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This paper explores in parallel the underlying mechanisms in human perception of
biological motion and the best approaches for automatic classification of gait. The
experiments tested three different learning paradigms, namely, biological, biomimetic,
and non-biomimetic models for gender identification from human gait. Psychophysical
experiments with twenty-one observers were conducted along with computational
experiments without applying any gender specific modifications to the models or the
stimuli. Results demonstrate the utilization of a generic memory based learning system
in humans for gait perception, thus reducing ambiguity between two opposing learning
systems proposed for biological motion perception. Results also support the biomimetic
nature of memory based artificial neural networks (ANN) in their ability to emulate
biological neural networks, as opposed to non-biomimetic models. In addition, the
comparison between biological and computational learning approaches establishes a
memory based biomimetic model as the best candidate for a generic artificial gait
classifier (83% accuracy, p < 0.001), compared to human observers (66%, p < 0.005)
or non-biomimetic models (83%, p < 0.001) while adhering to human-like sensitivity
to gender identification, promising potential for application of the model in any given
non-gender based gait perception objective with superhuman performance.

Keywords: motion perception, biological motion, gait, machine learning, human perception, machine perception

INTRODUCTION

A person’s gait carries information about the individual along multiple dimensions. In addition to
indicating biologically intrinsic properties, like gender and identity, the gait of a person changes
dynamically based on their emotional state (Pollick et al., 2002) and state of health (Cesari et al.,
2005). Humans are adept at identifying whether a given sparse motion pattern is biological or not
(Johansson, 1973, 1976) as well as detecting properties such as gender or mood. However, the
origin of these abilities remains unclear. One the one hand, the ability to distinguish biological
from non-biological motion appears at a very young age (Fox and McDaniel, 1982), suggesting
there may be some expert-system capacities present at birth. Indeed, some theorists have suggested
that biological motion perception served as an evolutionary and developmental precursors to
the theory of the mind (Frith, 1999). However, recognition of biological motion could also be
attributed to generic learning systems that are trained with experience (Fox and McDaniel, 1982;
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Bertenthal and Pinto, 1994; Thompson and Parasuraman, 2012),
where adults have been shown to be able identify biological
motion which was synthetically created using machines (while
the infants could not), indicating a learning system that tunes
itself based on experience. One way to address this is to
compare the behavior of human observers to computational
learning models of different types that can be trained “from
scratch,” i.e., without specialized mechanisms pre-tuned to the
properties of biological motion. This provides the opportunity
to assess whether generic learning models trained on biological
motion stimuli serve as a reasonable model of human behavior
or whether additional mechanisms, such as pre-tuned expert
systems, should be posited. In addition, we classify the
computational models into two groups: (1) biomimetic models,
that functionally replicate the neural learning systems in humans,
especially biological memory, and (2) non-biomimetic models,
which utilize statistical techniques to identify discerning features
in data for classification. For clarification, we use the term
“biomimetic” as, the study of the structure and function of
living things as models for the creation of materials or products
by reverse engineering (Farber, 2010). A strong resemblance
between humans and biomimetic models, but not with non-
biomimetic models, would provide further evidence that the
mechanisms underlying human biological motion perception are
well captured by a generic learning model. To do so, we compared
performance in a simple binary biological motion classification
task (gender recognition) and compared human performance to
a range of computational learning models.

Biological Models
Johansson (1973, 1976) first demonstrated that human observers
were sensitive to biological motion through point light displays
representing joints of a human walkers. Despite their sparsity,
human observers readily interpreted the stimuli as human gait.
Subsequent research with point-light walkers demonstrated the
ability of humans in the identification of familiar people (Loula
et al., 2005). In case of unfamiliarity, observers could extract
certain general categories such as approximate age and gender
(Kozlowski and Cutting, 1977; Barclay et al., 1978; George
and Murdoch, 1994; Lee and Grimson, 2002; Pollick et al.,
2005) with significantly higher than chance accuracy. In case
of gender identification, humans achieved the best performance
when presented with the stimuli in the coronal plane, due to
the prevalence of dynamic cues (George and Murdoch, 1994).
However, the biological nature of human perception hinders its
replicability and transferability. The learning is highly variable,
volatile and susceptible to fatigue, illness and mortality, leading to
the need for automation of gait classification. Automation of gait
classification has been extensively studied with a high focus on
performance outcome through classification accuracy. However,
mimicking human perception closely would ensure versatility of
the artificial classifier, enabling the same classifier to be used in
other non-gender related gait classification tasks.

