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For more than two decades, a network of face-selective brain regions has been identified
as the core system for face processing, including occipital face area (OFA), fusiform
face area (FFA), and posterior region of superior temporal sulcus (pSTS). Moreover,
recent studies have suggested that the ventral route of face processing and memory
should end at the anterior temporal lobes (i.e., VATLS), which may play an important role
bridging face perception and face memory. It is not entirely clear, however, the extent to
which neural activities in these face-selective regions can effectively predict behavioral
performance on tasks that are frequently used to investigate face processing and face
memory test that requires recognition beyond variation in pose and lighting, especially
when non-Caucasian East Asian faces are involved. To address these questions, we
first identified during a functional scan the core face network by asking participants
to perform a one-back task, while viewing either static images or dynamic videos.
Dynamic localizers were effective in identifying regions of interest (ROls) in the core
face-processing system. We then correlated the brain activities of core ROIls with
performances on face-processing tasks (component, configural, and composite) and
face memory test (Taiwanese Face Memory Test, TFMT) and found evidence for limited
predictability. We next adopted an multi-voxel pattern analysis (MVPA) approach to
further explore the predictability of face-selective brain regions on TFMT performance
and found evidence suggesting that a basic visual processing area such as calcarine
and an area for structural face processing such as OFA may play an even greater role
in memorizing faces. Implications regarding how differences in processing demands
between behavioral and neuroimaging tasks and cultural specificity in face-processing
and memory strategies among participants may have contributed to the findings
reported here are discussed.
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FACE PROCESSING AND MEMORY:
MECHANISMS REVEALED BY
BEHAVIORAL TASKS

Face processing and memory entail not only encoding the
perceptual input of a face upon its presence but also retrieving
a relatively permanent representation despite variation in
illumination, pose, or expression (Bruce and Young, 1986, 2012;
Hole and Bourne, 2010).

Aspects of Face Processing

Researchers generally agree that there are three aspects of
face processing that eventually would lead to the creation
of face representation (Maurer et al., 2002; Mondloch et al.,
2002; for a review see Yang and Shyi, 2010). Component or
feature processing refers to the way individuals process faces
by encoding (nameable) facial features separately, such as eyes,
nose, and mouth. Configural processing on the other hand
refers to processing the spatial or metric information between
facial features (e.g., the interocular distance, or distance between
nose and mouth). Finally, holistic processing refers to the fact
that people tend to process the face as an undifferentiated
whole, simultaneously integrating all featural as well as inter-
featural metric information that existed in a given face into a
single perceptual representation (Tanaka and Farah, 1993, 2003;
Rossion, 2008, 2009; McKone and Yovel, 2009; McKone, 2010).

There has been some controversy regarding the merit or
usefulness of treating configural and holistic processing as
distinct and completely separable face processes. While not
attempting to resolve the controversy here, we are more
inclined to take the view advocated by Rossion (2008, 2009,
2013), McKone (2010; see also McKone and Yovel, 2009),
Tanaka and Gordon (2011, see also Tanaka and Farah, 1993,
2003), and Richler and Gauthier (2013, 2014), where holistic
processing entails integrated processing of all features, nameable
and non-nameable, as well as a variety of detailed metric
relationships between and among them (McKone and Yovel,
2009), which results in a single face representation created by
simultaneous integration and combination (see Kimchi, 1992,
for an in-depth discussion on distinguishing between holistic
and global properties in face or other hierarchically structured
visual patterns).

Viewed this way, these researchers have also argued that
the composite face task is perhaps the task most appropriate
for assessing holistic processing. Composite face effect refers
to the fact that occurs when recombining top and bottom
halves of two faces would create the illusion of a face
entirely different from either of its parent faces (Young
et al., 1987; Hole, 1994; Rossion, 2013). When people are
asked to judge the upper halves, which are identical, from
two recombined faces, they are almost inevitably affected
by the two different bottom halves and tend to perceive
top halves as different (i.e., composite face illusion). This
effect clearly demonstrates that people generally have a
strong tendency to integrate upper and lower halves of a
face into a single unit; in other words, people cannot perceive

exclusively part of a face without being affected by other
parts (Rossion, 2008, 2009, 2013). When two composite
faces are (sufficiently) misaligned, however, the illusion
disappears presumably because the integrated representation
and continuation between the top and bottom halves of a
face falls apart due to misalignment, which in turn allows
participants to perceive either the top or bottom half of a
face without being interfered by the other half (Tanaka and
Farah, 1993; Farah et al., 1998) as a consequence of disrupting
the law of good continuation (Richler and Gauthier, 2013;
Rossion, 2013).

Face Memory

In addition to the various aspects of processing that are involved
in encoding a face upon its presentation, additional processing
is needed to create robust and long-lasting representation such
that a recurring face can be effectively retrieved and recognized.
Early attempts in devising instruments for assessing the ability
of face memory, such as Benton Facial Recognition Test (BFMT;
Benton et al., 1983) and Recognition Memory Test for Faces
(RMF; Warrington, 1984), have been criticized for providing
non-face-related cues such that performance on these tests do
not necessarily reflect the proficiency in face memory per se
but rather more general memory ability. To remedy problems
plaguing the existing tests, Duchaine and Nakayama (2006)
developed and popularized the Cambridge Face Memory Test
(CEMT), by getting rid of non-face information from test
images and presenting them in various views and illuminations.
These measures not only overcome shortcomings of the
previous tests but also imitate the scenario of how people
encounter faces on a daily basis, where variation in pose and
illumination of any to-be-recognized face is the rule rather
than exception. More specifically, there are three stages in
CEMT where learned face images are tested with identical
images, novel images where variations in viewpoint and/or
illumination were added to the learned images, and novel images
masked with visual noise. Judging from the overall response
accuracy, difficulty systematically increases across the three
stages, and participants have to truly learn and memorize target
faces in order to correctly pick them out from distracters.
Duchaine and Nakayama (2006) also tested prosopoagnosic
patients and found those patients performed worse in the CFMT
compared to normal participants, suggesting that CMFT could
correctly identify those with deficits in face recognition and
memory and hence constitutes a valid tool for assessing face
memory ability.

The Relationship Between Face Memory

and Face Processing

Following the procedure of CFMT, Cheng Y. -H. et al
(2016) have recently created the Taiwanese version, called
Taiwanese Face Memory Test (TFMT), using images from a
Taiwanese face database (Shyi et al, 2013). In their study,
Cheng Y. -H. et al. (2016) used TFMT in conjunction with the
three aforementioned face-processing tasks to investigate age
differences in face processing and memory. Like CFMT, TEMT
was administered in three stages with increasing difficulty. The

Frontiers in Human Neuroscience | www.frontiersin.org

July 2020 | Volume 14 | Article 269


https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles

Shyi et al.

