing that current
density in the primary motor cortex increases with increasing
exercise intensity. With a similar approach, Schneider et al. (2013)
studied how motor cortex activity varied during a moderate- to
high-intensity cycling exercise.

Other studies go a step further and calculate functional
connectivity patterns within the brain, with the purpose to
identify the routes of information flow during the different
phases of a cycling task. For instance, Comani et al. (2014)
analyzed EEG data recorded during an exhaustive cycling
test by calculating the coherence patterns at the sensor level
and detected functional connectivity patterns related to three
different attentional strategies. Similarly, di Fronso et al. (2018)
performed a coherence analysis to detect cortical connectivity
patterns in relation to the attentional strategies and the phases
of an endurance cycling task. The Alpha and Beta bands were
considered, and the results showed higher EEG coherence values
at rest than during cycling periods for all electrode pairs and
frequency bands, irrespective of the attentional strategy adopted.
Hilty et al. (2011) also performed a functional connectivity

study on EEG data recorded during a fatiguing cycling exercise
to investigate the intracortical communication between the
mid/anterior insular and the motor cortex. They evaluated the
lagged phase synchronization (LPS) (Pascual-Marqui, 2007a)
between these two specific brain areas and found that LPS
significantly increased at the end of the cycling task and
returned to baseline after the participants volitionally stopped
the exercise, hence demonstrating that the mid/anterior insular
cortex communicates with the motor cortex during a muscle-
fatiguing activity.

Coherence and lagged phase synchronization permit to
reconstruct networks of spatially distributed electrodes (sensor
level) or brain areas (source level) that are functionally connected
during the performance of a given task. These networks provide
an overview of the functional interactions between neighboring
and distant brain regions (Friston, 2011) but do not elucidate
how information is exchanged within the functional network
and do not identify its functional properties—such as the type
of efficiency. A Graph Theory perspective can be beneficial in
this regard (Latora and Marchiori, 2001). According to a graph
theoretical approach, the brain is defined as a network containing
nodes and edges, which respectively, represent brain regions
and the connecting pathways between those regions (Bullmore
and Sporns, 2009; Rubinov and Sporns, 2010). Very recently,
Porter et al. (2019) used EEG electrodes space graph theoretical
analysis to examine Theta band functional connectivity during
a combined graded working memory and exercise task on
a stationary bicycle. Several graph theoretical indices were
computed, and the analysis revealed significant changes only for
the clustering coefficient, which is a measure of the prevalence
of local connectivity within a functional network. Specifically,
Porter et al. (2019) found that local connectivity increased during
the first three blocks of the exercise and decreased toward
the end of the exercise, when the task became more difficult.
However, these results are limited because the graph theory
analysis was applied to the frontal region only: as a consequence,
the overall properties of the complete functional brain network
underpinning the cycling task remained unexplored. Further
studies should examine the properties of functional networks
over the whole brain.

Drawing on the aforementioned research results, we
conducted a within-subject study to examine how functional
connectivity and brain network efficiency varied during the
performance of an endurance cycling task. For this purpose,
we reconstructed the EEG signals at the source level by using
the extended Loreta (eLoreta) algorithm (Pascual-Marqui et al.,
2018b), calculated lagged coherence maps (Pascual-Marqui,
2007a,b; Pascual-Marqui et al., 2011, 2018a), and computed three
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graph theoretical indices—namely, local efficiency (LE), global
efficiency (GE), and density (D)—to examine local and global
functional properties. LE is a measure of functional segregation
that quantifies the ability of a network to exchange information
locally, GE is a measure of functional integration that quantifies
the ability of a network to exchange information globally, and
D is a global measure of connectivity that describes the extent
of connectivity in a network (Sporns et al., 2004; Bullmore and
Sporns, 2009; Rubinov and Sporns, 2010; Friston, 2011). All
measures were computed for both Alpha (8–13 Hz) and Beta
(13–20 Hz) frequency bands because Alpha activity is associated
with alertness level (Wilson et al., 2011), whereas Beta activity
provides information on motor binding and fatigue (Laufs et al.,
2003; Cheron et al., 2016). Given the scant research that applies
graph theoretical indices on endurance performance, the current
investigation can be considered exploratory in nature.

