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Emotional decoding and automatic identification of major depressive disorder (MDD) are

helpful for the timely diagnosis of the disease. Electroencephalography (EEG) is sensitive

to changes in the functional state of the human brain, showing its potential to help doctors

diagnose MDD. In this paper, an approach for identifying MDD by fusing interhemispheric

asymmetry and cross-correlation with EEG signals is proposed and tested on 32 subjects

[16 patients with MDD and 16 healthy controls (HCs)]. First, the structural features

and connectivity features of the θ-, α-, and β-frequency bands are extracted on the

preprocessed and segmented EEG signals. Second, the structural feature matrix of the

θ-, α-, and β-frequency bands are added to and subtracted from the connectivity feature

matrix to obtain mixed features. Finally, the structural features, connectivity features,

and the mixed features are fed to three classifiers to select suitable features for the

classification, and it is found that our mode achieves the best classification results using

the mixed features. The results are also compared with those from some state-of-the-art

methods, and we achieved an accuracy of 94.13%, a sensitivity of 95.74%, a specificity

of 93.52%, and an F1-score (f1) of 95.62% on the data from Beijing Anding Hospital,

Capital Medical University. The study could be generalized to develop a system that may

be helpful in clinical purposes.

Keywords: EEG, major depressive disorder (MDD), interhemispheric asymmetry, cross correlation, feature

INTRODUCTION

Major depressive disorder (MDD) is amajormental disorder and is characterized by loss of interest,
poor concentration, and even suicidal thoughts (Acharya et al., 2018).

It has been reported that more than 264 million people worldwide suffer from depression,
which heavily impacts quality of life (World Health Organization, 2020). An accurate diagnosis
of MDD is of great importance for early intervention and effective treatment. Traditional diagnosis
of MDD mainly depends on subjective evaluation of symptom intensity using interview sessions
and psychiatric scales. These methods are useful but time consuming and sometimes may lead
to misdiagnoses due to human and environmental factors. Thus, it is crucial to develop objective
approaches to help clinicians diagnose MDDmore effectively.
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Electroencephalography (EEG) is a noninvasive technique
with high temporal resolution; this technique is sensitive to
changes in the functional state of the human brain (Schmidt et al.,
2013). Resting-state EEG (rsEEG) reveals brain network activity
and can be applied to neurological evaluations (Tóth et al., 2014).
EEG signals can be viewed as a group of multivariate time series,
and extracting features is essential to tracking changes in EEG
signals (Ting et al., 2008). Studies of depression have found that
depressed patients show significant obstacles in interpreting fear,
anger, happiness, surprise, and sadness (Filomena et al., 2016).
Depressed patients are different from healthy subjects in the
decoding of negative emotions. In a study, it was found that
electroconvulsive therapy (ECT) could modulate the functional
connectivity of the left angular gyrus in patients with depression
(Wei et al., 2018). From the performance and treatment of
depression, it can be concluded that there may be differences
in brain structure between patients with depression and healthy
subjects. Various studies indicate that interhemispheric frontal
EEG α asymmetry is considered a key marker of structural
alteration of the human brain in MDD (Allen et al., 2004; Allen
and Reznik, 2015; Cantisani et al., 2015; Mumtaz et al., 2017a).
Except for the α frequency band, activity in other bands and
brain regions may also be associated with a disordered brain
state caused by MDD, and EEG signals confounded with noises
also influence the identification of specific signals. It has also
been investigated whether brain connectivity is altered in MDD
patients (Iseger et al., 2017). Therefore, connectivity should
be taken into consideration in the recognition of special EEG
signals. In real EEG data classification tasks, extracting reliable
EEG features is sometimes challenging, and EEG signals in
depression have both structural (Michalopoulos and Bourbakis,
2015) and connectivity features. Therefore, we propose a
mixture of structural features and connectivity features for
MDD classification; that is, we extract features from different
viewpoints and combine them together for MDD classification.

In recent years, as the main type of artificial intelligence,
deep learning (DL) has been widely used for the classification
and prediction of patterns in EEG signals. DL methods can
extract many abstract features from a large set of training
data without human supervision. In this paper, we utilize the
K-nearest neighbor (KNN) (Dasarathy, 1997), support vector
machine (SVM) (Cortes, 1995) and convolutional neural network
(CNN) algorithms to verify the effectiveness of the extracted
features for the classification of EEG signals for patients with
MDD and healthy controls (HCs).