Brain Activities Predict Face Performances

results of TFMT revealed a pattern almost identical to that
found with CEMT (Duchaine and Nakayama, 2006). In addition,
younger adults outperformed older adults in TEMT as well as
in all three face-processing tasks. Furthermore, while younger
adults exhibited reliable inversion effects in both component
and configural tasks, older adults failed to do so except for
the oldest subgroup (75 years and older) showing an inversion
effect in the configural task. In contrast, older adults exhibited
a pattern of interaction between alignment and congruency,
similar to that found with younger adults for the composite
task, demonstrating that both age groups can process faces
holistically. Moreover, regression analyses on the relationship
between face memory and face-processing performances for
both age groups revealed that, while each face-processing task
has its own share of holistic processing, they may be tapping
into different aspects of holistic processing. Most important
and somewhat surprising, holistic processing captured by the
component task and its inversion effect, entailing subtle spatial
relationship between local facial features and landmarks, may
underlie face memory performance for both younger and older
adults in Taiwan (Cheng Y. -H. et al,, 2016). Taken together,
besides showing distinct styles or strategies between younger
and older adults in coping with the specific demands of each
face-processing task, Cheng Y. -H. et al.’s (2016) findings suggest
that both young and older participants appeared to rely on the
same aspects of holistic and non-holistic processing revealed by
the component task, for encoding and later retrieving memory
for faces.

It should be pointed out, however, that while CFMT (and
TFMT) embodies a form of face memory tailoring more closely
to the perceptual aspect of acquiring and later retrieving the
memory of a relatively novel face, it fails to address other
forms of face memory that may involve recognizing faces with
high familiarity such as those of celebrities (Shyi and He,
2011). Retrieving memory of highly familiar faces may well
invoke other non-perceptual connections that were established
in the process of familiarization. A case in point is a recent
study by Moret-Tatay et al. (2020), who demonstrated that
the associative links between face and name for celebrities
can be asymmetrical, where the magnitude of priming from
seeing a celebrity face to recognizing his or her name was
greater than that from seeing a name to recognizing the
corresponding face.

Cultural Specificity and Differences in

Face Processing

The ubiquity in the physical structure of a face, comprising
a pair of eyes on the top, a nose in the middle, and a
mouth at the bottom, situated within an ellipsoid, for people
from different social and cultural background has allured
researchers from early on to assume universal processing
insofar as face identity is concerned (Yarbus, 1965; Bruce and
Young, 1986, 2012). However, as pointed out by Henrich et al.
(2010) critical review, many psychological effects, including
fundamental aspects of cognitive and affective processing,
differ for participants from different cultures. More specifically,
Blais and his colleagues had reported evidence indicating

that East Asian (EA) adults tend to preferentially fixate the
central region (i.e., the nose) of a face, whereas Western
Caucasian (WC) adults tend to fixate more on eyes and
mouth regions during both learning and recognizing, and
categorizing novel Eastern and Western faces (Kelly et al,
2010). Moreover, the consistent pattern of difference in eye
movements was present regardless whether or not EA and WC
participants were viewing faces from their or a different race
(Blais et al., 2008).

The initial finding of cultural differences in face processing
was later replicated and generalized by Kelly et al. (2010).
Specifically, they compared EA (Chinese) participants and WC
(British) participants and found essentially the same results
reported by Blais et al. (2008). In addition, they also found
consistent different patterns of eye movement between the
Chinese and British participants in viewing other types of visually
homogeneous objects such as sheep and greebles (Gauthier and
Tarr, 1997). Most intriguingly, in a subsequent, cross-sectional
study, Kelly et al. (2011) found a developmental trend where
young children from China and UK demonstrated patterns of
eye movement similar to those exhibited by the adults from their
respective cultural background as they grew older. These findings
clearly lend support to the notion that in a nontrivial manner,
culture shapes face processing.

FACE PROCESSING AND MEMORY:
MECHANISMS AND BRAIN REGIONS
REVEALED BY fMRI STUDIES

Kanwisher et al. (1997) first identified the fusiform face area
or FFA, which was located in the lateral part of the fusiform
gyrus and specifically tuned to the processing of faces. Since then,
numerous studies have been reported to uncover its properties,
including the nature of representations it may contain. Aside
from characterizing FFA as a specialized face module, it is
important to point out that a broad consensus from many
studies has emerged over the past two decades, arguing that
face processing actually entails complex interactions among a
network of brain regions (for recent reviews, see Duchaine and
Yovel, 2015; Freiwald et al.,, 2016). Among them, three regions,
namely, FFA (fusiform face area), OFA (occipital face area),
and pSTS (posterior region of superior temporal sulcus), have
consistently been identified and proposed to serve as the “core
system” of face processing (Gobbini and Haxby, 2007; Haxby and
Gobbini, 2011).

Fusiform Face Area

Many studies have provided evidence for the notion that
the main function of FFA is to structurally encode faces
(for a review see Kanwisher and Barton, 2011). Liu et al.
(2010), for example, showed that the FFA was sensitive
to the basic physical structure of a face, including both
the presence of face features (eyes, nose, and mouths) and
proper configuration between them. Furthermore, using fMRI
adaptation procedure, many studies have demonstrated that the
FFA is sensitive to differences in face identity, and adaptation
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across repeated images of the same face is found even when
those images differ in position (Grill-Spector et al., 1999),
size (Grill-Spector et al., 1999; Andrews and Schluppeck, 2004),
or spatial scale (Eger et al., 2004). In contrast, release from
adaptation in the FFA was evident when participants indicated
that they perceived a change in identity (Fox et al, 2009).
These findings suggest that the FFA encodes structural aspects
that are related to identity. It should be noted, however,
that the FFA does not seem to represent face identity in a
viewpoint-invariant manner. Benton et al. (2006), for example,
found that the FFA exhibits substantial decrease in adaptation
(i.e., release from adaptation) as the rotation angle between
adaptation and test viewpoints increases. Ewbank and Andrews
(2008), however, noted that while the release from adaptation
was apparent in the FFA when unfamiliar, stranger faces were
viewed at discrepant viewpoints, adaptation across viewpoint
change was evident when viewing highly familiar faces such
as celebrities.

Occipital Face Area

The OFA, located upstream to the FFA and often assumed
to be an earlier stage in the face network, sends its output
to the FFA. As pointed out by Kanwisher and Barton (2011),
studies have provided evidence consistent with such a view.
For example, fMRI adaptation studies showed that the OFA
is sensitive to changes in face stimuli regardless whether or
not changes of face identities were perceived by the viewer,
whereas the FFA is sensitive only to the perceived changes
in identity (Fox et al., 2009). Moreover, Yovel and Kanwisher
(2005) found that the magnitude of the OFA response was
similar for upright and inverted faces, and there was no
correlation across participants between the magnitude of the
behavioral inversion effect and the difference in response
of the OFA between viewing upright and inverted faces. In
contrast, the FFA showed higher activity to upright than
inverted faces, and this difference was correlated with the
behavioral inversion effect. Finally, whereas the FFA responds
to stimulus information about both face parts and configuration
(Liu et al, 2010), the OFA is sensitive only to face parts
(Liu et al., 2002).