Machine Learning Models
Machine learning (ML) models can be trained to identify the
relevant attributes in gait such as gender with high speed and

fidelity. The models can broadly be divided into two categories:
(1) Memory based models comprised of artificial neural networks
(ANN) such as the Long Short Term Memory (LSTM) cells
(Graves and Schmidhuber, 2005), which operate on time series
data, and (2) Static models, such as the Random Decision Forests
(RDFs) (Kaur and Bawa, 2017) and Support Vector Machines
(SVMs) (Huang et al., 2014), which operate on static data. The
LSTM model shall be referred to as the “biomimetic” models
crediting the functional implementation of the biological neural
network and memory using artificial neurons, while the SVM
and RDF shall be referred to as the “non-biomimetic” models.
Prior studied have promising results in terms of the ability
of biomimetic ML in being able to mimic human observation
of gait (Pelah et al., 2019; Sarangi et al., 2019; Stone et al.,
2019). However, an in-depth exploration of the above mentioned
models and direct comparison to human observers on the same
stimuli has not been conducted.

Biomimetic Models
Artificial neural networks aim to mimic the flow of information
in the biological brain by creating a network of neurons, based
on the perceptron model (Rosenblatt, 1958). Recurrent neural
networks (RNN), an implementation of the ANN, simulates
the memory capabilities of the human brain, by creating an
additional feedback loop for processing latent network state along
with new data (Mikolov and Zweig, 2012). RNNs operate on a
sequence of vectors as input data. The sequence resembles the
time series information and the vector represents the features
of the input at each timestamp. However, RNNs suffer from
vanishing and exploding gradient rendering them ineffective
in processing long sequences (Graves and Schmidhuber, 2005).
LSTM cells overcome this problem by introducing additional
gates in the network to regulate the flow of information, enabling
them to remember relevant temporal patterns over long periods
of time (Graves and Schmidhuber, 2005).

Non-biomimetic Models
The non-biomimetic ML techniques considered in this paper
learn to classify information based on (1) linear separability,
following non-linear projections, and (2) reduction of
information entropy based on feature thresholds. SVM models
learn to fit a linear hyperplane to maximize the separation
between the classes in the training dataset. Decision trees,
learn to classify information based on the learned numerical
thresholds of features. RDF is a collection of randomly initialized
decision trees with majority vote of the cohort considered as the
predicted class. SVMs and RDFs accept static representations
of data as input and thus cannot process temporal sequences of
information, unlike humans and LSTMs.

DATA COLLECTION

Forty one consenting healthy adults (26 male, 15 female)
between the ages of 18 and 50 years old were recorded
walking on the treadmill. Participants volunteered and received
credit toward a participation grade for their class. Appropriate
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consent forms were signed and anonymity maintained. Gait
data was recorded as spatiotemporal three-dimensional joint
trajectories for 20 tracked joints of the body. The tracked points
on the walker’s skeleton included the head, neck, shoulders,
elbows, wrists, fingertips, mid spine, back, hips, knees, hips,
ankles, and toes. The collection of the joint positions formed
a static frame. Data was captured at 24 frames per second,
each frame represented by 60 numbers (3D coordinates of 20
joints) and a corresponding timestamp of capture of the frame.
Data was recorded for 6 sessions per participant. Each session
consisted of a minute of walking on the treadmill at a self-
selected speed followed by a minute’s rest. The joints were
extracted utilizing a consumer-level time-of-flight based RGB-
D sensor, the Microsoft Kinect v2. The sensor provides an
anthropomorphic representation of the human skeleton through
3D joint coordinates. The sensor was placed approximately
1.5 m in front of the treadmill with the front board removed
to avoid issues with occlusion. The ML based skeletal motion
capture method mentioned in Shi et al. (2018) is used for
capturing the PLD representation of the biological motion
of the walkers. When compared with the state-of-art optical
motion tracking methods [such as Vicon (Clark et al., 2012;
Pfister et al., 2014)], the anatomical landmarks from the
Kinect-generated point clouds can be measured with high test-
retest reliability, and the differences in the interclass coefficient
correlation between Kinect and Vicon are <0.16 (Clark et al.,
2012, 2013; Pfister et al., 2014; van Diest et al., 2014). Both
systems have been shown to effectively capture >90% variance
in full-body segment movements during exergaming (van Diest
et al., 2014). The validity of biological motion captured using
the Kinect v2 sensor is established in Shi et al. (2018) with
human observers through reflexive attentional orientation and
extraction of emotional information from the upright and
inverted PLD.