In the literature, various features have been extracted from
EEG signals and have shown the importance of MDD diagnosis.
Mantri et al. (2015) reported a classification accuracy of 84%
based on the power spectrum, involving 13 patients with
depression and 12 HCs. In 2017, Mumtaz et al. (2017b) extracted
features using wavelet transform to achieve an accuracy of 87.5%.
Acharya et al. (2018) attained a high accuracy of 94% from the
left hemisphere and 96% from the right hemisphere. Despite all
of these research findings, the clinical applications of structural
features and connectivity features remain largely unclear.

In this paper, two types of features, including the
interhemispheric asymmetry value and cross-correlation

TABLE 1 | Demographic and clinical information.

Factors MDD HC

Age (years) 31.0 ± 1.0 26.1 ± 5.4

Sex (male/female) 7/9 7/9

Education (years) 12.5 ± 1.0 13.0 ± 2.6

HAMD 19.3 ± 8.9 -

value, are extracted from segmented EEG epochs, and the
extracted structural and connectivity changes are combined
using addition and subtraction rules for the classification.
Several classifiers are introduced to verify the effectiveness of the
extracted features and achieve emotion decoding.

The paper is organized as follows: in section materials and
methods, the dataset is described, preprocessing is performed,
and the main framework of the proposed approach is given. In
section results, the experimental results are given; the conclusion
and discussion are presented in section discussion and section
conclusion, respectively.

MATERIALS AND METHODS

Participants and Criteria
In this study, experimental data were acquired from 32 subjects
(16 patients with MDD and 16 HCs) recruited from Beijing
Anding Hospital, Capital Medical University. The experiment
was approved by the Ethics Committee of Beijing Anding
Hospital, Capital Medical University. All the participants signed
consent forms for participation and were fully informed of the
experimental and data acquisition procedures. The inclusion and
exclusion criteria are based on the symptoms of depression as
mentioned in the section in the Diagnostic and Statistical Manual
of Mental Disorders (DSM-IV) on depression (Hu, 2003). MDD
participants with psychotic symptoms, pregnant patients, people
with alcoholism and patients with epilepsy were excluded. The
HCs were screened for possible mental or physical illness and
were found to be disease free.

Independent samples t-test was used tomeasure the difference
in demographic and neuropsychological assessments between
the MDD and HC groups; the analysis was performed in SPSS
20.0 (IBM SPSS, Inc., Armonk, NY, USA). The significance level
was set to p < 0.05. The results are shown in Table 1. In the
descriptive analysis of the demographics, the two groups are
matched in age, sex, and education level.

Recording and Preprocessing of EEG
Signals
The rsEEG signal recordings were performed in Beijing Anding
Hospital, Capital Medical University. During the EEG recording
period, all the subjects sat in a comfortable armchair, were relaxed
and stayed awake for about 3min in a quiet, dim room, with
room temperature maintained at 23 ± 2◦C. The EEG headset
used to collect the data is shown in Figure 1.

The 3-min rsEEG data were recorded from 64-channel
brain products with the averaged mastoids (M1 and M2) as
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FIGURE 1 | The EEG headset used to collect the data.

FIGURE 2 | The distribution of the electrodes in the acquisition system.

the reference electrodes. The channel location is shown in
Figure 2. The EEG data were collected with electrode impedances
below 10 k�.

Framework
The MDD EEG analysis framework is shown in Figure 3, and
it mainly contains four parts: (1) EEG signal preprocessing and
segmentation; (2) feature extraction; (3) construction of the
feature matrix; and (4) classification.

EEG Signal Preprocessing and Segmentation
To comprehensively analyze the changes in patients with MDD,
28 pairs of electrodes from five brain regions (the frontal region,

temporal region, central region, parietal region and occipital
region) and three frequency bands [the θ-frequency band (4–
8Hz), the α-frequency band (8–13Hz), and the β-frequency band
(13–40Hz)] were used to conduct experiments to explore the
changes in interhemispheric asymmetry in MDD patients.