MATERIALS AND METHODS

Participants
Fourteen male volunteers (26.07 ± 4.29 years) participated in
the study. They regularly practiced cycling at least twice a week,
did not report neurological, psychological, or dermatological
diseases, and were not under pharmacological treatment.
The study was approved by the Ethics Committee of the
University “G. d’Annunzio” of Chieti-Pescara (Italy) (ethical
approval Ref. No. 10-21/05/2015) and complied with the ethical
standards outlined in the Declaration of Helsinki. Prior to study
participation, all the volunteers provided medical certification
of fitness for participation to non-competitive sports activities
and gave written informed consent according to the policies
outlined. The participants were instructed to not engage in
vigorous exercise and to avoid consuming alcohol, caffeinated
drinks/foods, or ergogenic substances for at least 24 h prior to
data collection.

Measurement Setup
The EEG signals were continuously recorded with a conventional
gel-based cap (Waveguard original, ANT Neuro) with 64 AgCl
electrodes in a layout based on the extended international
10–20 system for electrode placement (Jurcak et al., 2007).
CPz and AFz were used as reference and ground, respectively.
Nasion, inion, and preauricular points were used as anatomical
landmarks to position the EEG cap. Conductive gel for
electrophysiological measurements was used (OneStep Cleargel,
H+H Medizinprodukte), and impedance was kept below 10 k�
(6.11 ± 2.18 k�) to comply with current standards in
cognitive neurosciences. The EEG cap was connected to an
EEG mobile amplifier (eego sports, ANT Neuro b. v., Hengelo,
Netherlands), and the sampling rate was 1,024 samples/s, using
the corresponding eego software (ANT Neuro b. v., Hengelo,
Netherlands). A Monark Cycle-Ergometer (939 E, Monark
Exercise AB, Vansbro, Sweden), power-controlled by an external
device (Fitmate-PRO, Cosmed, Rome, Italy), was used for the
endurance cycling task. Two qualified researchers collected

the data. The data collection occurred in a quiet and safe
environment to guarantee the participants’ comfort.

Endurance Cycling Task
The task started from the instant when the volunteer sat on the
cycle-ergometer. After a pre-cycling EEG recording period of
2 min with eyes closed and no movement, participants performed
an endurance cycling task (graded exercise test using a ramp
protocol) until exhaustion. We chose an exhaustive task because
we intended to observe also functional connectivity patterns
during post-exhaustion recovery. Participants were instructed
to maintain a constant pedaling rate of approximately 80
revolutions per minute, and the power of the cycle-ergometer,
initially set at 50 W, was increased by 25 W every 2 min. Rated
perceived exertion was collected every minute during cycling
to detect the participants’ exhaustion using the CR-10 Borg
scale (Borg and Borg, 2010; Staiano et al., 2018). Given that
reaching exhaustion is an individual process that depends on the
participants’ fitness and expertise (di Fronso et al., 2018, 2019),
the duration of the endurance task ranged from approximately 10
to 28 min (18± 5 min). Exhaustion was immediately followed by
an active recovery period of 2 min, during which the participants
continued cycling with eyes closed and the ergometer power
was set back to 50 W. The task ended with a passive recovery
period of 2 min, during which the participants were asked to
stop cycling and maintain their eyes closed while sitting on the
cycle-ergometer.

Data Analysis
Data analysis consisted in four main steps: EEG data
preprocessing, reconstruction of source EEG signals, EEG
functional connectivity estimation, and calculation of measures
of functional network properties.

