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Tactile stimulation is less frequently used than visual for brain-computer interface (BCI)
control, partly because of limitations in speed and accuracy. Non-visual BCI paradigms,
however, may be required for patients who struggle with vision dependent BCIs because
of a loss of gaze control. With the present study, we attempted to replicate earlier
results by Herweg et al. (2016), with several minor adjustments and a focus on training
effects and usability. We invited 16 healthy participants and trained them with a 4-class
tactile P300-based BCI in five sessions. Their main task was to navigate a virtual
wheelchair through a 3D apartment using the BCI. We found significant training effects
on information transfer rate (ITR), which increased from a mean of 3.10–9.50 bits/min.
Further, both online and offline accuracies significantly increased with training from
65% to 86% and 70% to 95%, respectively. We found only a descriptive increase of
P300 amplitudes at Fz and Cz with training. Furthermore, we report subjective data
from questionnaires, which indicated a relatively high workload and moderate to high
satisfaction. Although our participants have not achieved the same high performance as
in the Herweg et al. (2016) study, we provide evidence for training effects on performance
with a tactile BCI and confirm the feasibility of the paradigm.

Keywords: brain-computer interface (BCI), event-related-potential (ERP), P300, tactile, wheelchair control,
tactually evoked potentials, replication

INTRODUCTION

By establishing a direct link between brain and computer, brain-computer interfaces
(BCI) allow their users to communicate and interact with the environment. The electrical
activity of the brain can be measured non-invasively via electroencephalography (EEG)
and interpreted by a computer. Many BCI paradigms rely on event-related potentials
(ERP), such as the P300 (Squires et al., 1975; Polich and Margala, 1997). The P300 can
be reliably elicited by focusing attention on rare stimuli (targets) while ignoring other,
frequent stimuli (non-targets), and occurs as a positive deflection about 300 ms post-
stimulus. It is usually measured at electrode positions Fz, Cz, and Pz (Polich, 1986).
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Because of their independence from voluntary muscular
function, BCIs are a promising tool to assist severely paralyzed
patients, for example, those with amyotrophic lateral sclerosis
(ALS), brain injury, or one of many other causes for motor
impairment (Vidal, 1973; Wolpaw et al., 2002). These potential
end-users, however, may face usability issues with visual
BCIs once their vision or gaze control becomes impaired
(Birbaumer and Cohen, 2007; Brunner et al., 2010). Hence,
vision-independent BCI paradigms which rely on ERP elicitation
via auditory and tactile stimulation have been developed and
demonstrated to be viable (Schreuder et al., 2011; Furdea et al.,
2009; Brouwer and van Erp, 2010; Hill and Schölkopf, 2012;
Riccio et al., 2012; Kaufmann et al., 2014; Simon et al., 2015;
Baykara et al., 2016; Halder et al., 2016).

Table 1 provides an overview of P300 BCI studies using tactile
paradigms along with their mean accuracies (i.e., percentage
of correct classifications), information transfer rates (ITR) that
were achieved, and the number of possible selections (classes),
including distractors. Examples include a tactile spelling BCI
by van der Waal et al. (2012) which used small taps on the
fingertips, administered by a braille stimulator, to achieve a mean
accuracy of 67% among a sample of twelve healthy participants,
and one of the earliest publications, where up to six vibrotactile
devices were located around the waist of healthy participants,
achieving a 58% mean accuracy (73% for two devices; Brouwer
and van Erp, 2010). Notably, several studies demonstrated that
the tactile modality can be feasible for BCI control by severely
impaired potential end-users (Lugo et al., 2014; Ortner et al.,
2014; Severens et al., 2014; Guger et al., 2018).

Furthermore, a tactile P300 paradigm specifically intended
for wheelchair control was developed and tested with healthy
participants aged 50–73 years (Kaufmann et al., 2014; Herweg
et al., 2016). Here, vibrotactile stimulation was applied at
body positions roughly corresponding to the four selectable
movement commands (front, back, left, and right). Importantly,
the study by Herweg et al. (2016) had each participant attend
five sessions, throughout which significant effects of training
on the P300 amplitudes could be demonstrated. No significant
increase could be shown for online BCI performance measures
(accuracy and ITR), a fact that the authors attributed to a ceiling
effect due to very high performances already during the first