EXPERIMENT 1: BIOLOGICAL MODELS

Studies have shown humans to require no longer than two
complete gait cycles to correctly identify gender from
human gait (Huang et al., 2014). In terms of duration,
this translates to less than 2.7 s of walking animation.
Although humans can decipher biological motion from
point light animation of walking human figure within
200 msec, at least 1.6 s of stimulus is required for
significantly above chance performance. This experiment
aims to establish the change in gender identification
performance in humans as a function of increasing duration of
stimulus exposure.

Method
Biological Model
Fifteen female and six male healthy observers with age ranging
from 20 to 43 years old, participated in the experiment. All had
some experience of biological motion displays, although none
had been required to make judgments about gender.

Stimuli
A PC-compatible computer monitor with a high performance
raster graphics system displayed stimuli on an Iiyama ProLite
B2283HS color monitor (1920 × 1080 resolution, 60 Hz refresh
rate). Human figures were defined by 20 circular white dots
of 5 pixel radius overlaid on a black background, located on
the head, neck, shoulders, elbows, wrists, fingertips, back, spine,
hips, knees, ankles, and toes. None of the dots were occluded
by other subjective parts of the figure. Animated sequences were
created by placing the dots at the three-dimensional trajectory
of each of the 20 tracked joints, and temporally sampling the
coordinates to produce 24 static frames per second, as shown
in Figure 1. The stimulus size was 6 degrees wide and 8
degrees long for the whole frame, including zero (black) padding.
A degree of visual angle is defined as the subtended angle
at the nodal point of the eye. The actual walking clip was
2.5 degrees wide and 4 degrees long. The presented stimuli
was height normalized to fit the given aspect ratio, to prevent
the observers from identifying gender based on height of the
animated walker.

When the static frames were played in quick succession,
a vivid impression of a walking person emerged. There was
no progressive component to the walking animation, thus
the human figure appeared to walk on an unseen treadmill
with the walking direction oriented toward the observer. The
height range for males was 144–208 cm, and for females was
129–152 cm. None were notably over- or underweight (see
Table 1). The x and z component were sampled to display
the walker in the coronal plane to emphasize lateral sway and
maximize the provision of dynamic cues to the observer (Barclay
et al., 1978; Troje, 2002). The recorded gait sequences were
converted into an animation sequence in the same fashion
to be presented as visual stimuli. The observers were seated
in a well-lit room in front of the monitor and had access

FIGURE 1 | Point light representation of a walking stimulus at eight different
stages of a gait cycle.

TABLE 1 | Description of the walking subjects taking part in the stimulus set.

Height (cm) Weight (kg) Age (years)

Male 176.23 ± 32.43 80.49 ± 2.86 26.06 ± 6.42

Female 128.56 ± 23.51 73.3 ± 4.59 21.29 ± 1.23
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to a standard computer mouse for interaction. The randomly
chosen walker stimuli were presented for exposure durations
of 0.4, 1.5, 2.5, and 3.8 s, followed by an on-screen prompt in
the form of two buttons requesting the observer prediction of
binary gender through a mouse click on either of the labeled
buttons. Following the response from the observer, the next
stimulus was presented. A total of 200 walking clips were
shown per observer per exposure duration and the responses
recorded for each.

Results
Human observers correctly identified 63% of all the trials
across all exposure durations, t(20) = 7.8, p < 0.001, two
tailed. All t-tests reported in this paper are two-tailed, unless
otherwise indicated. Chance performance for the binary gender
classification is 50% as expected. Correct identification at 0.4 s,
which consisted of a quarter of a step cycle, was above chance
at 60%, t(20) = 3.7, p < 0.01, conforming with (Barclay et al.,
1978; Troje, 2002), however, was in disagreement with (Barclay
et al., 1978). This could be attributed to the presentation of the
stimulus in the coronal plane as opposed to the sagittal plane
(Sarangi et al., 2019), leading to higher emphasis on the dynamic
cues. Performance at 1.5 s is 66%, t(20) = 3.8, p < 0.005, which is
higher than the performance at 2.5 s of 61%, t(20) = 4.8, p < 0.001.
Barclay et al. (1978) explains this anomalous phenomenon
due to an additional partial step at 2.5 s by highlighting the
preferred perception of velocity over positional cues, where
sensitivity to gender identification decreases mid-swing in the
gait cycle. Humans were able to identify gender with highest
accuracy at 3.8 s with 69%, t(20) = 3.4, p < 0.01. Details
of the results obtained have been listed in Table 2. Overall,
the performance of the human observers taking part in the
experiment conforms to the results of perceptual experiments in
literature (Barclay et al., 1978; Troje, 2002), providing a reliable
baseline for comparison with the biomimetic perception on the
same stimulus set.