Superior Temporal Sulcus

According to Kanwisher and Barton (2011), while the FFA
can be found in virtually all normal participants, face-selective
regions in the superior temporal sulcus (fSTS) are less reliable,
and are found in only half (Kanwisher et al, 1997) to
three quarters among the participants (Fox et al., 2009).
For this reason, fSTS has been studied less extensively than
the FFA. Nonetheless, a number of studies have suggested
important functional distinction between the fSTS and other
face-selective regions in the cortex and have shown that the
fSTS is involved in the processing of dynamic aspects of
a face such as eye gaze, emotional expression, and speech.
Using an fMRI adaptation paradigm, for example, Winston
et al. (2004) tested for a neuroanatomical dissociation between
identity and expression in face perception, and found that
repeating identity across face pairs led to reduced fMRI signal

in the FFA and posterior STS (pSTS), whereas repeating
emotional expression across pairs led to signal reduction in
a more anterior region of STS (aSTS) and not at all in
the FFA. Their results provide neuroanatomical evidence for
the distributed model of face processing and highlight a
dissociation within the right STS between a caudal segment
coding identity and a more rostral region coding emotional
expression. In contrast, the adaptation study by Fox et al.
(2009) also demonstrated that both the FFA and the pSTS
showed release from adaptation when participants perceived
a change in either identity or expression; however, the effect
in pSTS occurred when participants were explicitly asked
to attend to facial expression. Therefore, Fox et al. (2009)
concluded that their results indicate functional overlap in the
FFA and pSTS, with identity and expression signals in both
regions, and they argued against a complete independence
of identity and expression processing in regions of the core
face-processing network.

It is worth noting that, in addition to the core system of
the OFA, FFA, and fSTS, Collins et al. (2016) recently have
pointed out an important role of the ventral anterior temporal
lobe (VATL) in face processing. Specifically, they argued that
an increasing number of studies have implicated the VATL in
humans exhibiting both high-level perceptual and mnemonic
functions. With respect to the perceptual function, the vATL
may be the site at which view-invariant representation of a face
is ultimately created and hence allows for identification of a
face regardless of viewpoint variation. The mnemonic function
of the VATL, on the other hand, entails a natural consequence
of the high-level perceptual function in that the identity-
invariant representation can be used to match representation
from long-term memory for recognition of a familiar face and
access to semantic information associated with the familiar face
(Bruce and Young, 1986, 2012).

THE PRESENT STUDY

In the present study, we aimed to examine the extent to
which brain activities in the face-selective regions can predict
performances in behavioral tasks that have been proposed and
used to reveal mechanisms underlying face processing and face
memory, especially when non-Caucasian EA (Taiwanese) faces
are involved. Specifically, we investigated how brain activities
in the face-selective areas such as the FFA, OFA, pSTS/fSTS,
and VATL of an observer can be used to predict his or her
performance on tasks tapping component processing, configural
processing, holistic processing, as well as face memory. To
that end, we identified during a functional scan the core face
network by asking participants to perform a one-back task,
while viewing either static images or dynamic videos. Besides,
they were asked to perform a variety of face-processing tasks
outside the scanner, including the TFMT, component task,
configural task, and composite task (Cheng Y. -H. et al., 2016).
In addition to the univariate GLM approach to analyzing
neuroimaging data, we also adopted the multi-voxel pattern
analysis (MVPA) approach (Norman et al., 2006) to further
elucidate whether and how brain activations in the traditional
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face-selective areas as well as other various areas can jointly be
used to predict participants’ performance on face processing and
face memory.

METHOD

Participants

Forty-four college students (24 females and 20 males, ranging
from 19 to 35 years old, with a mean age of 21.98 & 2.65 years)
from the National Chung Cheng University in Chiayi County
and the National Cheng Kung University in Tainan City
of Taiwan were recruited to participate in the study. All
participants had normal or corrected-to normal vision and were
recruited, and all were native Chinese Mandarin speakers with
no history of psychiatric or neurological disorders. Informed
consent approved by the Human Research Ethics Committee
of the National Cheng Kung University was obtained from
all participants prior to their participation. Twenty-seven
participants underwent MR scanning first and were then called
back to perform the behavioral tasks, and vice versa, for the
remaining 17. The delay between the MR scan and behavioral
tasks varied from 7 to 76 days.

Behavioral Tasks

Four tasks were performed outside the scanner for the behavioral
part of the study. Of them, three tasks, namely, component,
configural, and composite, were to assess performance on various
aspects of face processing, and one test, the TEMT, was to
assess performance on face memory. We described each task in
detail below.

Face-Processing Tasks

The face images used in the three face-processing tasks were
drawn from the Taiwanese face database by Shyi et al. (2013).
Twelve individuals (six males and six females) were chosen from
the database, and four of them, comprising two males and two
females, were used as target faces for each of the three tasks.
Posed with neutral expressions, all faces were cropped so that
no hair was visible and facial blemishes were removed. The
size of face images used in the component and configural tasks
were 14.5 cm in length and 11 cm in width, extending a visual
angle of approximately 13.8° x 10.5° at a viewing distance of
approximately 60 cm, and those used in composite task were
16.2 cm in length and 12.4 cm in width, resulting in a visual angle
of about 15.5° x 11.8°.

Each trial of the three face-processing tasks entailed
presentation of a pair of faces on the two sides of a
display screen. The faces were presented with a slight vertical
spatial displacement. For component and configural tasks, the
horizontal distance between two face images was 80 pixels
(4.4 cm), and the vertical distance between the two faces was
91 pixels (5.1 cm); for the composite task, the horizontal distance
between two face images was 60 pixels (3.2 cm), and the
vertical distance between two faces was 91 pixels (5.1 cm).
Upon seeing the face images, participants were told to judge
whether they were the same or different in accordance with
the response criterion for each task. For both the component

and configural tasks, participants judged whether the two faces
were exactly identical; for the composite task, they were to judge
whether or not the top parts of displayed faces were exactly
the same.

For the component task, the pair of faces could be identical
to or different from each other, and when they were not
identical, the faces differed either in terms of eyes or mouths (see
Figure 1A). Three within-participant variables were manipulated
for the component task, including orientation (upright or
inverted), changed component (eyes or mouth), and identity
(same or different). For the configural task, the face images
were again either identical to or different from each other,
and when they were different, they differed in terms of the
configuration (i.e., distances) between the two eyes and between
the nose and mouth. Specifically, as illustrated in Figure 1B,
the distances between the two eyes and between the nose
and mouth were either contracted or expanded by 8% in
comparison to the original intact images. As for the component
task, faces for the configural task were presented either upright
or inverted. Note that the design and manipulation in both
the component and configural tasks allowed us to measure
participants’ performance in terms of hit rate (responded “same”
when the faces were identical) and false alarm rate (responded
“same” when the faces were different), and we applied the
signal-detection theory to convert those measures into d’ for
further analyses.