session. Similar training effects had been reported for auditory
paradigms before (Käthner et al., 2013; Halder et al., 2016).
However, Herweg et al. (2016) introduced an additional BCI task
with individually optimized conditions during the fifth session.
Here, the number of sequences was reduced to an average of
2.25 (approx. 5.6 s per command), depending on the participants’
individual performances. With the thus shortened stimulation
phase, a mean BCI accuracy of 95.56% and a mean ITR of
20.73 bits/min were achieved. To our knowledge, these values
are still the highest among comparable paradigms (see Table 1).
Considering the advanced age of the participants, and the fact
that mechanoreception is known to become less sensitive over
the years (Cauna, 1964; Iwasaki et al., 2003; Wickremaratchi
and Llewelyn, 2006), these results were rather encouraging and
motivated further research. Particularly, we were interested in
replicating the surprisingly high performances. Therefore, the
current study implements the same general experimental design
to further solidify the evidence for training effects and the general
feasibility of the paradigm.

We hypothesized that physiological measures (P300
amplitudes and differences between curves, H1) and BCI
efficiency (ITR, H2) would increase with training across five
sessions. Furthermore, we expected our participants to be able
to navigate the wheelchair with at least 70% accuracy in their
last session (H3). Because of the previous excellent performance
of elderly participants (Herweg et al., 2016), we expected that
participants would not be negatively affected by advanced age
(as compared to young adult users, H4). Additionally, we added
questionnaires about usability, namely workload and general
satisfaction as suggested in the framework of the user-centered
design approach (for a review of user-centered BCI design, see
Kübler et al., 2014).

MATERIALS AND METHODS

Participants
N = 16 healthy participants were recruited. One subject
wished to terminate participation after the third session due
to incompatibilities with their schedule, leaving 15 participants
for analysis (three male, age range 20–61 years, M = 38 years,
SD = 15.4). All reported (corrected to) normal vision and were

TABLE 1 | Overview of recent tactile P300 brain-computer interface (BCI) studies.

Study Mean accuracy (%) Mean ITR (bits/min) Classes Population Analysis

Brouwer and van Erp (2010) 68a 3.71 6 Healthy Online
van der Waal et al. (2012) 67.0 7.8 36 Healthy Offline
Thurlings et al. (2012a) 78a 6.52 6 Healthy Offline
Ortner et al. (2012) 68.1 3.36 8 Healthy Online
Severens et al. (2013) 77.0 1.2 2 Healthy Online
Severens et al. (2014) 60.0 6.6 36 Healthy Offline
Severens et al. (2014) 58.0 6.6 36 ALS Offline
Kaufmann et al. (2014) 85.8 2.54 4 Healthy Online
Herweg et al. (2016) 95.6 20.73 4 Healthy Online
Halder et al. (2018) 71.0 3.4 5 Healthy Offline
Chabuda et al. (2019) 76 0.51 2 Healthy Online

Notes: a = approximation. When multiple variations of a paradigm were reported, those with the highest ITRs are included in this table. If numerical values were not reported, we
provide approximations based on plots. Hybrid BCIs that used a combination of modalities are not included.

Frontiers in Human Neuroscience | www.frontiersin.org 2 July 2020 | Volume 14 | Article 265

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Eidel and Kübler Tactile BCI for Wheelchair Control

naïve concerning BCI operation. They either received amonetary
reimbursement of e 7.50 per hour, or, in the case of local
psychology students, course credits. All gave informed consent to
the procedure, which was approved by the ethical review board
of the Institute of Psychology at the University of Würzburg,
Germany (GZEK 2013-11).

EEG Recording and Processing
EEG was recorded with a sampling rate of 512 Hz with 12 passive
Ag/AgCl electrodes and amplified using a g.USBamp (g.tec
Engineering GmbH, Graz, Austria). Electrode positions were Fz,
FC1, FC2, C3, Cz, C4, P3, Pz, P4, O1, Oz, and O2 (Sharbrough,
1991), with ground and reference electrodes at the right and left
mastoids, respectively. Impedances were kept below 5 kΩ. Online
filtering included a bandpass filter between 0.1 and 60 Hz and a
notch filter between 48 and 52 Hz.

For offline analysis, EEG data was bandpass filtered between
0.1 and 30 Hz and divided into segments of 800 ms post-
stimulus, plus 100 ms pre-stimulus for baseline-correction.
Segments containing values exceeding a threshold of ±150 µV
were excluded. Target and non-target epochs were averaged
separately. Data were analyzed with MATLAB© (v2013b) using
adapted scripts provided by BCI2000 (Schalk et al., 2004) and
EEGLab (Delorme and Makeig, 2004). Classifier weights were
defined using the stepwise linear discriminant analysis (SWLDA)
as implemented in the BCI2000 package.