In summary, human observers were able to identify gender
from gait with significantly above chance performance from
moving dots presentations of joints, while conforming with
existing human perception literature. There is a significant
increase in gender identification performance between 0.4
and 3.8 s of stimulus exposure duration. The increased
gender sensitivity at 1.5 s is attributed to the prevalence of
dynamic, velocity based cues at the phase of the step cycle
corresponding to that time (George and Murdoch, 1994),
thus demonstrating the preference of humans toward dynamic
velocity based cues compared to structural position based cues
for gender identification.

TABLE 2 | Gender identification accuracy in % as a function of exposure duration
of the stimulus.

Model/Stimulus
Duration

0.4 s 1.5 s 2.5 s 3.8 s

Biological
(Human)

60 (p < 0.01) 66 (p < 0.005) 61 (p < 0.001) 65 (p < 0.05)

EXPERIMENT 2: BIOMIMETIC MODELS

Long short term memory network’s capability to process
a temporal sequence of data aims to mimic the temporal
pattern recognition capabilities of humans. The learning
gates inherent in the network parallel the short and long
term memory of the human brain, enabling the network to
remember the relevant temporal pattern while ignoring patterns
that don’t contribute toward the classification objective. This
experiment aims to present an LSTM network with the temporal
evolution of joint trajectories during human gait and train
it for gender identification to evaluate for resemblance with
human observers.

Method
Biomimetic Model
A standard LSTM model consisting of 128 hidden states in
the cell (as shown in Figure 2), is initialized. The cell state
weights were initialized as a random normal distribution. The
final cell state was ReLU activated (Maas et al., 2013) and
connected to an affine output layer, which represented the
one-hot labeled gender identity of the walker during training.
During testing, the output layer represented the prediction
values. The error of prediction was evaluated using a cross-
entropy function (de Brébisson and Vincent, 2015) for updating
of the weights using an Adam optimizer (Kingma and Ba,
2014) based on the error differentials and a learning rate of
0.001. The most probable output was taken as the class label
during prediction. 10 LSTM models, mimicking 10 random
human perceptions, were generated for inferring the gender
from gait input.

Data Input
The three-dimensional trajectories of each of the 20 tracked
joints were concatenated to form a vector representation of
a static frame with a cardinality of 60, representing the
location of the head, neck, shoulders, elbows, wrists, fingertips,
mid-back, hips, knees, ankles, and toes. Gait input to the
model consisted of a sequence of vector representations of
subsequent static frames, sampled at 24 frames per second.
Joint trajectories were size normalized (Troje, 2002) and
standardized with a zero mean and unit standard deviation.
Model training sessions included, initialization of the model
weights, prediction of the output probabilities based on
the gait input, propagation of the prediction error and

FIGURE 2 | Implementation of the LSTM network architecture for processing
gait sequences.
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updating the network weights. Model training was executed
in batches of 50 and repeated for 100 epochs. Input sequence
durations mirrored the exposure durations in the corresponding
human perception experiment and varied incrementally for
10 durations from 0.4 to 3.8 s in steps of 0.4 s (10
static frames). 10-fold cross validation was carried out to
ensure model generalizability and a total of 250 gender
predictions were obtained per input sequence duration. The
models trained per session per duration are stored locally for
future analyses.

Results
Long Short Term Memory models correctly identified 76% of
all the gait inputs presented across all the input durations,
t(9) = 9.2, p < 0.001. Chance performance remains same at
50%. Correct identification at a quarter of a step cycle at
0.4 s was 71%, t(9) = 5, p < 0.001, higher than the same
with human observers, F(9,20) = 3.6, p < 0.1. The difference
in performance indicates a higher inference capacity from a
limited amount of available data. The inference performance
increases slightly with increase in the amount of information
available from 0.4 to 3.8 s, F(9,9) = 2, p < 0.1. At 3.8 s,
the model correctly identified gender with 81% accuracy,
t(9) = 9.6, p < 0.001, considerably higher than human observers,
F(9,20) = 9, p < 0.01. Generalizing across all the input (or
exposure) durations, the biomimetic model identified gender
with a significantly higher accuracy than the human observers,
F(9,20) = 39.9, p < 0.001. Details of results obtained for the LSTM
model have been presented in Table 3 with the corresponding
trend plotted in Figure 3. As shown in the figure, mean
performance peaks temporarily at 1.6 s (halfway completion
of one gait step) with 79% accuracy, t(9) = 10.1, p < 0.001
suggesting a dependence on dynamic and velocity cues similar
to humans at 1.5 s.