In this study, the recorded EEG data have a high temporal
sensitivity and are extremely susceptible to external interference
during collection. For example, eye blinks, movements and
muscular activates (e.g., the heart beats) could cause EEG
artifacts, and the EEG data with these artifacts may not truly
represent the underlying brain activities. Hence, removing
artifacts is an essential preprocessing step for further data
analysis.We used a finite impulse response (FIR) filter to filter out
unnecessary signals, and frequencies of 0.5–47Hz remained for
the analysis. Then, the independent component analysis (ICA)
algorithm in EEGLAB was applied to remove ocular artifacts
from the raw EEG data (Delorme and Makeig, 2004).

EEG signals are time-varying and nonstationary signals. There
are different frequency components at different times and in
different states. As machine learning techniques require a large
number of training sets, we divided each channel in the EEG
data into small, non-overlapping segments with durations of 1s,
2s, and 3s. Thus, we have a large number of samples to avoid
underfitting. The sample information is given in Table 2. The
average EEG recording time for all subjects is 3min; however,
this time was not the same for all the patients, so the number
of epochs in the MDD and HC groups are slightly different.
Three different frequency bands of EEG data, θ (4–8Hz), α (8–
13Hz), and β (13–40Hz), are extracted from the segmented EEG
signals using a fast Fourier transform (FFT), and the number
of FFT points is set to 1,024. Welch’s method is applied to
calculate the power spectrum of EEG bands. Welch’s method
consists of splitting the time series signal into epochs, computing
a modified periodogram for each epoch, and then averaging the
power spectrum density estimates (Alkan and Kiymik, 2007).

Feature Extraction
Two EEG features, namely, the interhemispheric asymmetry
and cross-correlation, are extracted. Then, the two features are
combined in two ways.

Interhemispheric asymmetry
The interhemispheric asymmetry is computed by the power
value of the electrode in the left and right brain regions. The
interhemispheric EEG asymmetry is shown in Equation (1):

P = ln(P2)− ln(P1) (1)

P denotes the interhemispheric asymmetry value. P2 is the power
value of one electrode in the left brain region, P1 is the power
value of the electrode in the right brain region, ln (P2) indicates
the absolute power of the left brain region, and ln (P1) is the
absolute power of the right brain region.
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FIGURE 3 | MDD EEG analysis framework. (A) EEG signal preprocessing and segmentation; (B) Feature extraction; (C) Construction of the feature matrix;

(D) Classification.

TABLE 2 | Basic information on the samples.

Time window

size (s)

1 2 3

Sample label MDD HC MDD HC MDD HC

Number of

samples

20,143 16,708 10,068 8,349 5,031 4,172

Cross-correlation
The formula for calculating the correlation coefficient of the two
symmetric electrodes X(s) and Y(t) is:

R(s, t) = E(X(s) ∗Y(t)) (2)

where ∗ indicates the convolution of the two sequences. The
correlation coefficient is normalized by:

R =
R̂−min(R)

max(R)−min(R)
(3)

The range of R is from 0 to 1. The larger the value of
the correlation is, the greater the correlation between the
two electrodes.

Feature mixing
The features are extracted and constructed into data matrices.
To avoid information loss for a single feature and to improve

the classification accuracy, the EEG features are combined. Two
ways of combining features are attempted to provide a better
presentation of human brain state changes in MDD. To remedy
the information deficiency of single features, the two single
features (the feature matrix) are added together using formula
(4). To reduce the amount of redundant information, the two
types of features are combined using formula (5).

MIX1 =
k1

k1 + k2
∗ F1 +

k2

k1 + k2
∗ F2 (4)

MIX2 =
k1

k1 + k2
∗ F1 −

k2

k1 + k2
∗ F2 (5)

where k1 and k2 are the ingredient coefficients of the two features
and their range is from 0 to 1; both k1 and k2 are set to 0.5. F1
denotes the interhemispheric asymmetry matrix, and F2 denotes
the cross-correlation matrix. MIX1 is an index indicating the
integrated brain state of interhemispheric asymmetry and cross-
correlation. MIX2 is an index indicating the difference in the
brain state of interhemispheric asymmetry and cross-correlation.