Finally, for the composite task, we adopted the complete
design proposed by Gauthier and Bukach (2007; see Figure 1C)
to control for response bias associated with the partial design.
Participants’ responses from the various conditions also can
be converted into d' for further analysis. As in the previous
studies that have employed the complete design, we expected
to find congruency effect (i.e., the difference in d between
congruent and incongruent trials) in the aligned condition to be
greater than that in the incongruent condition (i.e., an interaction
between congruency and alignment; Richler et al, 2011;
Ross et al., 2014).

In each trial of the three face-processing tasks, a fixation point
(“47) of 0.43° x 0.28° was first presented for 500 ms, followed
by the simultaneous presentation of two faces on upper left and
lower right side (or upper right and lower left) of the display
screen. Participants were asked to press either the [Z] key or
[/] key on a standard keyboard to indicate whether those two
faces were the same or different, and the key assignment was
counterbalanced across participants. The face images remained
on the screen until the participants responded. After an inter-
trial interval of 500 ms, the fixation reappeared, signaling the
start of the next trial. For both the component and configural
tasks, there were altogether 96 trials, representing a combination
of target faces, orientation, identity, location, and alteration. For
the composite task, there were altogether 128 trials, representing
a combination of target faces, congruency, identity, alignment,
and location.

Taiwanese Face Memory Test
Administration of the TEMT (Cheng Y. -H. et al., 2016) was
separated into three stages (see Figure 2). In Stage 1, participants
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A Component Task

B Configural Task

Original Eye change [ Mouth change ] | Original g Outward
B . - . .
- . B . .
C  Composite Task
Same Different

congruent

Incongruent

congruent Incongruent

Aligned

Misaligned

FIGURE 1 | Face stimuli and design for the three face-processing tasks: (A) component task, (B) configural task, and (C) composite task (adapted from

Cheng Y. -H. et al., 2016, with permission).

studied three images from the same model in the frontal, left
1/3 profile, and right 1/3 profile views, respectively, and each
was sequentially presented for 3 s. After studying the three
images, three test images were presented and participants were
asked to pick out the individual whom they just saw. Each
test trial consisted of three face images of the same view and
illumination, one of which was identical to the studied images.
Two more test items followed, and each consisted of one of
the studied faces along with two distractor faces. In Stage 1,
participants learned 18 different images of six models (three
males and three females) and tested for 18 times. In Stage 2,
participants were first presented with a review comprising the
frontal images of the six targets for 20 s. Following the review,
participants were presented with 30 three-alternative forced-
choice test items (6 target faces x 5 presentations). All were
novel images in which the lighting, pose, or both varied. In
Stage 3, participants were presented with the review images
again for 20 s. Following that, 24 test items, each comprising
three face images, were presented. These items consisted of
novel images, and four levels of Gaussian noise (15, 30, 45,
and 60%, respectively; Cheng Y. -H. et al., 2016) were added
to the face images (6 target faces x 4 levels). All the face
stimuli of TFMT were drawn from the database created by
Shyi et al. (2013).

Neuroimaging Tasks

Stimulus Materials

For the neuroimaging part of the study, we employed two
sets of stimuli, the dynamic stimuli for localizing face-selective
regions of interest (ROIs) and static stimuli for examining:
(a) how face-selective regions would process face stimuli in
contrast to non-face stimuli; and (b) whether and how those
differences in brain activities can be used to predict performance
on the behavioral tasks of face processing and face memory. As
illustrated in Figure 3, the static neutral and expressive static face
images were selected from Shyi et al. (2013), and the dynamic
videos portraying dynamic facial expressions were selected from
Huang et al. (2014). Each video depicted a silent rendition of
uttering an emotional expressive sentence, and there were two
kinds of face images, the neutral and expressive, both of which
were selected from Shyi et al. (2013). The images of objects were
gathered from the internet.

Experimental Design and Procedure

In the one-back working memory (WM) task, participants viewed
static images of faces and objects in separate blocks, and were
to press a response button whenever the currently displayed
image was identical to the immediately preceding one (see
Figure 4). For the one-back WM task, 18 image blocks and
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FIGURE 2 | The three-staged procedure of the Taiwanese Face Memory Test (TFMT; adapted from Cheng Y. -H. et al., 2016, with permission; see text for details).
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Static objects Dynamic objects

FIGURE 3 | Examples of neutral and expressive face stimuli, which were selected from the face database by Shyi et al. (2013) and dynamic face videos selected
from Huang et al. (2014). The static object images and dynamic object videos, similar to those used by Fox et al. (2009), were collected over the internet.
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the one-back working memory task in the present study (see text for details).

FIGURE 4 | Three categories of static stimuli, namely neutral faces (the left stream), expressive (the middle stream) faces, and objects (right stream), were used for

Same

Objects Stimuli
| one-back

‘ ’ Same

Neutral faces
one-back

17 fixation blocks were alternated. The task began and ended
with a fixation block, where only a fixation point was presented.
Each block lasted for 12 s. Six blocks of stimuli from the three
categories, namely, objects, neutral faces, and expressive faces,
were presented in a counterbalanced order, resulting in a total
of 18 blocks. Each block consisted of 15 images, 12 novel and
three repeated ones. Facial images were cropped to conform to a
frame of 400 x 400 pixels and presented on the screen for 500 ms
with an inter-stimulus interval (ISI) of 300 ms. It took 444 s for
participants to complete the one-back WM task.

In order to effectively localize the face-selective brain regions
of FFA, OFA, STS, and vATL, participants were asked to
undertake the dynamic face localizer task (Fox et al., 2009)
after completing the one-back WM task, where static face and
object stimuli were used. During dynamic localizers, participants
viewed short videos comprising objects and faces in separate
blocks. The face videos (each video portrayed an emotional facial
expression, including angry, disgusted, fearful, happy, neutral,
sad, and surprised) unfolded over time without sound tracks. The
videos of objects were similar to those used by Fox et al. (2009)
and were collected from the internet. For dynamic localizers,
participants also performed a one-back task. Sixteen video blocks
and 15 fixation blocks were alternated. Eight video blocks of faces
and objects were presented in a counterbalanced order, 16 in
total. Each video block consisted of six videos, five novel and
one repeated. All videos were presented centrally for 1,800 ms
with an ISI of 200 ms. Like the stationary one-back WM task,
the dynamic localizer also began and ended with a fixation block.
Dynamic stimuli of each block were resized to a frame of about
400 x 400 pixels. It took a total of 396 s for participants to
complete the dynamic localizer tasks.

Image Acquisition
A General Electric 3T scanner with an 8-channel phase-array
head coil at the Mind Research and Imaging Center of National

Cheng-Kung University was used to acquire brain images.
Functional images were acquired in the form of T2*-weighted
transverse echo planar images (EPI) comprising 40 axial slices,
with a repetition time (TR) of 2 s, an echo time (TE) of
33 ms, a FOV of 192 x 192 mm?, an in-plane resolution
of 3 x 3 mm, a slice thickness of 3 mm, and a voxel
size of 3 x 3 x 3 mm?>. Slices were oriented parallel to
each participant’s anterior and posterior commissure (AC-PC)
line, covering the whole brain. In addition, a high-resolution
T1-weighted 3D-SPGR anatomical scan was acquired for the
purpose of co-registration between structural and functional
images and for anatomically localizing brain regions for
functional activations.