In summary, the biomimetic LSTM model performed
significantly better than chance in gender classification from
3D moving point representations of human gait. There was a
significant increase in gender identification accuracy from 0.4 to
3.8 s of gait information exposure, corresponding to humans.
The increased gender sensitivity at 1.6 s could be attributed
to an inherent sensitivity to dynamic velocity based cues in
LSTM networks for gender identification, similar to humans.
One could argue that the presentation of the skeleton stimulus
as facing toward the camera could potentially limit real-world
applications. However, although specific deployments would
need to be assessed, the availability of 3D data could be leveraged

TABLE 3 | Gender identification accuracy as a function of exposure duration of
the stimulus with p < 0.001 for all the durations.

Model/Stimulus
Duration

0.4 s 1.5 s 2.5 s 3.8 s

Biological
(Human)

60 (p < 0.01) 66 (p < 0.005) 61 (p < 0.001) 65 (p < 0.05)

Biomimetic
(LSTM)

71 (p < 0.001) 73 (p < 0.001) 77 (p < 0.001) 81 (p < 0.001)

FIGURE 3 | Gender identification performance in mean ± standard error % by
the models as a function of exposure duration in seconds.

to apply a simple preprocessing rotational step to the skeleton to
correct for any misalignment in global skeletal configuration.

EXPERIMENT 3: NON-BIOMIMETIC
MODELS

The non-biomimetic models, unlike humans and LSTMs are
capable of analyzing static data only. Their reliance on the
principles of linear separability and information entropy to create
rules for classification, resembles expert systems. The models
require a static representation of the spatiotemporal gait data
for gait classification. Thus data was represented as, (1) static
descriptions of the temporal signals, and (2) extracted metrics
used in a clinical setting to describe gait for diagnosis and
rehabilitation monitoring. In this experiment, we evaluate the
SVMs and RDFs on the two static representations of gait data for
resemblance with human observation.

Method
Non-biomimetic Models
Support vector machines are designed to linearly separate a set
vectors to achieve maximum classification accuracy, whereas DTs
learn to classify by choosing optimal split conditions of attributes
to minimize ambiguity in classification. SVMs with linear (SVM-
Linear), radial basis function (SVM-RBF) with gamma as 0.99
and sigmoid (SVM-Sigmoid) kernels were evaluated. The non-
biomimetic models also included RDFs of 10 randomly generated
ID3 DTs (Kaur and Bawa, 2017) with a minimum requirement of
two samples for splitting and a maximum of three features for
splitting consideration.
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FIGURE 4 | Gender identification performance of non-biomimetic models as a
function of duration of gait data used to generate the static representation.
The shaded region around the central mean line represents the standard error
in performance.

Data Input
Gait data, originally represented as a temporal sequence of
vectors, was described with four first-order statistics, namely,
minimum, maximum, mean, and standard deviation of each
dimension in the multi-dimensional time series signal. The
temporal sequence duration of the signal was varied from 0.4 to
3.8 s in steps of 0.4 s (10 frames). The resulting static dataset was
normalized and standardized to have a mean of zero and unit
standard deviation.

The study was conducted in conjunction with the Cambridge
University Hospitals, thus the gait metrics utilized for clinical gait
analysis in the gait analysis laboratory were mirrored as static
representations of gait. 12 spatiotemporal metrics, including,
stride length, cadence, single-double support, stance-swing phase
ratio, speed of walking and knee flexion for each leg during
stance and swing were provided as input feature sets to the
static learning models. All the features were standardized to have
a mean value of zero and a standard deviation of one. The
features were further normalized to lie within the [−1, 1] range
for uniformity and to discourage the models from learning the
gender from the structural information and to rely solely on
the gait dynamics.