Stimulation
As in the original study by Herweg et al. (2016), tactile
stimulation was applied at right and left thigh (next to the knee),
abdomen (1–5 cm above the navel) and neck (at the height of
the C4–Th3 dermatomes) via a BCI2000-controlled tactor device
(C2 tactors; Engineering Acoustic Inc., Casselberry, FL, USA;
see Figure 1). These body positions were chosen to be easily
associable with the desired direction, since such congruence of
directions (e.g., left thigh encoding the left turn command) may
be beneficial for BCI performance (Thurlings et al., 2012b).
Two tactile actuators were used per position to ensure well

FIGURE 1 | Two tactile actuators from the C2 tactor system by Engineering
Acoustic Inc., Casselberry, FL, USA.

perceivable stimulation. The devices were adjusted until they
were reported as equally strong for all positions. During the BCI
session, the four tactor positions were activated (vibrating at
250 Hz for 220 ms) in a pseudorandomized sequence with equal
probabilities (25%). The interstimulus interval was 400 ms.

Procedure
Participants were sitting in a chair in front of a desk, on
which a monitor showed the virtual environment for wheelchair
navigation from the perspective of a wheelchair user (however,
as visible in Figure 2A, the backrest of the wheelchair was
shown to better allow for an estimation of its dimensions).
They were instructed to keep their eyes open and to avoid
blinking, unnecessary movements and to keep facial muscles
relaxed during recording.

To be able to investigate the training effects of repeated
BCI use, participants were invited for five sessions on separate
days, with no more than one week between sessions. At the
beginning of each session, three calibration runs were performed.
Participants had to concentrate on the stimuli of a target
body position which was indicated via text on the monitor.
Other stimulations (non-targets) had to be ignored. Overall,
this resulted in a total of 240 target and 720 non-target trials
per participant.

Every session, the participants’ current calibration data served
to train an SWLDA classifier (Schalk et al., 2004), which was
then used for two navigation runs, For this task, participants
had to navigate a wheelchair through a virtual 3D apartment
(shown on the monitor, see Figure 2A) consisting of four
interconnected rooms and an L-shaped hallway (Kaufmann et al.,
2014; Herweg et al., 2016). The current course was defined by
four checkpoints that had to be reached in a fixed order (see
Figure 2B). Navigation was semi-free, meaning that the path was
only guided by checkpoints, but the track to the checkpoints was
not preset. Thus, the users first had to choose a direction and then
focus on the stimuli applied to the corresponding body position
(i.e., on the left thigh to make a 45◦ left turn). Start and endpoints
of the course were switched after every run, such that participants
had to navigate back to the original starting point. Each complete
run required at least 14 commands; however, all erroneous or
misleading commands were executed (except those leading to
collisions, which were counted but interrupted) and had to be
either corrected or incorporated into an alternative route toward
the checkpoint. As established in the study by Herweg et al.
(2016), the run was terminated if the final checkpoint was not
reached after a maximum number of 22 commands. To preclude
the putative ceiling effect of this previous study, which used a
fixed number of eight sequences for one command, we adjusted
this number individually based on the calibration runs. The
number of sequences predicted for 100% accuracy was chosen,
up to a maximum of 10 sequences.

At the end of each session, participants filled in the
NASA-TLX (Hart and Staveland, 1988) to assess workload, and
a bipolar 11-point visual analog scale (VAS) for satisfaction with
BCI control, ranging from ‘‘very frustrated’’ to ‘‘very satisfied.’’ At
the end of sessions one and five, participants filled in the TUEBS
(Zickler et al., 2011), measuring satisfaction with an Assistive
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FIGURE 2 | Overview of the virtual environment from the navigation task. (A) User’s perspective, showing the wheelchair and a checkpoint in front of it.
(B) Floorplan of the apartment showing one of the courses. Adapted from Kaufmann et al. (2014).

Technology Device. The TUEBS is based on QUEST 2.0 and
adapted to BCI (Demers et al., 2002; Kübler et al., 2014).