Construction of the Feature Matrix
Three feature matrices are constructed to feed into the classifiers:
two are single-feature matrices, and the third is the mixed-
feature matrix.

The single-feature matrix contains three layers: the first
layer is α interhemispheric asymmetry (or cross-correlation),
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the second layer is β interhemispheric asymmetry (or cross-
correlation) and the last layer is θ interhemispheric asymmetry
(or cross-correlation).

The mixed-feature matrix contains six layers: the first two
layers are the MIX1 and MIX2 feature matrices in the α band,
the middle two layers are the MIX1 and MIX2 feature matrices
in the β band, and the last two layers are the MIX1 and MIX2
feature matrices in the θ-frequency band. Thus, the size of the
single-feature input matrix is 7 × 4 × 3, while the size of
the mixed-feature input matrix is 7 × 4 × 6. The structure of
the single-feature matrix and mixed feature matrix are shown
in Figure 4.

Classification

Classifier
Selecting a suitable classifier is important forMDD identification,
and the KNN, SVM, and CNN algorithms are used to verify the
effectiveness of the extracted features.

The KNN algorithm, which was proposed by Dasarathy
(Dasarathy, 1997) in 1991, is a basic machine learning method
used for classification and regression. It is adept at handling noise
and large datasets. It performs classifications by a majority voting
of the neighbors, with the case being assigned to the class most
common among its K-nearest neighbors measured by a distance
function. The algorithm involves three main factors: a training
set, distance or similarity measure, and the size parameter K.
Several distance metrics are utilized to define the distance or
similarity in the KNN technique. To avoid the matching problem
between objects, the Euclidean distance is used. The KNN
algorithm has been widely used in EEG signal detection fields,
such as epilepsy (Acharya et al., 2012), anxiety disorder (Wang
et al., 2013), and depression (Rowley and Kanade, 1998). In this
study, K is set to 7 to ensure a better classification accuracy.

The SVM algorithm, which was proposed by Cortes and
Vapnik (Cortes, 1995) in 1995, is a supervised machine learning
method used in classification and regression. The SVM algorithm
can discriminate non-linearly separable data by mapping them to
higher dimension space by using a kernel function to make the

data more separable. We chose a poly kernel function; the degree
of the polynomial is set to 3, gamma is set to 2, and the maximum
number of iterations is set to 30,000.

CNN is a kind of feedforward neural network with a deep
structure and convolutional computations, and it is one of the
representation algorithms of deep learning. The CNN used in
this study mainly contains three layers: a convolutional layer,
a pooling layer and a fully connected layer. The structure of
the CNN is shown in Figure 5. As shown in the figure, in the
convolutional layer, two 2 × 2 × 3 convolution kernels are
selected. The outputs of the convolutional layers are two 7 × 4
× 2 feature maps, and they are the input of the pooling layer. We
chose max pooling, and the step size is set to 1. After reshaping,
the output matrix is resized 1 × 1 × 56, and it is input into
the fully connected layer. To overcome overfitting in the fully
connected layer, the dropout method is applied to each layer, and
50% of the training results are retained.

Evaluation of the classification performance
To evaluate the performance of different classifiers with different
EEG features, the following statistical measures are utilized.

(1) Accuracy: The accuracy is defined as the percentage of
correctly classified EEG segments of MDD patients and HCs,
and it is defined mathematically in formula (6). False positives
(FP) and false negatives (FN) are misclassifications of MDD and
HC, respectively.

Accuracy =
TP + TN

TP + FN + TN + FP
(6)

where TP indicates the number of true positives, TN indicates
the number of true negatives, FN indicates the number of false
negatives and FP indicates the number of false positive.

(2) Sensitivity: The sensitivity is evaluated by the accuracy rate
of the positive samples, and it is defined as the accuracy rate of
the MDD EEG epochs and is given by formula (7).

Sensitivity =
TP

TP + FN
(7)

FIGURE 4 | Structure of the feature matrix.
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FIGURE 5 | Structure of the CNN.

(3) Specificity: The specificity is defined as the accuracy rate of
the negative samples. It is defined as the accuracy rate of the HC
EEG epochs and is given by formula (8).

Specificity =
TN

TN + FP
(8)

(4) F1-score: The F1-score is regarded as the weighted average of
the model precision and recall. It is defined by formula (9); its
maximum value is 1, and its minimum value is 0.