EEG Data Preprocessing
The EEG signals were visually inspected by two trained EEG
experts to identify bad channels (i.e., channels exhibiting either
a saturated, isoelectric line or a predominantly artifactual, non-
physiological signal for more than 50% of the EEG recording),
which were excluded from further processing. The retained
EEG traces were band-pass filtered from 3 to 40 Hz through
zero-phase Hamming-windowed sinc FIR filters applied using
the firfilt EEGLAB plugin (Widmann et al., 2015). The filtered
EEG signals were epoched based on the task structure. Four
task periods were identified: pre-cycling, cycling, and active and
passive recovery. Given the different duration of the cycling
period across participants, for each participant, it was divided in
three stages, each including one third of the entire cycling period,
thus allowing us to compare cycling periods of different durations
(i.e., across participants). Therefore, for each participant, we
obtained a total of six intervals: pre-cycling, cycling stage 1,
cycling stage 2, cycling stage 3, active recovery, and passive
recovery. For each interval, the filtered EEG data were processed
with a principal component analysis for dimension reduction and
ICA (ICA-extended infomax algorithm in the EEGlab toolbox)
(Bell and Sejnowski, 1995; Lee et al., 1999; Delorme and Makeig,
2004) to obtain independent signal components (ICs). ICs
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containing eye blinks, eye movements, myogenic, movement,
and environmental artifacts were disregarded, and the remaining
ICs were re-projected onto the electrode space to reconstruct
de-noised EEG source signals. The EEG signals at the sites of
the removed bad channels were reconstructed by interpolating
neighboring signals using the spherical spline interpolation
feature implemented in the EEGLab toolbox (Perrin et al., 1989).
The signals from 13 electrodes located in the peripheral and
the occipital areas of the scalp (FT7, T7, TP7, P7, PO7, O1,
Oz, O2, PO8, P8, TP8, T8, and FT8) were disregarded because
of residual myogenic and movement artifacts. Consequently,
given that mastoid electrodes are generally not used, we kept
49 out of 64 EEG signals for further analysis. Preprocessing
was performed using EEGlab release 13.3.2b and some functions
developed using Matlab (release MatlabR2016b; Mathworks,
Natick, MA, United States).

Reconstruction of Source EEG Signals
Grounded on previous studies (Christensen et al., 2000; Sahyoun
et al., 2004; Ciccarelli et al., 2005; Mayka et al., 2006; Francis
et al., 2009; Mehta et al., 2009, 2012; Gandolla et al., 2014;
Jaeger et al., 2014) and according to the realistic head model

employing Montreal Neurophysiological Institute 152 template
(Mazziotta et al., 2001a,b), we defined 14 regions of interest
(ROIs) (see Table 1) for each hemisphere to provide a broad
coverage of brain areas (see Figure 1) possibly active during
movement of the lower limbs. Based on the scalp-recorded
electric potential distribution, eLORETA (Pascual-Marqui et al.,
2018b) algorithm (LORETA KEY-software1) was used to compute
the cortical three-dimensional distribution of current density for
each ROI and each task period. The eLORETA algorithm is a
linear inverse solution for EEG signals that has no localization
error to point sources under ideal (noise-free) conditions
(Pascual-Marqui, 2002).

EEG Functional Connectivity Estimation
Coherence is usually considered as a good estimator of functional
connectivity between electrodes/sources. Based on the method
described by Pascual-Marqui (2007a,b); Pascual-Marqui et al.
(2011, 2018a), we estimated functional connectivity maps across
the 28 ROIs by calculating the lagged coherence (LC) for each
task interval in the Alpha (8–12 Hz) and Beta (12–30 Hz) bands.
We used LC because it is less affected by volume conduction

1http://www.uzh.ch/keyinst/loreta.htm

TABLE 1 | Montreal Neurophysiological Institute (MNI) coordinates of the 28 regions of interest (ROIs) used to analyze the electroencephalograph signal of each cyclist.

Label Extended label Brodmann area Hemisphere ROI (MNI coordinates)