Statistical Analysis
We chose the ITR as the primary measure for performance
because accuracy was expected to remain mostly constant due
to individually adapting the number of sequences. The ITR is the
amount of information transferred during a given time in bits per
minute. The number of bits (B) is calculated with the following
equation, using the accuracy (P) and the number of all possible
selections (here, N = 4):

B = log2 N + P log2 P + (1− P) log2
(1− P)
(N − 1)

The ITR is then calculated bymultiplying the number of bits with
the number of selections per minute. Therefore, the resulting
value is directly dependent on the number of possible selections,
the number of sequences (and thus, the time required for
one command), and the actual online accuracy. In the present
paradigm, the number of sequences was adapted dynamically,
thus, stimulation time varied. For instance, assuming a number
eight sequences (as in Herweg et al., 2016), one command could
be given every 19.8 s (3.0 selections per minute). Additionally,
we calculated average offline accuracies from the calibration run
data based on a leave-one-out cross-validation procedure.

We extracted the physiological ERP features mean target
amplitudes and mean difference between target and non-target
from averaged EEG data in the time window of 300–500 ms
post-stimulus at positions Fz, Cz, and Pz.

To test for training effects, BCI performance measures,
physiological features, and questionnaire data from all sessions
entered analysis (performed with IBM SPSS 25r). Because of
small sample sizes and violations of assumptions for ANOVA,
FriedmanANOVAswere calculated unless mentioned otherwise.

RESULTS

Fifteen participants completed all five sessions of the study,
resulting in 75 full BCI sessions available for analysis. Nine
participants reached BCI efficiency, but participants 6, 7, 8, 10,
11, and 16 did not (efficiency was assumed when the mean
online accuracies ≥70% were reached during the last session, or
in at least three other sessions). To adequately describe training
effects, only BCI efficient participants entered the respective
analyses (i.e., all statistics, tables, and figures). The questionnaire
analysis was considered relevant for all 15 participants and thus
performed on the full sample.

Physiological Measures
Grand averages of target and non-target curves at Fz, Cz,
and Pz from session one and five, and the development of
ERP amplitudes across all sessions are plotted in Figure 3.
Descriptively, both amplitudes and differences between the
curves increased from the first to the last session in the
P300 range at Fz and Cz. However, Friedman ANOVAs did
not reveal significant effects on amplitudes or differences
throughout the study (see Table 2 for an overview of descriptive
statistics and Friedman ANOVAs). Epochs from position Cz
(where amplitudes were highest) are plotted in Figure 4 for
every participant. Visual analysis revealed a high degree of
heterogeneity between participants.

BCI Performance
The number of sequences was adjusted as explained in the
methods section. As a result, participants received an average
number of M = 6.7 (16.6 s per command) sequences in
the first, and M = 3.8 (9.4 s per command) in the last
session. Figure 5 shows the development of BCI performance
(ITR and accuracies) over the five training sessions: Mean
online ITRs increased significantly from 3.10 to 9.50 bits/min
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FIGURE 3 | Comparison of session 1 vs. 5 grand averages of target and non-target epochs to 800 ms post-stimulus. The highest target peak (6.21 µV) after
training was observed at position Cz. The bar plot shows mean amplitudes from all sessions (error bars represent SE).

TABLE 2 | Statistics for event-related potentials (ERP) measures at Fz, Cz and Pz.

Electrode position Fz Cz Pz

Amplitudes Mean S1 (SD; µV) 1.92 (3.26) 2.73 (3.13) 2.14 (2.35)
Mean S5 (SD; µV) 3.10 (3.08) 3.94 (2.56) 2.36 (1.48)
Chi-square (χ2) 1.96 5.33 0.44
Significance (p) 0.769 0.261 0.985

Difference between curves Mean S1 (SD; µV) 1.48 (4.07) 2.32 (3.30) 2.14 (2.26)
Mean S5 (SD; µV) 2.70 (4.05) 3.50 (2.70) 2.38 (1.77)
Chi-square (χ2) 5.96 2.04 1.51
Significance (p) 0.210 0.754 0.848

No significant increases were supported by Friedman ANOVAs.

(Friedman, p < 0.01). Similarly, mean online accuracies
increased from 65% to 86% (p < 0.05). All online performances
are summarized in Table 4 to illustrate the heterogeneity

of results. Cross validated offline accuracies were calculated
based on calibration data using the maximum number of
(10) sequences available for classification. Offline accuracies
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FIGURE 4 | Comparison of target and non-target epochs at Cz from session 1 vs. 5, per participant.

increased highly significantly between sessions, from 70% to
95% (p ≤ 0.01). These values greatly exceeded the chance
level threshold of approximately 40% (using an alpha of

0.05) to be considered non-random and statistically significant
(Müller-Putz et al., 2008). Table 3 summarizes results from all
Friedman ANOVAs.
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FIGURE 5 | Online brain-computer interface (BCI) performance from the navigation tasks. Data were averaged over all BCI efficient participants (error bars represent
SE). Both information transfer rate (ITR; p = 0.002), online accuracy (p < 0.05) and offline accuracy (p < 0.01) increased significantly with training.