F1 − score =
2 ∗ TP

2 ∗ TP + FP + FN
(9)

RESULTS

To assess the ability of the proposed framework to detect
and classify MDD EEG signals, several experiments are
conducted, which mainly contain statistical analysis and
classification. The statistical analysis was performed by one-
factor analysis of variance (ANOVA) using SPSS 22.0. The
classification is implemented in PyCharm (version 2017.3.4,
Community Edition).

Statistical Analysis Results
ANOVA was used to examine significant differences between the
two groups (patients MDD and HCs). The significance level was
set to p < 0.05. Single features (asymmetry, cross-correlation)
and mixed features (MIX1 and MIX2) in the different frequency
bands (α band, β band, and θ band) are all analyzed. In terms
of EEG segmentation, a segmentation of 2s is demonstrated and
analyzed in detail in this study.

Statistical Analysis of the Interhemispheric

Asymmetry
The results of the statistical analysis of the interhemispheric
asymmetry in all the frequency bands of theMDD andHC groups
are shown in Figure 6A. A positive value for the interhemispheric

asymmetry indicates that the power value of the left brain is
greater than that of the right brain. Similarly, a negative value for
the interhemispheric asymmetry indicates that the power value
of the left brain is less than that of the right brain.

As shown in Figure 6A, in the α-frequency band, the
interhemispheric asymmetry in patients with MDD at C5-C6
is significantly higher than that of the HCs. In the β-frequency
band, the significant electrode pairs for the interhemispheric
asymmetry are from the whole brain except the parietal region,
and the values for the patients MDD are significantly larger
than those of the HCs. The significant electrode pairs of the
interhemispheric asymmetry are from the frontal, central and
occipital regions. From Figure 6A, it is easy to see that the
values for the patients with MDD are significantly larger than
those of the HCs, which indicates that the difference between
the interhemispheric power in patients with MDD is larger than
that in HCs. The importance of EEG alpha interhemispheric
asymmetry in the diagnosis of depression is evident from various
studies. For example, hypo-activation of the left frontal has been
observed during MDD (Kemp et al., 2010).

Statistical Analysis of the Cross-Correlation
The results of the statistical analysis of the cross-correlation
in patients with MDD and HCs are shown in Figure 6B. The
significant electrode pairs in the α-frequency band came from
the whole brain except for the occipital region, and the cross-
correlation in the patients with MDD was significantly larger
than that in the HCs, which means that compared with the
HCs, EEG connectivity in patients with MDD in the α-frequency
band was enhanced. There was no significant difference in
patients with MDD and HCs in terms of the cross-correlation
in the θ-frequency band. The significant electrode pairs of cross-
correlation in the β-frequency band came from the parietal and
central regions, and the cross-correlation values for the patients
with MDD were significantly larger than those of the HCs. From
the results of the statistical analysis of the cross-correlation, it is
easy to see that patients with MDD have more brain connectivity
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FIGURE 6 | Statistical analysis results for different features [(A) interhemispheric asymmetry; (B) cross-correlation; (C) MIX1; (D) MIX2]. The black bar indicates the

MDD group, and the white bar indicates the HCs. **indicates 0.001< p < 0.01, *indicates 0.01< p < 0.05.

than HCs. EEG signals in depression have connectivity features.
Knott et al. (2001) reported that significant group differences in
inter-hemispheric coherence pervaded all four frequency bands.

Statistical Analysis of MIX1
The results of the statistical analysis of MIX1 in all the
frequency bands of the patients with MDD and the HCs are
shown in Figure 6C. As shown in this figure, for significant
electrode pairs in all the frequency bands, the value of MIX1
in the patients with MDD is larger than that in the HCs.
MIX1 indicates the integrated brain state of interhemispheric
asymmetry and cross-correlation. In the α-frequency band, the
significant electrode pairs are all from the frontal region. In the
β-frequency band, the significant electrode pairs are from the
frontal, central and occipital regions. For brain regions such as
central, temporal, frontal and parietal, the depressed individual
showed greater anterior EEG activity. In a study, greater left
frontal activity is associated with fewer depressive symptoms
(Deslandes et al., 2008).