Results
At 0.4 s, the RDFs and SVMs of all the kernels were able to
identify gender with significantly better than chance performance
with RDF at 75%, t(9) = 9, p < 0.001, SVM-Linear at 84%,
t(9) = 12, p < 0.001, SVM-RBF at 78%, t(9) = 10, p < 0.001,
and SVM-Sigmoid at 68%, t(9) = 4, p < 0.01, as shown in
Figure 4. There was no significant difference in performance in
the non-biomimetic models between 0.4 and 3.8 s of duration,
unlike humans and LSTM models. Gender sensitivity remained
similar across all the durations of gait input, demonstrating a
dynamic cue agnostic learning mechanism. Performance output
has been detailed in Table 4. All the non-biomimetic models
performed close to chance performance. The best performing
out of the cohort was the SVM with radial basis function with
a gender identification accuracy of 59%, t(9) = 1.8, 0.1 < p < 0.2,
followed by the RDF classifier with an accuracy of 59%, t(9) = 1.5,
0.1 < p < 0.2. The statistical significance of the results is yet
to be established with the collection of more data. However,
the motivation for testing the non-biomimetic models further is
reduced based on the results.

In summary, the biomimetic models that were trained on
the four static representations of the temporal signals performed
significantly better than chance and the corresponding models
trained on clinical gait metrics performed at or below chance
performance. Notably, there was no significant change in
performance with increasing duration of exposure of gait input.
In addition, there was no change in sensitivity to gender
identification with increasing availability of information at
different phases of the step cycle. Both the above characteristics
have been observed in humans and LSTMs, suggesting a
deviation of the non-biomimetic models from a common
learning mechanism shared between humans and LSTMs.
Humans also possess the trait of being sensitive to dynamic
velocity based cues for gender identification. In order to explore
the existence of the trait in the artificial classifiers, the next
experiment trains models on velocity cues exclusively, to evaluate
the change in performance.

EXPERIMENT 4: BIOMIMETIC MODELS
WITH VELOCITY CUES

Humans are known to rely on dynamic velocity based cues
when determining gender from gait. This experiment focuses on
training the biomimetic and non-biomimetic models on velocity
cues exclusively. An increase in performance would determine a
common trait shared with the humans.

TABLE 4 | Performance of non-biomimetic models in % correctly identified gender.

Model/Duration 0.4 s 1.5 s 2.5 s 3.8 s

SVM-Linear 83.8 (p < 0.001) 83.5 (p < 0.001) 82.8 (p < 0.001) 82.5 (p < 0.001)

SVM-RBF 78 (p < 0.001) 78 (p < 0.001) 78.5 (p < 0.001) 77.9 (p < 0.001)

SVM-Sigmoid 68 (p < 0.01) 68.1 (p < 0.01) 68.2 (p < 0.01) 68.2 (p < 0.01)

RDF 74.9 (p < 0.001) 74.6 (p < 0.001) 74.2 (p < 0.001) 73.5 (p < 0.001)
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Method
Biomimetic Model
The LSTM model architecture remains the same as mentioned
in Experiment 2. The weights initialization, training regime and
data input style is maintained. The only difference is brought
about because of the difference in the data input being provided.

Biomimetic Data Input
In Experiment 2, gait was represented as a temporal evolution
of the positional joint trajectories. For this experiment, temporal
derivatives of the gait of the walkers were used for generating
corresponding velocities of the joints. The positional data was
smoothed with a 5-frame moving average filter before calculating
the derivatives for adjacent frames. The training was performed as
mentioned in Experiment 2 and 10-fold cross validation ensured
generalizability of the results.

Non-biomimetic Model
The non-biomimetic models namely the SVM-Linear, SVM-RBF,
SVM-Sigmoid and the RDF remain the same as the previous
experiment, however, the training data provided is a static
representation of the temporal derivative of the data provided
in Experiment 3.

Non-biomimetic Data Input
The positional joint trajectories of 20 tracked joints are smooth
using a 5-frame moving average filter followed by a temporal
derivative of the smoothed signal to obtain the three-dimensional
velocity of the joint trajectories. The result is represented as
four static attributes, namely, minimum, maximum, mean and
standard deviation of the temporal signal. The temporal duration
of the signal is varied from 0.4 to 3.8 s in steps of 0.4 s (10
frames). The static representation is normalized between [−1, 1]
and standardized to have zero mean and unit standard deviation.
The resulting dataset is used for training and testing of the non-
biomimetic models with a 10-fold cross validation of the walkers.

Result
Biomimetic Model
The biomimetic LSTM model trained with three-dimensional
velocity (LSTM – Velocity) achieved an overall accuracy of
81%, t(9) = 9.4, p < 0.001, significantly better than the human
observers, F(9,20) = 82, p < 0.001 for all durations as well as the
LSTM model trained with three-dimensional positions (LSTM –
Position) of joint trajectories, F(9,9) = 5.6, p < 0.05. The model
achieves its highest accuracy at 2.8 s of exposure with an accuracy
of 83%, t(9) = 9.4, p < 0.001. As shown in Figure 5, the lack
of velocity based cues is noticed at 2.2 s in LSTM – Velocity,
corresponding to the similar lack dynamic cues at the same time
in LSTM – Position, demonstrating the dependence of the LSTM
network on velocity while determining gender.