TABLE 3 | Mean values of BCI performance measures from sessions one and
five with results from Friedman ANOVAs (calculated over all sessions).

Measures Online accuracy Offline accuracy Online ITR
(bits/min)

Session 1 (SD) 65% (23.79) 70% (31.86) 3.10 (2.37)
Session 5 (SD) 86% (8.38) 95% (9.43) 9.50 (6.01)
Chi-square χ2

(4,N = 9) 9.27 12.35 15.29
Significance (p) 0.048∗ 0.010∗ 0.002∗

Asterisks indicate significant effects.

Effects of Age
There was a notable difference in performances depending on
age. To test hypothesis H4, we split participants into two groups,
young adults (YA, ages 20–33, N = 8) and middle-aged (MA,
ages 41–61, N = 7). Four of six cases of BCI inefficiency occurred
among the MA group, and a Spearman test (without exclusion of
inefficient cases) revealed a strong negative correlation between
age and mean ITR (rs = −0.69, p < 0.01). Due to the hence

drastically reduced sample size in either group (YA = 6; MA = 3),
we report descriptive ITR values only (see Table 5). Online ITRs
of both groups increased substantially with training, but the YA
group strongly outperformed the MA group.

Questionnaires
The average NASA-TLX workload score did not change across
sessions (Friedman ANOVA, χ2

(4,N = 15) = 3.22, p = 0.52).
The global average score was 63.2 (across sessions and
participants; SD = 16.3). The mean scores of the NASA-TLX
are summarized in Table 7. Descriptively, the weighted
averages of the dimensions ‘‘mental demands’’ (M = 20.2)
and ‘‘effort’’ (M = 17.5) contributed most to total workload
scores. Conversely, ‘‘physical demands’’ (M = 3.2) and ‘‘temporal
demands’’ (M = 4.0) were rated low. Bonferroni-Holm corrected
Wilcoxon tests for each session revealed that mental demands
were rated significantly higher than physical demands (all
p< 0.001). Many participants proactively reported that ignoring

TABLE 4 | Individual online performances per participant and session.

Online accuracy (%) Online ITR (bits/min)

Participant S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

1 70.5 96.7 59.1 75.0 75.0 2.65 4.67 2.27 4.79 3.83
2 88.9 80.5 77.8 93.8 83.3 5.33 3.38 5.34 6.31 5.25
4 93.8 96.7 91.2 93.5 96.7 6.31 10.50 11.53 9.39 21.00
5 63.6 86.8 96.7 89.5 93.8 2.89 3.72 8.40 8.15 12.61
6ex 75.0 29.5 56.8 63.6 52.3 2.74 0.02 0.80 1.16 0.59
7ex 45.5 38.6 29.5 36.4 43.2 0.34 0.17 0.02 0.11 0.39
8ex 43.2 31.8 27.3 36.4 38.6 0.27 0.04 0.00 0.11 0.16
9 22.7 72.5 77.5 73.7 83.3 0.00 2.89 3.52 4.54 5.25
10ex 47.7 38.6 25.0 45.5 34.1 0.42 0.16 0.00 0.34 0.09
11ex 52.3 31.8 34.1 27.3 38.6 0.59 0.05 0.07 0.00 0.16
12 40.9 22.7 70.5 56.8 72.7 0.21 0.00 3.17 1.33 3.50
13 56.8 38.6 91.7 83.7 82.9 0.80 0.16 5.03 5.33 8.63
14 81.8 91.2 86.8 100.0 88.9 4.97 11.53 4.96 9.68 15.98
15 68.2 77.5 93.8 84.2 93.8 4.78 7.05 12.61 6.78 9.46
16ex 68.2 66.7 77.5 65.9 59.1 1.44 2.23 3.02 2.58 1.51

Notes: ex = excluded, S = session.
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TABLE 5 | Information transfer rate (ITR) values from sessions one and five, split
by age group.