Data Analyses

Functional images were pre-processed and analyzed using
SPM8 (Wellcome Department of Cognitive Neurology, London,
UK). Pre-processing entailed slice timing correction (only for
the recognition stage of fMRI images), spatial realignment,
co-registration of binding EPI and T1 images, normalization
to the Montreal Neurological Institute (MNI) template, and
image smoothing with 6-mm full width-half maximum (FWHM)
Gaussian kernel.

To localize the face-selective brain regions, we first analyzed
fMRI data from dynamic localizers. Using the subtraction
analysis within SPM8, we assessed average activations across
participants by carrying out a two-step analysis. For the first-
level individual analysis, each participant’s data were analyzed
with a fixed-effect model to create contrasts between conditions
of interest. For the second-level group analysis, we carried out
one-sampled ¢ tests on the results acquired from the contrasts
of fixed-effect analysis of individual participants. Statistical maps
of dynamic face localizers for group analyses were thresholded
at p < 0.05 (FDR corrected). A mask of 5-voxel radius was
applied to all statistical maps. The SPM yielded results in
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localizers.

FIGURE 5 | The regions of interest (ROls) of the core system for face processing [i.e., occipital face area (OFA), fusiform face area (FFA), superior temporal sulcus
(STS), and ventral anterior temporal lobe (VATL)] on both hemispheres and their coordinates (see Fox et al., 2009; Haxby et al., 2014) derived from dynamic face

the stereotactic space of the MNI brain template, as shown
in Figure 5.

For region-of-interest (ROI) analyses, we defined ROIs based
on the brain regions from the dynamic face localizers, and from
these ROI areas, we extracted BOLD percent signal change from
the one-back processing task using the MarsBar procedure (Brett
et al., 2002 )!. The percent signal changes in the expressive faces,
neutral faces, and objects were calculated, as were correlations
between the difference in the activation of ROIs and behavioral
performances on the three face-processing tasks and the TFMT.
A p-value of less than 0.05 was considered significant.

RESULTS AND DISCUSSION

As shown in Figures 6A-D, for the component task, the
difference in performance between upright (M = 3.53) and
inverted (M = 2.95) faces was significance, F43 = 6.911,
nﬁ = 0.140, p < 0.05, indicating the presence of an inversion
effect in the component task (Figure 6A). Likewise, for the
configural task, the difference in participants’ performances
between upright (M = 3.68) and inverted (M = 2.68) faces task

Uhttp://marsbar.sourceforge.net/

also reached significance, f(43) = 4.396, p < 0.001, indicating the
presence of the inversion effect in the configural task (Figure 6B).
For the composite task, both the main effect of congruency and
its interaction with alignment were significant, F(; 43) = 14.334,
my = 0250, p < 0.001, and Fg4) = 8095 75 = 0.158,
p < 0.01, respectively. However, the main effect of alignment
was not, F(43) = 2.076, 77123 = 0.046, p = 0.157. Participants
performed significantly better with congruent (M = 5.51) than
with incongruent (M = 3.97) trials in the aligned condition,
tu3) = 5.314, p < 0.001, but they performed equally well with
the congruent (M = 5.07) and incongruent (M = 4.95) trials in
the misaligned condition, t < 1 (Figure 6C). Finally, similar to
those reported by Cheng Y. -H. et al. (2016), participants’ mean
accuracy of identifying the same face images in Stage 1 (M = 0.97)
on the TFMT was much higher than that for recognizing faces for
both Stages 2 (M = 0.73) and 3 (M = 0.71), t(43) = 8.56, p < 0.001,
tuz) = 9.34, p < 0.001, and ty3) = 9.77, p < 0.001, respectively
(Figure 6D). Furthermore, like Cheng Y. -H. et al. (2016), there
was no significant difference between performances on Stages
2and 3, 43y = 1.11, p > 0.27.

In order to gain further insight as to how face recognition
performance on TFMT may be accounted for by those on
face-processing tasks, we decided to adopt the regression
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FIGURE 6 | (A) The mean d’ (and standard error) for the component processing task, (B) the mean d’ (and standard error) for the configural processing task,
(C) the mean d’ (and standard error) for the composite processing task, and (D) the mean accuracy (and standard error) of the three stages on TFMT (N = 44;

approach to individual differences suggested by DeGutis et al.
(2013) in their recent study. Following DeGutis et al. (2013),
we first applied both subtraction and regression analyses to
the component task, where we treated upright trials as the
condition of interest comprising mostly elements of holistic
processing (HP), and inverted trials as the control condition,
which presumably reflect non-HP measurements. With the
subtraction approach, as illustrated in Figure 7A, we found
that the difference scores correlated negatively with the
inverted trials (p < 0.001), and positively with the upright
trials (p < 0.05). In contrast, with the regression approach
(Figure 7B), residuals correlated strongly with the upright
trials (p < 0.0001), but did not at all correlate with the
inverted trials (p = 1), indicating that residuals may represent
a purer estimate of HP element in the component task
(Cheng Y. -H. et al, 2016). We applied the same regression
approach to the configural task (Figure 7C) and composite task
(Figure 7D) as well, and found results replicating those reported
by Cheng Y. -H. et al. (2016).

We then examined the relationship between the three
face-processing tasks and the TEMT to see the extent to which
performance on the latter can be predicted by those on the former
(see DeGutis et al., 2013; Cheng Y. -H. et al., 2016). As shown in
Table 1, only the HP measurement derived from the regression
approach (ie., unstandardized residuals) for the component
tasks correlated significantly with Stage 2 performances on
TFMT, whereas residue-based HP measurements for neither the
configural task nor the composite task correlated significantly
with TFMT, ps > 0.05.

Finally, we examined the relationship between the BOLD
signal change of ROIs and behavioral performances on the three
face-processing tasks and TFMT. As shown in the Table 2,
results revealed that participants with greater BOLD signals in
the right FFA (positively correlated) and the left ATL (negatively
correlated) demonstrated better performance on the holistic
processing on component processing task, but not on the
configural task or on the composite task. By correlating the
face recognition ability from the three stages of TEMT with the
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participants’ BOLD signal change under a different condition
during one-back processing tasks, we found that only the right
ATL (expressive face > neutral face) was significantly negatively
correlated with the performances on Stages 2 and 3 of TEMT.

INTERIM SUMMARY

In the present study, we largely replicated the findings recently
reported by Cheng Y. -H. et al. (2016) regarding the behavioral
tasks on face processing and face memory insofar as young
participants are concerned. For example, an inversion effect
was found for both the component and configural tasks, so
was the interaction between congruency and alignment, which
strongly implicates holistic processing when the top and bottom
parts of a face were aligned than when they were misaligned.
The results on TMFT also closely replicated those reported
by Cheng Y. -H. et al. (2016): young participants performed
almost flawlessly in Stage 1, where performance largely depends
on the encoding and remembering specific face images. The
performance in Stage 2 was about 20% inferior to that in Stage 1,
indicating the challenge and difficulty when newly acquainted
faces undertake alterations in illumination, pose, or both. The

TABLE 1 | The correlations between performances on the three stages (1, 2,
and 3) of the TFMT and holistic processing measures of three face-processing
tasks derived regression residues (N = 44).