Non-biomimetic Models
As shown in Figure 6, the performance of the non-biomimetic
models decreased significantly upon training with velocity
data, compared with the position data (details provided in
Table 5). SVM-Sigmoid demonstrates a significant increase in

FIGURE 5 | Gender identification performance in mean ± standard error % by
LSTM models trained with Position and Velocity as a function of exposure
duration in seconds.

performance with increasing duration of gait data provided,
F(9,9) = 4.5, p < 0.05 with the best accuracy of 67%. However,
the change in performance is not statistically significant in other
SVM and RDF models. The behavior goes against the expected
biological behavior and the results demonstrated by the LSTMs,
denoting a loss of performance in a form of data which is
biologically more conducive to gender identification.

As shown in Figure 6, the performance of the non-biomimetic
models decreased significantly upon training with velocity
data, compared with the position data (details provided in
Table 5). SVM-Sigmoid demonstrates a significant increase in
performance with increasing duration of gait data provided,
F(9,9) = 4.5, p < 0.05 with the best accuracy of 67%. However,
the change in performance is not statistically significant in other
SVM and RDF models. The behavior goes against the expected
biological behavior and the results demonstrated by the LSTMs,
denoting a loss of performance in a form of data which is
biologically more conducive to gender identification.

In summary, training biomimetic and non-biomimetic
models with joint velocities produced contradicting results
when compared to the corresponding models trained with joint
positional trajectories. The result of the non-biomimetic models
goes against the established human dependence on dynamic
velocity based cues for gender identification. The results obtained
through the biomimetic LSTM networks not only conforms to the
expected biological behavior, but also demonstrates the shared
gender sensitivity trend observed at different phases of the walk
cycle between the biological and biomimetic models. However,
one could argue that the provision of three-dimensional gait
information to the biomimetic models but the two-dimensional
screen based input to the humans could cause a gap in
direct comparison between the models, making it difficult to
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FIGURE 6 | Gender identification performance of non-biomimetic models trained with Position and Velocity information, as a function of duration of gait considered
for extracting the static representation.

draw parallels between the learning mechanisms. In the next
experiment, the biomimetic LSTM model is trained and tested
on two-dimensional gait information by omitting the depth
information, which the humans had to infer from the screen.

EXPERIMENT 5: BIOMIMETIC MODELS
WITH TWO-DIMENSIONAL INPUT

Long Short Term Memory networks have demonstrated a
close resemblance with the human observers, making it
conducive to draw parallels between the learning mechanisms.
However, humans observed the moving point animations
on a two-dimensional screen for gender identification while
the LSTMs were provided with three-dimensional motion
information. This experiment trains the LSTMs with two-
dimensional gait information to form a direct comparison with

the human observers, without assuming any depth inference
capabilities of humans.

Method
Biomimetic Model
The LSTM model architecture is similar to the previous
experiment. However, the number of inputs are reduced by
a third, owing to the loss of the z-components of the joint
trajectories. The weights initialization, training regime and data
input style is maintained. The only difference is brought about
because of the difference in the data input being provided.

Data Input
In Experiment 2, gait was represented as a temporal evolution
of the positional joint trajectories. The three-dimensional
trajectories of each of the 20 tracked joints were concatenated to
form a vector representation of a static frame with a cardinality of
60. This experiment maintains the same data style but omitting
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TABLE 5 | Gender identification performance of non-biomimetic models trained
with Position and Velocity gait information and the difference in performance
between the corresponding models denoted through F-test.

Model/Gait Data Position Velocity F-Test, F(9,9)

SVM – Linear 83% 76% 37 (p < 0.001)

SVM – RBF 78% 72% 52 (p < 0.001)

SVM – Sigmoid 68% 65% 5 (p < 0.05)

RDF 75% 68% 149 (p < 0.001)

FIGURE 7 | Gender identification accuracy using biomimetic LSTM models
trained in three- and two- dimensional position and velocity representations of
the joint trajectories.

the z-component, modifying the vector representation to have a
cardinality of 40. The gait information is varied from 0.4 to 3.8 s
in steps of 0.4 s (10 frames). The resulting data is normalized
between [−1, 1] and standardized to have zero mean and unit
standard deviation.