Mean values YA MA

Session 1 ITR (SD; bits/min) 4.49 (1.43) 0.34 (0.41)
Session 5 ITR (SD; bits/min) 11.36 (6.53) 5.79 (2.61)

non-target vibrations was very difficult and that they had
perceived a high mental strain when using the system.

Satisfaction, as measured with VAS and TUEBS, is shown
in Table 6. The mean overall satisfaction with the BCI system
increased from 6.8 (SD = 2.8) between the first session to 8.0
(SD = 2.2) and the last. There was a highly significant relationship
between satisfaction ratings and ITR (rs = 0.62, p < 0.01;
Spearman’s Rho), but only when including BCI inefficient cases
in the test.

The TUEBS score averages remained relatively stable between
first and last sessions (M1 = 4.47 and M5 = 4.24; main items),
indicating that participants felt ‘‘quite satisfied’’ (4) to ‘‘very
satisfied’’ (5) with the system. This was also the case for the BCI
specific items (M1 = 4.30 andM5 = 4.18). No significant effect of
session number was found for either main or BCI specific items
(paired t-tests, both p< 0.05).

We assumed that participants would be most competent to
judge the BCI system at the end of the training, hence, we
report the TUEBS from the fifth session, with a focus on the
mean scores of the BCI specific items. Participants indicated
they felt ‘‘quite satisfied’’ (mean score 4.2) with the systems’
Robustness/Reliability. In a comment, one participant speculated
that electrode cables may break or fall off under stress. The
systems Speed (the time required for a command) was also
rated as ‘‘quite satisfactory’’ (3.9). Two participants reported
that commands took ‘‘relatively long’’ or ‘‘too long,’’ another
participant proverbially remarked that ‘‘practice makes perfect.’’
The BCI’s Learnability was again rated ‘‘quite satisfying’’ (4.0).
One participant considered the BCI ‘‘effortful.’’ Two participants
who did not reach BCI efficiency reported that ‘‘it probably
requires a lot of practice’’ and that, despite some ‘‘habituation,’’
‘‘there was no noticeable improvement.’’ Overall, the Aesthetic
design of the technology was rated as ‘‘more or less satisfactory’’
(3.2), however, with several negative remarks concerning the
EEG cap, cables, and gel (e.g., ‘‘gel in the hair, the cap is
not pretty’’).

One BCI specific TUEBS item inquired about which factors
the participants considered most important for usability. After
the fifth session, the factors Ease of use (N = 12), Learnability

TABLE 6 | Satisfaction ratings and average TUEBS scores.

Session Satisfaction TUEBS (main) TUEBS (BCI)

1 6.8 (1–10) 4.5 (3–5) 4.3 (3–5)
2 7.3 (2–10) - -
3 6.7 (2–10) - -
4 7.1 (1–9) - -
5 8.0 (3–10) 4.2 (3–5) 4.2 (3–5)

All values averaged over all participants. Parenthesis indicate ranges (rounded to the
nearest integer).

(N = 8), Efficiency (N = 6), and Robustness (N = 6) were
mentioned most frequently (three factors could be selected).

DISCUSSION

We present a slightly adapted and extended replication of the
study by Herweg et al. (2016). For the navigation task, the
number of sequences was adjusted individually to an estimated
minimum and thus precluded any ceiling effects as suggested by
Herweg et al. (2016). Unfortunately, we found high discrepancies
in the levels of BCI control between participants, with many
of them not achieving BCI efficiency. For this reason, training
effects were investigated for BCI efficient participants only.

P300 Features
In visual paradigms, the P300 is usually strongest at parietal
sites (Ravden and Polich, 1999). In the present study, however,
amplitudes at position Pz were the lowest (see Table 2). The
strongest deflections were observed at Cz, which is in line with
several other publications with the tactile modality (Thurlings
et al., 2012b; van der Waal et al., 2012; Kaufmann et al., 2014;
Severens et al., 2014). This shift toward central sites may be a
specific effect of tactile stimulation.

A review of recent literature from other P300 based BCI
studies offers inconsistent findings of training effects on the
(non-visual) P300: Some report increases with training (Halder
et al., 2016; Herweg et al., 2016), while others suggest that
motivation, not training, was a key factor (Baykara et al., 2016).
In our case, the extracted ERP featuresmean amplitude andmean
difference did not reveal a significant training effect, although a
trend toward increasing P300 values could be seen at positions
Fz and Cz. Our hypothesis (H1) about increasing physiological
measures with training was thus not sufficiently supported by
the present sample. For this analysis, the Friedman ANOVA
(though appropriate) might not have been sensitive enough to
reveal small effects.