TFMT
Task (residual) Stage 1 Stage 2 Stage 3
Component 0.132 0.472** 0.289
Configural —-0.017 0.148 0.050
Composite —0.032 0.051 0.128
**p < 0.01.

addition of visual noise in Stage 3, however, failed to further
exacerbate the performance observed in Stage 2, implicating that
the TEMT may be shortened in the future to include only the first
two stages to achieve more efficient assessment of face memory
(Cheng Y. -H. et al., 2016).

On the other hand, the brain activities at the core-system
face-processing areas, including OFA, FFA, pSTS/fSTS, and
vATL in both hemispheres, appeared to be somewhat limited
in their capacity of predicting behavioral performances. A
number of reasons may be able to explain why that was
the case: First, the fact that we used one-back WM task
with dynamic stimuli for localizing the face-selective ROIs
and static one-back task for assessing brain activities of those
ROIs when engaged in face processing may have inadvertently
reduced the likelihood of predicting behavioral performances
from brain activities. Specifically, the three face-processing tasks
may place minimal demand on working memory because in
each trial of the three tasks, a pair of faces were displayed
simultaneously such that the processing under scrutiny has little
to do with memory. On the other hand, the face memory
test—TFMT—does require working and perhaps even long-term
memory in order to perform the test adequately. Therefore,
it may not be too surprising that the brain activities from
the ROIs showed their predictability primarily in performance
on the TEMT (Stage 2 in particular, see Table 2). Another
possibility is that brain activities of more than the core-system
regions need to be taken into account in order to provide
an adequate prediction of the behavioral performance. That
is, there are aspects of face processing and memory involved
in the behavioral tasks that were not completely captured by
the brain activities of the core-system areas. To evaluate the
latter possibility, we performed multi-voxel pattern analysis
(MVPA; Norman et al, 2006) on brain activities recorded
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TABLE 2 | The correlations between BOLD signal change of face-selective ROIs as a function of contrasts between expressive faces, neutral faces, and objects and
behavioral performance on the face-processing tasks and face-memory test (TFMT).

FFA(E>0) IFFA(E>0) [(FFA(E>F) IFFA(E>F) IpSTS(E>F) IpSTS(E>F) rATL(E>F) IATL(E > F)

Componentgesidual —0.038 0.134 0.192 —0.041 0.019 0.031 —0.064 —0.287
Configuralresiguar 0.012 0.277 0.124 0.099 0.100 0.074 0.136 0.025
Compositeresicual —0.297 —0.020 —0.023 0.072 0.041 —0.073 —0.338* —0.109
TFMTstage1 —0.144 —0.097 0.080 0.017 0.055 0.119 —0.063 0.113
TFMTstage2 —0.030 0.012 —0.099 -0.116 —0.187 —0.058 —0.229 —0.390**
TFMTstages —0.085 0.008 —0.007 —0.054 —0.144 —0.109 -0.182 —0.276

Note: FFA, fusiform face area; pSTSE, posterior superior temporal sulcus; VATL, ventral anterior temporal lobe; E > O, expressive faces minus objects; F > O, neutral face minus
objects; E > F, expressive faces minus neutral faces; *p < 0.05; **p < 0.01.

from a total of 19 ROIs, including the eight ROIs from the larger literature to be face-selective (Haxby and Gobbini,
core-system of face processing that were examined so far and ~ 2007; Duchaine and Yovel, 2015; Freiwald et al, 2016) can
another 11 ROIs from what Haxby and colleagues have dubbed  provide better prediction on performance in face memory test
the extended system related to face processing (Haxby et al.,  (ie., TFMT) is summarized with the flow diagram in Figure 8,
2000; Haxby and Gobbini, 2011). Of note, we only included  and we detailed each step below.

the behavioral results from the TFMT to see whether and how

brain activities of 19 ROIs may provide better predictions on METHOD

face memory.

fMRI Signal Preprocessing and ROI

MVPA OF BRAIN ACTIVITIES IN Selection
PREDICTING PERFORMANCES ON FACE As noted earlier, MRI scanning (structural and functional) was
MEMORY conducted on a 3T scanner at the NCKU, and the functional

scanning via EPI captured one image every 2 s (i.e., TR = 2 s).
Our attempt at MVPA in order to see whether activities To consecutively represent data from entire brain, we performed
in a broader selection of brain regions identified in the temporal interpolation to generate an image sample at 1-s time
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FIGURE 8 | The flow diagram illustrated the steps of multi-voxel pattern analysis (MVPA) in the present study (see details in text).
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TABLE 3 | The list of 19 ROIs that were selected based on past literature and the voxel activations that were used for computation analyses (IFG/OFC, inferior frontal
gyrus/orbitofrontal cortex; ATL, anterior temporal lobe; FFA, fusiform face area; mSTS, medial superior temporal sulcus; OFA, occipital face area; OP junction,

occipital-parietal junction; pSTS, posterior superior temporal sulcus).

Number Hemisphere Label(s) X Y V4 ROI source

01 Right IFG/OFC 36 24 —21 Cheng P. K.-H. et al. (2016)
02 Left Amygdala -21 —6 —-15 Cheng P. K.-H. et al. (2016)
03 Right Amygdala 21 —6 —-15 Cheng P. K.-H. et al. (2016)
04 Left ATL Pole —42 9 —21 Cheng P. K.-H. et al. (2016)
05 Right ATL Pole 33 9 —22 Cheng P. K.-H. et al. (2016)
06 Left Calcarine -10 —-90 10 Chen et al. (2017)

o7 Right Calcarine 10 -84 8 Chen et al. (2017)

08 Left FFA —42 —48 —24 Cheng P. K.-H. et al. (2016)
09 Right FFA 42 —48 —24 Cheng P. K.-H. et al. (2016)
10 Left Hippocampus —-20 -30 -8 Chen et al. (2017)

11 Right Hippocampus 20 —-30 —4 Chen et al. (2017)

12 Left mSTS —60 —24 —6 Cheng P. K.-H. et al. (2016)
13 Right mSTS 60 —21 -6 Cheng P. K.-H. et al. (2016)
14 Left OFA —24 —-93 -9 Cheng P. K.-H. et al. (2016)
15 Right OFA 30 —84 -12 Cheng P. K.-H. et al. (2016)
16 Right OP Junction 46 —68 2 Chen et al. (2017)

17 Right Precuneus 3 —69 33 Cheng P. K.-H. et al. (2016)
18 Left pSTS —66 —36 3 Cheng P. K.-H. et al. (2016)
19 Right pSTS 60 -39 3 Cheng P. K.-H. et al. (2016)

Note: The numerical order was arbitrarily assigned to the selected ROls primarily for the purpose of label ID.

step to handle the varying time length of visual frame within
each stimulus. Interpolation was performed on the fMRI raw
time series both to determine the activation value of voxels
intermediate to the raw scanning data during optimization of the
spatial transformation and to produce the final scanning session
data once an accurate spatial transformation correcting for the
participant was determined.