Statistical Analysis of MIX2
The results of the statistical analysis of MIX2 in all the frequency
bands of the patients with MDD and the HCs are shown in
Figure 6D. MIX2 is an index indicating the differential brain
state of the interhemispheric asymmetry and cross-correlation.
As shown in Figure 6D, for significant electrode pairs in all the
frequency bands, the value of MIX2 in the patients with MDD
is larger than that of the HCs. The significant electrode pairs in

the α-frequency band are from the frontal, central and parietal
regions. The significant electrode pairs in the β- and θ-frequency
bands are from the frontal, central and occipital regions. In
addition to α-frequency band, activity in other bands such as
θ-frequency band has shown relevance such as a decreased frontal
theta activity has also been reported (Saletu et al., 2010).

Classification Results
A 10-fold cross-validation scheme is performed to prevent
overfitting. All the feature matrices are randomly divided into
10 groups, nine of which are used for training, and the other
group is used for verification. To ensure the stability of the
classification model, each experiment is performed 10 times, and
the averaged value is considered the result. At the same time,
we set the shuffle parameter in this method to shuffle the data
before splitting into batches. In this way, we reduce the error rate.
The interhemispheric asymmetry, cross-correlation, and mixed
features of the 1s, 2s, and 3s segments of the α-, β-, and θ-
frequency bands in the MDD and HC groups were analyzed. The
classification results are given in Table 3. In Table 3, the standard
error of the classification results is around 0.001.

Table 3 presents the classification results in terms of the
accuracy, sensitivity, specificity and the F1-score (f1) for the
1s, 2s, and 3s EEG epochs for each of the classifiers. Table 3
shows that the F2 (cross-correlation) and F1 (asymmetry) are
more suitable for MDD detection than the mixed features. Each
classification index for F1 is ∼85%, while each classification
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TABLE 3 | Classification results of the EEG signals from all classifiers.

Classifiers Feature 1s 2s 3s

Acc (%) Sen (%) Spe (%) f1 (%) Acc (%) Sen (%) Spe (%) f1 (%) Acc (%) Sen (%) Spe (%) f1 (%)

KNN F1 79.10 86.58 70.07 81.89 81.76 88.19 74.04 84.08 80.74 87.76 72.29 83.27

F2 62.38 71.29 51.64 67.43 59.98 68.81 49.38 65.25 81.74 83.01 80.10 82.70

MF 79.50 87.29 70.13 82.30 83.15 88.97 76.14 85.22 82.43 88.51 75.10 84.61

SVM F1 83.78 85.88 81.52 85.36 84.13 86.24 81.60 85.59 82.83 85.53 79.62 84.46

F2 76.31 78.55 73.62 78.36 80.91 83.15 78.26 82.62 84.27 83.49 84.97 83.21

MF 87.95 89.24 86.38 89.00 88.22 89.69 86.44 89.26 86.15 88.28 83.60 87.43

CNN F1 91.10 91.45 89.42 91.62 92.70 93.72 91.27 93.52 92.11 93.62 92.23 91.64

F2 93.14 92.41 94.17 93.61 93.07 93.25 92.24 94.45 93.31 94.43 93.27 92.87

MF 94.10 93.61 91.69 93.82 94.13 95.74 93.52 95.62 93.58 94.74 93.72 94.81

F1 indicates asymmetry, F2 indicates cross-correlation and MF indicates mixed features. Acc indicates accuracy; Sen indicates the sensitivity; Spe indicates the specificity; f1 indicates

the F1-score. Bold values indicates the best performance.

index for F2 is ∼70%. The results show the consistency in the
performance of all the classifiers. The classification results of the
KNN, SVM, and CNN models based on the mixed features are
better than those of the single features.

Among all the classifiers, the CNN achieved the best
performance with the mixed features for the 2s time window
(accuracy = 94.13%, sensitivity = 95.74%, specificity = 93.52%,
and f1 = 95.62%). For the SVM, the best classification results
were achieved with the mixed features in the 2s time window
(accuracy = 88.22%, sensitivity = 89.69%, specificity = 86.44%,
and f1 = 89.26%). For the KNN, the best performance was
achieved with themixed features in the 2s time window (accuracy
= 83.15%, sensitivity = 88.97%, specificity = 76.14%, and f1 =

89.26%). Compared with the segmentation results for the 1s and
3s EEG epochs, and the segmentations of the 2s time window
achieve better classification results.