Result
There is no statistically significant difference in the outcomes
of the LSTMs trained with three- and two-dimensional joint
trajectories, in corresponding position and velocity information,
as shown in Figure 7. However, the difference between
the models trained with corresponding 3D and 2D values
is significant with F(9,9) = 6, p < 0.05 for LSTM – 2D
Position and LSTM – 2D Velocity, with accuracies of 76%
and 80%, respectively. Notably, the performance of the models
trained with 3D and 2D velocities are significantly higher
than the models trained with the corresponding position
representations. The two-dimensional models also demonstrate
the unique gender sensitivity trait possessed by human observers
and the biomimetic models trained with three-dimensional
representations of gait, further supporting the close resemblance
of the LSTM models with humans.

In summary, the loss of depth information didn’t cause
any significant change in performance accuracy all the traits
that were shared with humans and corresponding biomimetic
models trained with three-dimensional gait information were
maintained, further supporting the close resemblance of the
artificial model with human perception.

DISCUSSION

Biomimetic models share the following characteristics with
human observers, which the non-biomimetic models either
do not share or have the opposite trait of: (1) Increase in
gender identification performance with increasing temporal
availability of gait information, (2) Preference toward dynamic
velocity based cues as opposed to structural position based
cues for gender identification, leading to higher performance
in the former data type, and (3) Unique trend of gender
sensitivity during different phases of the walk cycle. The results
support a closer congruence in biological motion perception
between humans and biomimetic models, compared to non-
biomimetic models. Additionally, the close resemblance confirms
the ability of the biomimetic learning models in emulating
human learning dynamics. This study presents a correlation
between the human visual perception of motion as well as the
biomimetic memory-based neural network. This, however, does
not necessarily indicate causation, but provides a bidirectional
mode of understanding human perception using models as
simple as the LSTM. The objective of finding correlations
between human performance and models for more general use, in
a non-arbitrary manner, while minimizing model parameters and
assumptions is accomplished. It is interesting that a simple LSTM
model is able to capture certain dynamics of human perception
of gender from gait from an input-output perspective. This is
consistent with previous findings for the inversion effect, a failure
to accurately classify gender from gait in upside down stimuli
(Sarangi et al., 2020). Observing such correlations between
human and biomimetic models encourages further investigations
that may help to elucidate both types of “black box” models.

From an application standpoint, the results encourage the
potential of using biomimetic models for gait classification.
Although the paper uses gender identification as the
gait classification objective, the resemblance with human
observers may widen the scope of application to non-gender
related classification tasks as well. The results could also be
further improved through a more conservative approach to
cross-validation such as the leave-one-out cross validation.
Interestingly, the availability of 3D skeletal data tests the effect
of rotation of the skeleton and its correlation with gender
identifiability for human observers. The same should not
affect the performance of the biomimetic model as a simple
preprocessing rotation step could correct for any misalignment
in global skeletal configuration. Finally, although treadmill
walking may not be congruent with over ground walking, the
experiment establishes the ability of the machine based models
to extract relevant features from spatiotemporal skeletal data.
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The non-biomimetic models on the other hand, require
explicitly hand crafted features which may not be applicable to a
generic classification task. As shown in Experiment 3, the clinical
gait metrics representation of gait didn’t possess information
about gender, while the static four attribute representation
possessed enough information about gender for a better than
chance performance. The transferability of the same features
toward a new objective (such as person identification) is brought
into question and requires further experiments.

CONCLUSION

Humans are highly adept at classification of gait for a multitude of
objectives, from gender identification to clinical diagnosis, while
relying on a common learning mechanism of spatiotemporal
perception of gait. This paper applies a number of ML models,
each with a different mode of learning, to the classification
of gender from gait, comparing their performance to that of
human observers under controlled conditions. The analysis
aims to identify, firstly, specific correlations between humans
(biological), biomimetic and non-biomimetic learning models,
and secondly, to find an artificial model that best resembles
human performance to potentially generalize its application to
other gait classification tasks. Results are analyzed in terms
of performance profiles and preferences of motion cues over
structural cues. While not necessarily informative on underlying
neural substrates in humans the findings demonstrate the
parallel usefulness of the biomimetic approach. Although non-
biomimetic and biomimetic models exhibit comparable levels
of performance, the biomimetic models are more generalizable
in not requiring hand-engineering of features for a given
application. Biomimetic are also useful for modeling human
perception at least from an input-output perspective, while,

conversely, perceptual findings can improve the pragmatic
effectiveness of models, contrasting with the synthetic approach
that is typically employed in ML research.
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