One concern in analyzing the raw fMRI data was that the level
of signals may be substantially different between voxels due to
the physiological properties of fMRI scanning. This constitutes
a problem when comparing effect size of voxels and is more
serious for analyzing data from multiple participants because
the signal strength may vary substantially at the corresponding
voxels. To achieve better performance and comparison across
voxels, we transformed the fMRI time-series signals by applying
the baseline Z normalization, where the BOLD signal of each
voxel for each time slice was mean-centered by subtracting the
mean signal strength and divided by standard deviation to reduce
signal variations.

In order to select the ROIs encompassing both the core
and extended system of face processing (Haxby and Gobbini,
2011), we first applied the AAL (Anatomical Automatic Labeling;
Tzourio-Mazoyer et al., 2002) masks to split the entire brain
into 90 regions. We then selected 19 regions, listed in Table 3,
that have been identified by the past literature as playing some
roles in the various aspects of face processing and face memory.
The ROIs and their coordinates were based on two previous
studies from our lab using the same dynamic localizers as
in the present study for locating brain areas exhibiting face
selectivity regions (Cheng P. K.-H. et al., 2016; Chen et al., 2017).
Using the MarsBar tool for SPM!, we built each ROI by first
defining the centroid of the sphere with 19 coordinates. With
5 mm as the sphere radius, the total volume for each ROI was
approximately 648 mm?, and each ROI contained a cluster size
of about 81 voxels (2 x 2 x 2 mm?/per voxel) associated with

maximum face selectivity. Table 3 shows the list and numbering
of the 19 ROIs thus selected and used for MVPA in the
present study.

Feature Extraction and Representation

The goal of the MVPA was to examine the extent to which the
brain activities of the 19 ROIs, while participants performed the
tasks involving static faces (neutral and expressive) and static
objects, can be used to predict face memory performance on
the TFMT, where individual participants’ performances were
binary labeled into the above- or below-mean group. To that
end, we first extracted the voxels recorded under each stimulus
type to construct the feature-level representation. Because the
neuroimaging runs of different stimulus types entailed different
lengths of duration and resulted in a varying number of time
series outputted from MRI scanning, we carried out max and
mean pooling over each of three stimulus types as participants’
feature representation under a specific task. The result showed
that the maximum function represented the most activated
voxels, whereas the mean function represented the average
activation response of voxels. We then concatenated the result
of voxels with maximum activation to be the final fMRI feature
representation for each participant.

Forward and Backward Selection (F&B)

Two popular data-driven approaches to model building are
the greedy algorithms of F&B to arrive at the feasible feature
representation, where evaluation of the predictability of a subset
of variables is carried out by either adding or deleting one
variable at a time. In practice, the forward selection begins
with an empty selection of attributes, and in each round, it
would add an unused attribute and test for performance. That
is, select the first variable that yields the highest performance
(e.g., face recognition rate among all attributes). Then, select
the attribute among all unselected attributes one at a time, and
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together, the selected attributes presumably would lead to the
highest performance. The process is repeated until it has selected
enough numbers of attributes, or until the resulted performance
is adequate. Unlike forward selection, the backward elimination
begins with the full set of attributes, and iteratively removes the
least useful attribute, one at each time, until the highest or good
enough performance is achieved.

Feature Selection (FS)

In order to figure out which ROIs contributed more (or less)
to the prediction of behavioral performance in the process of
forward selection and backward selection mentioned above,
the FS method based on ANOVA F-value between features
and labels for classification was applied for each loop in the
forward selection and backward selection (Dash and Liu, 1997).
In our implementation, we consider a range of percentage of
including different numbers of features for purpose of training
our model, in an attempt to achieve the local optimal result
in each loop. We backtracked the brain regions with features
that yielded the local maximum results and counted the number
of times each region was selected. Furthermore, the counts
were normalized by the original feature size of each region to
eliminate the effect from uneven regional data. Subsequently, the
count result in each loop using forward and backward method
was recorded.

SVM Classification

As in many other MVPA studies in the literature, the selected
classifier for training and recognition was a linear-kernel support
vector machine (SVM) with the penalty parameter of C = 1.
We compared the classification accuracies between feature
representations based on three sets of ROIs as input for training,
namely, the set of core-systems ROIs (i.e., the baseline, BL), the
ROIs based on F&B, and those based on FS.

RESULTS AND DISCUSSION

In what follows, we first described the results of feature
extraction, in particular the ROIs chosen based on forward
and backward (F&B) selection as well as FS. We then reported
the results of prediction accuracy based on the binary SVM
classification on the TFMT (i.e., above or below the overall
mean performance), where prediction accuracy was defined
as an unweighted average of hit (correct positive response)
and correct rejection on classifying TEMT performance, with
the evaluation scheme of leaving-one-participant-out cross-
validation. In particular, we highlighted how the prediction
accuracy using SVM varied between the three sets of ROI
selection: core-system baseline (BL), F&B, and FS.

Forward and Backward Selection

While performing the forward selection, it is reasonable to
take into consideration the attributes selected via the backward
selection (Zhang, 2009). When achieved highest recognition
accuracy in forward selection, the selected attributes were
considered as influential ROIs. As illustrated in the top panel
of Figure 9, with forward selection, the unweighted accuracy
in predicting TFMT performance was 84.1% when ROI #14,
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FIGURE 9 | The unweighted classification accuracy on TFMT as a function
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for details). Black-outlined boxes highlighted the selected region-of-interest
(ROI) that were significant.
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TABLE 4 | The prediction accuracy of SVM classification on TFMT performance as a result of three sets of ROl compositions (face recognition ability by applying SVM,
where BL, core-system baseline; F&B, forward and backward selection; FS, feature selection).

TFMT
Feature extraction ROIs Hit CR UA (%)
BL ATL(L), ATL(R), FFA(L), FFA(R), OFA(L), OFA(R), pSTS(L), pSTS(R) 68.0 63.2 65.6
F&B Cal(R), OFA(L), OFA(R) 80.0 68.4 74.2
FS Cal(R), OFA(L), pSTS(L) 88.0 57.8 72.9

Note: ROIs, regions of interest; CR, correct rejection; UA (%), percent unweighted average; ATL, anterior temporal lobe; FFA, fusiform face area; OFA, occipital face area; pSTS,

posterior superior temporal sulcus; Cal, calcarine; R, right hemisphere; L, left hemisphere.

#7, #16, and #15 were consecutively selected. Analogously, the
backward selection of ROI #15, #7, #10, #19, #18, #8, #1, and
#14 yielded 85.5% of accuracy after iteratively removing least
useful brain regions. Across the two selection methods, the more
robust ROIs were Calcarine(R; #7), OFA(L; #14), and OFA(R;
#15; see Table 3), suggesting that the F&B scheme was more likely
to pick out regions that are mostly involved in basic aspects of
face processing.