Despite including only BCI efficient participants, peak
P300 amplitudes after training (6.21µV at Cz), were substantially
lower than in the study by Herweg et al. (2016), who reported
values after training of up to 9.2 µV (Fz). It should be noted that
in both studies, the analysis of the P300 features was limited to
certain electrodes in a fixed time window and was applied to the
entire group indiscriminately. An analysis of machine-learning-
based BCI performance, as discussed in the next section, should
better account for interindividual differences.

BCI Performance
Online ITRs during navigation increased highly significantly
across the five training sessions, with mean values more than
tripling between the first and last sessions (3.10–9.50 bits/min).
Thus, we consider H2 (increasing ITR with training) confirmed.

This ITR mean value after training of the present study
even exceeds the respective 4.98 bits/min from the study by
Herweg et al. (2016) approximately by a factor of two. This is
because Herweg et al. (2016) applied a fixed number of eight
sequences, strictly limiting the ITR values that can be reached.
The authors included an optional bonus task after the last session,
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TABLE 7 | NASA-TLX scores.

Session MD PD TD P E F Total Raw

1 17.8 3.6 2.8 13.4 19.3 9.0 60.8 50.4
2 22.5 4.0 3.4 7.5 17.7 12.0 67.3 55.5
3 21.1 4.1 3.9 8.8 18.3 12.0 67.2 55.4
4 20.5 1.7 4.9 7.8 16.0 8.6 59.5 50.8
5 19.0 2.6 4.9 7.6 16.4 10.5 61.1 52.3
Mean 20.2 3.2 4.0 9.0 17.5 10.4 63.2 52.9

MD = mental demands; PD, physical demands; TD, temporal demands; P, performance; E, effort; F, frustration; Total, global NASA-TLX score; Raw, unweighted global score. Value
ranges are 0–100.

in which this number of sequences was considerably reduced,
and reported a mean ITR of 20.73 bits/min.

The highly significant increase of mean offline accuracies
(based on calibration data using 10 sequences) with training
further supports H2. Even without clear evidence from the
analysis of physiological P300 features, this increase indicates
that training affected brain activity patterns which in turn led
to an improvement in classification. Importantly, it also suggests
that the observed increase in online ITRs was not exclusively
due to reductions in the number of sequences. In fact, despite
our attempt to normalize online performance by adjusting the
number of sequences, we found a significant increase in online
accuracies with training (see Figure 5). Descriptively, this effect
was strongest during the first three sessions, after which online
accuracies appeared to consolidate. However, no other measure
exhibited this pattern, rendering it difficult to interpret. It may be
that for this wheelchair navigation task, the participants first had
to become used to the novel 3D environment itself, which would
be a factor only loosely related to the actual BCI system.

Overall, the significant increases in ITR and both online and
offline accuracies across sessions strongly suggest that training
had a positive effect on BCI performance. The substantial
decrease of the required number of sequences indicates that this
effect was caused not only by increases in online accuracy but also
by a decrease in the time required for a command.

BCI Efficiency and Age Effects: Since our sample comprised
six cases of BCI inefficiency, we must reject the hypothesis
that all participants would reach more than 70% accuracy after
training (H3). In the same vein, based on the encouraging
results of the previous study (Herweg et al., 2016), we had
hypothesized that advanced age would not be a limiting factor
in BCI performance (H4). Yet, according to the present sample in
which the younger group strongly outperformed themiddle-aged
group, this hypothesis was not supported. In fact, 57% of the
middle-aged group did not reach BCI efficiency, in contrast to
25% of the younger group. In comparison, the percentage of
inefficiency in visual BCIs in the population is estimated at only
20% (Allison and Neuper, 2010).

A possible explanation for this age discrepancy in
performances could be that certain mechanoreceptors (e.g.,
Pacinian and Meißner corpuscles) decline in sensitivity or
become less numerous with increasing age (Cauna, 1964; Iwasaki
et al., 2003). Consequently, the middle-aged group may have
been less sensitive to tactile stimulation. In a recent study,
Chen et al. (2019) specifically compared the EEG responses to
vibrotactile stimulation between older and younger samples. In

line with our observations, the authors found several significant
differences between the groups, most notably a decreased
classification accuracy in the older sample. They attributed these
findings primarily to the natural aging of the central nervous
system, but also to changes in skull thickness and skin sensitivity.