X Y Z

APFC Anterior pre-frontal cortex 10 Left −30 55 20

Right 30 55 20

MFG Middle frontal gyrus 9 Left −10 45 35

Right 10 45 35

ACC Anterior cingulate cortex 24 Left −5 35 5

Right 5 35 5

OFC Orbitofrontal cortex 11 Left −25 35 −15

Right 25 35 −15

IFG Inferior frontal gyrus 46 Left −50 30 20

Right 50 30 20

PMv Ventral pre-motor area 44 Left −60 5 20

Right 60 5 20

PMd Dorsal pre-motor area 6 Left −40 −5 50

Right 40 −5 50

CMA Cingulate motor area 24 Left −5 −5 40

Right 5 −5 40

INS Insula 13 Left −40 −5 5

Right 40 −5 5

SMA Supplementary motor area 6 Left −5 −15 65

Right 5 −15 65

SII Secondary sensory motor area 40 Left −60 −30 25

Right 60 −30 25

M1 Primary motor area 4a Left −10 −40 65

Right 10 −40 65

PCC Posterior cingulate cortex 30 Left −5 −50 15

Right 5 −50 15

MOG Middle occipital gyrus 19 Left −45 −80 5

Right 45 −80 5
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FIGURE 1 | Localization of the 28 ROIs in the brain. From left to right: (A,C) lateral and medial left view of the brain, (E) dorsal view of the brain, and (B,D) lateral and
medial right view of the brain. In (E), view from front to back: L/R-APFC (anterior prefrontal cortex), L/R-MFG (middle frontal gyrus), L/R-ACC (anterior cingulate
cortex), L/R-OFC (orbitofrontal cortex), L/R-IFG (inferior frontal gyrus), L/R-PMv (ventral premotor cortex), L/R-PMd (dorsal premotor cortex), L/R-CMA (cingulate
motor area), L/R-INS (insula), L/R-SMA (supplementary motor area), L/R-SII (secondary sensorimotor area), L/R-M1 (primary motor cortex), L/R-PCC (posterior
cingulate cortex), L/R-MOG (middle occipital gyrus), where L is for the left and R is for the right regions of interest.

effects (Pascual-Marqui et al., 2018a). For each frequency band
and each participant, we then obtained six matrices of LC values
that could range between 0 and 1, where 0 indicates no coherence
and 1 indicates perfect coherence between two time series of
current density. To retain only significant functional connections
across ROIs, we thresholded the LC matrices (Berchicci et al.,
2015; di Fronso et al., 2018): We calculated the median and the
median absolute deviation (MAD) of the LC value distribution
for each LC matrix; only LC values > (median + 1 MAD) were
considered as meaningful functional connections, retained and
set equal to 1, whereas all other LC values were set equal to 0.
Therefore, we obtained 12 (28× 28) undirected binary adjacency
matrices for each subject (six matrices for each frequency band).
Functions used to estimate EEG functional connectivity were
developed using Matlab (release MatlabR2016b; Mathworks,
Natick, MA, United States).

Figure 2 shows the undirected binary adjacency matrices
averaged over all participants for each frequency band and
each task interval.

Measures of Functional Network Properties
We applied graph theoretical analysis to typify the organization
of the functional networks represented by undirected binary
adjacency matrices. For this purpose, we calculated the following
graph theoretical indices: LE, GE, and average connection D.
LE is a measure of functional segregation calculated as the
global efficiency on the neighborhood of a node, and it
quantifies the ability of a network to exchange information
locally. A brain network is functionally segregated when the

information processing occurs within densely interconnected
groups of neighboring brain areas (Rubinov and Sporns, 2010).
GE is a measure of functional integration (Rubinov and Sporns,
2010; Friston, 2011) defined as the average inverse shortest
path length in the network (Sporns et al., 2004; Bullmore
and Sporns, 2009). GE quantifies the ability of a network to
exchange information globally. Specifically, a brain network is
functionally integrated when it combines specialized information
exchange from distributed brain regions (Rubinov and Sporns,
2010; Friston, 2011). D is a global measure of connectivity that
describes the extent of connectivity in a network (Bullmore and
Sporns, 2009; Bassett and Bullmore, 2017). It is defined as the
number of actual connections divided by the number of all
possible connections in the graph. D varies from 0 to 1: the
sparser the graph, the lower is D. Overall calculations of GE,
LE, and D were performed using the Brain Connectivity Toolbox
(Rubinov and Sporns, 2010).