Feature Selection

The percentiles of selected ROIs using ANOVA FS with TEMT
are presented in Figure 10. We showed the selection percentile
of 19 ROIs after recognizing target with FS, where the x-axis
denotes the ROIs and the y-axis denotes the percentile for
the selected region. The purpose of FS was to extract more
effective ROIs, which could yield better performance with fewer
numbers of features from the ROIs. Therefore, after taking into
account BOLD activations of all 19 ROIs, we checked the result
and set a percentile threshold of 0.3, and found that features
from ROI #7, #14, and #18, namely, Calcarine(R), OFA(L),
and pSTS(R), contributed more to the TEMT performance (see
Figure 10).

SVM Classification Accuracy

The prediction accuracy based on SVM classification between
the three sets of ROI and feature extraction is shown in Table 4,
which indicates that the average performance was best based on
the combined result of F&B (74.2%), followed by FS (74.2%),
and worst by the core-system baseline (BL; 65.6%). Taken
together, these results suggest that basic and structural aspects
of face processing can make substantial contribution to the
performance on TEMT.

GENERAL DISCUSSION

For more than four decades ever since Yin (1969) made his
pioneering observation on the unique properties associated
with face processing (i.e., the inversion effect), researchers have
devised a set of well-tested tasks, including the component task,
configural task, and composite tasks, for examining and tapping
into various aspects of face processing (Rossion, 2008, 2009,
2013). On the other hand, over the past two decades, those who
are intrigued by the neural and brain mechanisms underlying
face processing have also proposed and investigated a complex
network involving numerous brain regions for extracting and
reading a variety of information from the human face (Haxby

et al., 2000; Haxby and Gobbini, 2011; Freiwald et al., 2016).
However, there appears to be an empirical gap between the
scrutiny using relatively sophisticated behavioral tasks and the
brain imaging research. The present study attempted to fill
that gap by examining the extent to which brain activities of
face-selective regions can predict performance in face processing
and face memory, especially when non-Caucasian EA faces
were involved.

Using the ROI approach, we first identified a set of
brain regions that are deemed highly face-selective, including
OFA, FFA, pSTS/fSTS, and vATL, and then correlated their
activities with participants’ behavioral performances on the three
face-processing tasks and the face memory test (i.e., TFMT).
We found evidence indicating limited predictability from brain
activities to behavioral performances. We consider a number of
reasons that may account for the findings.

First, we used the one-back WM task, which has been a
common practice in the extant literature on brain imaging, to
assess and identify the core-system ROIs for face processing. The
one-back task essentially requires the participants to maintain
a memory trace of the currently displayed face image for a
short period of time so that it can be retrieved and compared
with the subsequently displayed face image. This demand on
working memory in the one-back task, while useful in localizing
face-selective brain regions, may have inadvertently obscured
the predictability of activities from the selected brain regions on
the performance of face-processing task. The main difference
was that, for each of the behavioral tasks, we adopted a
version where a pair of faces were displayed on each trial
and participants had to engage in the processing according to
the task demand. The fact that the face stimuli of concern
were always presented simultaneously precluded or at least
minimized the involvement of working memory, which was
actually accorded well with the original intent of task design
for having a pure demand on perceptual, rather than memorial,
processing of faces.

A second possible reason bears on the possibilities of cultural
differences in face processing in that most of the face stimuli
that have been used so far for developing face-processing tasks
involve the use of Caucasian faces. Although it is true that
non-Caucasian faces (and databases) have been devised and
used broadly in the literature, it has yet to reach systematic
conclusions for comparing and contrasting the similarities and
differences in processing faces of different ethnic and cultural
origins. In fact, inquiry into the brain mechanisms may actually
present a worthy opportunity for looking into such similarities
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as well as differences between participants of different cultural
backgrounds. For example, it may well be possible that the
core and extended systems that have been amply demonstrated
with Caucasian participants using Caucasian faces may actually
operate differently for, say, EA participants when they were
processing EA faces, or an entirely different network may be
involved in processing and extracting various information from
a face. The results of our MVPA attempt appear to provide
some support to the latter possibility in that the brain regions
that were more viable in predicting performance in memorizing
EA faces were those that appear to be involved in more basic
aspects of structural processing of a face, rather than the more
invariant aspects of face processing that have been demonstrated
and argued for using Caucasian faces (Collins and Olson, 2014;
Collins et al., 2016).

An intriguing, though somewhat remote, possibility that
culture can influence face processing may involve the specific
language, in particular the written language, developed and
cultivated by people with shared cultural experiences. There
has been ample evidence suggesting that face processing and
word recognition may employ the same brain region of
fusiform gyrus even though the functional organization for them
are differentially weighted across the two hemispheres. More
specifically, the fusiform area in the right hemisphere is relatively
tuned for processing faces, whereas that in the left hemisphere
is more calibrated for word recognition (for a critical review see
Behrmann and Plaut, 2020).

The re-purposed use of evolutionally older brain regions
(e.g., fusiform gyrus for face processing) to meet the
requirements that arose from the ontogenesis of relatively
new or novel cognitive functions (e.g., fusiform gyrus for word
recognition) has been argued by a number of researchers
from a variety of perspectives, such as neural recycling
(Dehaene and Cohen, 2007), neural reuse (Anderson, 2010),
language as shaped by the brain (Christiansen and Chater,
2016), and neuroconstructivism (Karmiloff-Smith, 2009).
Most recently, Hernandez et al. (2019) have proposed a
framework, called neurocomputational emergentism (or
neuroemgentism for short) as a way to synthesize the existing
approaches where combination of smaller elements can
lead to a greater whole via nonlinear dynamic trajectories
of development. While neuroemergentism is interesting
as an explanatory framework in its present form, further
research will be needed to attest its potential as a predictive
framework (Marian and Hayakawa, 2019). We consider
future research in the effect of cultural difference on face
processing would match this expectation. For instance, how
people cognitively nurtured in a predominantly logograph-
based language (e.g., traditional Chinese) may employ brain
mechanisms differently to process and remember faces than
those primarily nurtured in an alphabet-based language
should provide help validating the essential conjectures
of neuroemergentism.

Finally, the possibility of hometown population density and
gender differences can yet be another avenue whereby culture
may exert is influence on face processing and memory. A

recent study by Sunday et al. (2019) showed that hometown
population density failed to predict participants’ performances
on measures of face recognition ability regardless whether
they included a learning component. Even so, they did find
a pattern of gender differences modulated by hometown
population density. The latter finding suggests that if the
experience with faces in one’s hometown environment affect
face recognition ability, the quality of such experiences rather
than its sheer quantity would be crucial because men and
women are likely to have different experiences with faces even
when they grew up in the same environment. This line of
reasoning can be extended to investigating how people with
different cultural norm and background may process faces
in disparate manners as those of different gender do. In
conclusion, these and other possible reasons for explaining the
discrepancy between findings from the extant literature and
the present study call for future inquiry along the possibility
of cultural influences on face processing and the associated
brain mechanisms.
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