On the other hand, mean amplitudes and overall
performances of elderly participants in the study by Herweg
et al. (2016) were much higher than even in our younger group,
despite the exclusion of inefficient participants. We consider
random sampling effects responsible for this inconsistency, as
the paradigm itself was almost identical. Thus, we would still
encourage the use of this tactile paradigm for elderly users
because of its previously demonstrated feasibility among this
population, and to elucidate further the potential performance
of this age group.

Workload, Satisfaction, and Usability
We included the NASA-TLX after every session to explore
the perceived workload of the BCI operation. Scores did not
significantly change over time. The mean global score was at
a rather high value of 63.2, which falls into the 80% percentile
according to a meta-study on the NASA-TLX (Grier, 2015). This
score is slightly higher than those of similar BCI studies that
also included the TLX, for instance, the 57.5 mean score from
an auditory BCI by Käthner et al. (2013). However, the visual
BCI from the same study was judged as much less workload
intensive (M = 36.1). Another example is provided by Riccio et al.
(2015), who reported a relatively high median score of 52.3 for
a visual BCI. To conclude, the overall workload of our tactile
paradigm seems to be on the higher end of the workload from
comparable studies.

Analyzing the subscores of the NASA-TLX, we found that
mental demands were rated much higher than physical demands,
suggesting that operating the system provokes a high cognitive
workload. It is unclear whether the paradigm itself can be
simplified further, as it consists of only four classes that
are positioned on the body in a way that necessitates no
memorization of theirmeaning. Instead, the highmental demand
might be inherent in the vibrotactile modality, which humans are
less accustomed to using (as compared to the visual modality,
for instance). It seems likely that ignoring non-target stimuli is
much more difficult in the tactile paradigm than for example
in a visual paradigm, in which users simply focus their gaze
on the target only. Hence, gaze pre-filters the stimuli, making
it comparatively easy to ignore non-targets. Such selective
perception is not possible for tactile stimuli so that the filtering
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must be performed mostly on a cognitive level. Continued
training in a consistent environment, however, might lead to
automatization of the task (Logan, 1988) and alleviate some of
the mental demands.

Mean satisfaction ratings measured with the VAS ranged
between 6.7 (session 3) to 8.0 (session 5), indicating that
participants had a mostly positive attitude toward the system.
This result is similar to BCI studies that used the same scale:
Mean ratings from Kübler et al. (2014) were 6.9–7.7, while
another comparable study reported median values between
6.0–7.2 (Riccio et al., 2015). The strong correlation between
satisfaction and performance (ITR) of the present study
may indicate a negative influence of performance on the
satisfaction ratings. However, some impaired end-users reported
high satisfaction despite (subjectively) low performances
(Holz et al., 2015).

Finally, mean scores of the TUEBSmain items as well as of the
extended BCI related items (both at M = 4.2 after session five)
indicate high general satisfaction with the system. In a study by
Kübler et al. (2014), four different applications were evaluated,
with similar averages ranging between 3.7 and 4.2 for main items
and 3.5 and 4.4 for BCI specific items. The TUEBS revealed no
effect of training, possibly because the few days of participation
were too limited to allow for substantial changes of opinion about
the BCI system. The TUEBS however, revealed which factors
participants considered most important for the usability of the
system, illustrating above all that the ‘‘ease of use,’’ but also
‘‘learnability’’ was considered crucial.

CONCLUSION

We demonstrated that virtual wheelchair control with the tactile
BCI system can be feasible and that efficient control is achievable,
albeit not by all participants, and that age likely contributes to
inefficiency. Overall, BCI inefficiency may be more prevalent in
tactile than in visual paradigms.

While physiological P300 measures increased only
descriptively with training, we provide evidence for training
effects on BCI performance measures (accuracy and ITR).

On average, our participants did not reach the same
high-performance level as in Herweg et al. (2016), possibly
because of random sampling effects or a regression to the mean.
Especially performances within our middle-aged group were
in strong contrast to previous results. This should be further
investigated, considering the often advanced age of potential
end-users. A general interpretation, thus far, remains difficult,
illustrating once more the need for designs that are individually
tailored to the end-user. This necessitates identifying which
factors are responsible for training-related improvements in
BCI performance. These results were attained with healthy
participants in a virtual environment—whether they are
translatable to potential real-life use of powered wheelchairs by
impaired patients remains to be explored.
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