DISCUSSION

We attempted to discover the useful features reflecting the
intrinsic changes in brain activity in depressed patients to
construct an automatic system for MDD detection. Two types
of feature matrices were computed for MDD detection, and
three classifiers were introduced to classify the EEG data from
patients with MDD and HCs. First, the feature matrix for
interhemispheric asymmetry was fed to three classifiers, and we
obtained the best classification accuracy of 92.70% using the CNN
algorithm. Second, the feature matrix for electrode connectivity
was fed to the three classifiers, and we achieved the best accuracy
result of 93.31% using the CNN algorithm. Finally, the two types
of features were added and subtracted to form mixed features
for the classification, and the accuracy was greatly improved for
the three classifiers. Therefore, we concluded that the feature-
combining strategy is effective. Statistical analysis and automatic
classification based on the extracted and mixed features were
performed. The statistical analysis explored the difference in
the patients with MDD and the HCs at the group level, while

the classification method studied the EEG of patients’ MDD in
another way.

In this study, greater left frontal activity was associated with
fewer depressive symptoms. In addition, EEG interhemispheric
asymmetry was concluded to be a risk marker for MDD because
the study participants with depressive symptoms showed less
relative frontal activity than the HCs.

We also compared the detection results with those from
other investigations; this comparison is given in Table 4, which
shows that we achieved the best accuracy of 94.13% using
the mixed features. In 2017, the accuracy was 91.67% using
kernel eigen-filter-bank common spatial patterns (Knott et al.,
2001). Compared with the accuracy of 60–80% involving
48 depressed patients and 26 HCs based on the Lep-Ziv
complexity (Deslandes et al., 2008), our system was considerably
improved. Of course, the comparisons may be improper as we
used different datasets, but our analysis at least implies the
importance of our feature extraction and mixing strategy. We
will collect more subject EEGs for future investigations, as 32
subjects are not enough to validate the effectiveness of the
developed system. Other nonlinear EEG features related to the
human brain, such as fractal dimension and entropy, should
be analyzed and introduced into the feature combination for
MDD detection.

CONCLUSION

In this study, we propose a feature extraction and mixing
method to try to discover the correlated characteristics describing
intrinsic changes in depressed patients, and the feature extraction
and classifiers are integrated to construct a system for the
discrimination of MDD. Both interhemispheric asymmetry and
cross-correlation were extracted to analyze the structural and
connective changes in the EEG signals of MDD patients. The two
features were combined in twoways to comprehensively interpret
the brain state of MDD. Both features were helpful for MDD
detection. The classification accuracy based on interhemispheric
asymmetry was ∼85% for the three classifiers, while the
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TABLE 4 | Summary of previous works on EEG signal analysis for depression.

Paper format Year Sample size Feature(s) used Analysis method Accuracy

Mantri et al. (2015) 2015 13 MDD and 12

HC

Power spectrum, FFT ANN 84%

Akdemir (2015) 2015 53 MDD and 43

HC

EEG band power DT 80%

Liao et al. (2017) 2017 12 MDD and 12

HC

Kernel eigen-filter-bank common

spatial patterns

SVM 91.67%

Mumtaz et al.

(2017b)

2017 34 MDD and 30

HC

Wavelet transform LR 87.5%

Acharya et al.

(2018)

2018 33 MDD and 30

HC

Left and right hemispheres CNN 93.5% and 96%

Fan et al. (2005) 2019 48 HCC and 26

HC

Lep-Ziv complexity BP ANN 60-80%

Our Study 16 MDD and 16

HC

Asymmetry, cross-correlation,

mixed features

CNN 94.13%

classification accuracy based on cross-correlation was ∼70%
using the three classifiers. The classification results using the
mixed features were greatly improved compared with using the
single features. We also found that the mixed features with a 2s
time window using a CNN perform the best.

The proposed depressed patient detection system is promising
for exploring the pathogenesis, early diagnosis, and intervention
treatment of MDD. In future research, we will try to
investigate more useful information for MDD detection and
emotion decoding.
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