Statistical Analysis
The distributions of the values obtained for GE, LE, and
D were Gaussian. Hence, we performed a series of one-way
analysis of variance (ANOVA) using Bonferroni correction for
post hoc pairwise comparisons to statistically compare the values
of the three graph metrics over the six task intervals for
each frequency band. The sphericity assumption was evaluated
using the Mauchly test. Greenhouse–Geisser and Huynh–Feldt
corrections for degrees of freedom were applied in case of
non-sphericity. In the analysis of variance, the effect sizes were
calculated using partial eta square (ηp

2) (Lakens, 2013), for which
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FIGURE 2 | Binary functional connectivity maps averaged over all participants. The maps are calculated for the six task intervals (pre-cycling, cycling stage 1, cycling
stage 2, cycling stage 3, active recovery, and passive recovery) in the Alpha and the Beta frequency bands. The labels of the individual brain areas were omitted for
clarity.

FIGURE 3 | Values of the graph theoretical indices (LE, local efficiency; GE, global efficiency; D, density) over the six task intervals in the Alpha and the Beta bands
(asterisks indicate significant differences between the different intervals; p < 0.05). (A,D) Local efficiency (mean ± SEM). (B,E) Global efficiency (mean ± SEM). (C,F)
Density (mean ± SEM). Error bars represent SEM.

0.01, 0.06, and 0.14 were considered as small, medium, and
large effects, respectively. In the case of multiple comparisons,
the effect sizes were calculated using Cohen’s d (Cohen, 1988;
Lakens, 2013), for which 0.20, 0.50, and 0.80 were considered as
small, medium and large effects, respectively. For each computed
ANOVA, the significance level was set at 0.05. Statistical analysis
was performed using the Statistical Package for Social Sciences
software (SPSS v. 25, IBM, Armonk, United States).

RESULTS

As shown in Figures 3A,D, the within-subjects one-way ANOVA
for LE values did not show significant differences among the six

intervals (i.e., pre-cycling, cycling stage 1, cycling stage 2, cycling
stage 3, and active and passive recovery) of the endurance cycling
task for the two frequency bands [Alpha: F(5) = 0.498, p = 0.777,
ηp

2 = 0.037, power = 0.175; Beta: F(5) = 1.901, p = 0.106,
ηp

2 = 0.128, power = 0.609]. Therefore, we did not find any
significant differences in the local efficiency across the various
phases of the endurance cycling task for any of the analyzed
frequency bands.

On the other hand, the within-subjects one-way ANOVA for
GE yielded significant differences among the six intervals of
the endurance cycling task for the Alpha band [F(5) = 3.749,
p = 0.005, ηp

2 = 0.224, power = 0.914; see Figure 3B], but not
for the Beta band [F(5,2.811) = 2.105, p = 0.120, ηp

2 = 0.139,
power = 0.478; see Figure 3E]. As shown in Figure 3B, post hoc
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pairwise comparisons revealed significant differences between
pre-cycling and cycling stage 1 (p = 0.005, Cohen d = 1.283)
and between pre-cycling and cycling stage 2 (p = 0.005, Cohen
d = 1.276), highlighting a significant increase of the global
efficiency in the Alpha band during the initial phases of the
endurance cycling task.

The within-subjects one-way ANOVA for D values also
showed significant differences among the six intervals of the
endurance cycling task for the Beta band [F(5) = 5.252, p< 0.001,
ηp

2 = 0.288, power = 0.981; see Figure 3F], but not for the Alpha
band [F(5) = 0.646, p = 0.665, ηp

2 = 0.047, power = 0.221; see
Figure 3C]. Post hoc pairwise comparisons showed significant
differences between pre-cycling and cycling stage 3 (p = 0.047,
Cohen d = 0.966), between cycling stage 1 and cycling stage
3 (p = 0.031, Cohen d = 1.024), and between cycling stage
3 and passive recovery (p = 0.007, Cohen d = 1.239) (see
Figure 3F), highlighting a significant decrease of the extent
of functional connectivity in the Beta band during the initial
phases of the endurance cycling task and a subsequent significant
increase of the extent of functional connectivity in the Beta
band during the final phases of the endurance cycling task.
Table 2 provides the mean and the range for LE, GE, and
D found for the six task periods in the Alpha and the Beta
bands.

DISCUSSION

The aim of this exploratory study was to examine how functional
connectivity at the source level (i.e., across brain areas) changed
during the course of an endurance cycling task. The connectivity
maps were calculated for two meaningful frequency bands
(Alpha and Beta), and the properties of the functional networks
obtained were quantified using indices derived from the Graph
Theory.

We found that LE did not change significantly across
the six defined intervals of the endurance cycling task,
regardless of the frequency band considered. Given that
LE remained essentially constant during the task in both
bands (except for a small increase during cycling stage 1
in the Beta band), we can speculate that fatigue processes
did not affect segregated neural processing (Rubinov and
Sporns, 2010). It is noteworthy that we observed a sparse
rather than a local connectivity pattern involving the fronto-
parietal areas in each interval of the task (see Figure 2).
The lack of significant LE changes during task execution
and the corresponding sparse connectivity patterns could
be justified by the fact that a cycling task is bilateral in
nature, hence requiring sustained movement and effort (Comani
et al., 2014). Accordingly, cortico-cortical communication,
even during the stages of sustained movement, cannot be
considered as locally distributed and efficient. Despite the
perception that fatigue might lead to a local reorganization
of the cortical networks (Berchicci et al., 2013), our results
contradict the notion that an expert athlete (e.g., an athlete
who practices at least twice a week) engages in less cortico-
cortical communication in the Alpha and the Beta bands

(Deeny et al., 2009). Of note is that the patterns of less
cortico-cortical communication in the Alpha and the Beta
bands were mainly observed in predominantly unilateral and
precision sports such as shooting or archery, for which strong
contro-lateral cortical patterns were also observed (Deeny
et al., 2009). Notwithstanding the lack of significant differences,
we observed an increased LE during cycling stage 1 (see
Figures 3A,D). This result could be due to the transition
from a period of global resting state (i.e., pre-cycling) that
requires an extensive exchange of background information
among all brain regions before task execution and movement
(Petsche et al., 1997; Pfurtscheller and Andrew, 1999) to a

TABLE 2 | Mean and SEM of local efficiency (LE), global efficiency (GE), and
density (D) for each interval of the endurance cycling task in the Alpha and the
Beta bands (0 = pre-cycling, 1 = cycling stage 1, 2 = cycling stage 2, 3 = cycling
stage 3, 4 = active recovery, and 5 = passive recovery).

Graph indices Frequency band Period Mean Standard
error of
mean

LE Alpha 0 0.578 0.012

1 0.603 0.028

2 0.585 0.018

3 0.575 0.022

4 0.600 0.024

5 0.565 0.022

Beta 0 0.599 0.022

1 0.660 0.026

2 0.576 0.024

3 0.581 0.023

4 0.605 0.019

5 0.631 0.021

GE Alpha 0 0.546 0.011

1 0.587 0.008

2 0.588 0.009

3 0.556 0.008

4 0.562 0.011

5 0.555 0.009

Beta 0 0.574 0.010

1 0.523 0.018

2 0.566 0.013

3 0.557 0.010

4 0.562 0.014

5 0.574 0.013

D Alpha 0 0.263 0.006

1 0.263 0.004

2 0.264 0.004

3 0.255 0.004

4 0.259 0.006

5 0.268 0.007

Beta 0 0.274 0.006

1 0.273 0.005

2 0.262 0.003

3 0.250 0.004

4 0.260 0.004

5 0.268 0.004
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period of sustained movement (di Fronso et al., 2018) such as
cycling stage 1.

A similar result was obtained for GE. In particular, we
observed significant differences on GE values between pre-
cycling and cycling stage 1 and between pre-cycling and
cycling stage 2, mainly apparent in the Alpha band and
characterized by clearly increased values. The increase of GE
in the Alpha band during cycling stages 1 and 2 could be
due to greater alertness processes and preparedness (Gutmann
et al., 2015) to stimuli during exercise (such as the increase
of the power level of the cycle-ergometer). Since GE is a
measure of functional integration in the brain, which reflects
the ability to combine specialized information from distributed
brain regions, the increased GE values could also be related
to the tendency of central and temporal areas to overlay
portions of the sensorimotor cortex that receive afferent
feedback during exercise (Dishman et al., 2010). Moreover,
the increased metabolic demands and arousal during exercise
might have elicited diffuse increases in cortical EEG activity
(Steriade et al., 1990).

The GE decrease in cycling stage 3 is partly in line with
the findings obtained by di Fronso et al. (2018), who showed
reduced coherence during the periods of an exhaustive
cycling task characterized by high effort. Indeed during
cycling stage 3 our participants were approaching exhaustion
and, consequently, their highest perceived sustainable effort
(see Table 3). Moreover, a high effort could likely make
it harder to integrate information between different brain
areas (Kong et al., 2015). In this perspective, it makes
sense that the GE values clearly decrease during cycling
stage 3 and subsequently increase during active and passive
recovery, which are periods characterized by lower effort
and absence of movement, respectively. Our results on
GE during the pre-cycling period seem to disconfirm
the aforementioned extensive exchange of background
information among all brain regions before task execution
and movement (Petsche et al., 1997; Pfurtscheller and
Andrew, 1999; di Fronso et al., 2018). Indeed we noticed
lower GE values during pre-cycling as compared to those
during movement periods. This finding could be related
to the easy nature of the task subsequently performed (i.e.,
pedaling), which does not involve complex demands (e.g.,
attentional demands).

During active and passive recovery, the restoring of
values similar to those of the pre-cycling period is observed
also for D, which reflects the extent of connectivity in a

TABLE 3 | Rated perceived exertion (RPE) values for the five task periods during
which RPE was collected.

Period Mean Standard error mean

Cycling stage 1 1.370 0.235

Cycling stage 2 4.004 0.288

Cycling stage 3 8.576 0.346

Active recovery 4.536 0.487

Passive recovery 1.825 0.403

network. Indeed we observed—especially in the Beta band—
significant differences between cycling stage 3 and passive
recovery, with increased values during recovery. These
results partly concur with the idea that, after a fatiguing
cycling exercise, there is an increase in the communication
between the mid/anterior insula and the motor cortex
(Hilty et al., 2011). On the other hand, the significant
difference obtained between pre-cycling and cycling stage
3 could be interpreted in terms of “efficiency,” that is, the
cost of transmitting information within the network: an
organization of brain networks, during high effort, may likely
approach the maximum possible cost efficiency (Poldrack,
2015). The significant reduction of D during cycling can
also be ascribed to the fact that task execution becomes
more automated and less controlled during cycling stage
3, despite the high effort due to the increasing power level
of the cycle-ergometer. The general reduction of functional
connectivity during cycling stage 3 can be interpreted within
the framework of the neural efficiency hypothesis (Callan
and Naito, 2014), which posits a reduction of nonessential
functional connectivity within the brain for expert/automated
performances (Hatfield and Kerick, 2007). The decreased
values of both GE and D indices during stage 3 may also
have been influenced by a decision-making process (e.g.,
to endure or withdraw from a demanding task) typical of
the last stages of an endurance task (Allen et al., 2013). In
line with decision making tenets, during cycling stage 3, the
connectivity could be more restricted to pre-frontal cortical areas
(Kennerley and Walton, 2011).

Some limitations of our investigation should be considered
for future research. First, the artifacts deriving from cycling
affect low-frequency ranges: for this reason, we did not consider
the Theta band in our study. Future studies examining also
the Theta band within a graph theory framework could
better address the neural efficiency hypothesis. Additionally,
examining other graph theoretical indices, such as nodes
(ROIs) and/or edges (functional connections between ROIs)
betweenness centrality (He et al., 2009; Sporns, 2013, 2018),
could enable a better understanding of which ROIs and which
connections are most active during the different phases of
an endurance cycling task. Also, to better understand how
graph indices vary during active and passive recovery, longer
periods of post-task recovery should be considered. Finally, to
obtain more generalizable findings, the graph theory analysis
should be extended to different endurance tasks and to a
larger sample of experienced participants. Future studies should
also envisage protocols including a control group to better
examine patterns of cortico-cortical communications in the
Alpha and the Beta bands.

To our knowledge, our study is one of the first ones attempting
to estimate functional connectivity at the source level to typify
endurance performance. Despite the mentioned limitations, we
argue that the use of graph theoretical indices may represent
a clear methodological advancement in investigating the brain
patterns associated with the different phases of an endurance
task and can provide new insights on the neurophysiological
correlates of endurance performance.
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