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Motor imagery-based brain–computer interfaces (MI-BCIs) send commands to a
computer using the brain activity registered when a subject imagines—but does not
perform—a given movement. However, inconsistent MI-BCI performance occurs in
variations of brain signals across subjects and experiments; this is considered to be a
significant problem in practical BCI. Moreover, some subjects exhibit a phenomenon
referred to as “BCI-inefficiency,” in which they are unable to generate brain signals
for BCI control. These subjects have significant difficulties in using BCI. The primary
goal of this study is to identify the connections of the resting-state network that affect
MI performance and predict MI performance using these connections. We used a
public database of MI, which includes the results of psychological questionnaires and
pre-experimental resting-state taken over two sessions on different days. A dynamic
causal model was used to calculate the coupling strengths between brain regions with
directionality. Specifically, we investigated the motor network in resting-state, including
the dorsolateral prefrontal cortex, which performs motor planning. As a result, we
observed a significant difference in the connectivity strength from the supplementary
motor area to the right dorsolateral prefrontal cortex between the low- and high-
MI performance groups. This coupling, measured in the resting-state, is significantly
stronger in the high-MI performance group than the low-MI performance group.
The connection strength is positively correlated with MI-BCI performance (Session 1:
r = 0.54; Session 2: r = 0.42). We also predicted MI performance using linear regression
based on this connection (r-squared = 0.31). The proposed predictors, based on
dynamic causal modeling, can develop new strategies for improving BCI performance.
These findings can further our understanding of BCI-inefficiency and help BCI users to
lower costs and save time.

Keywords: motor imagery, brain-computer interface, dynamic causal modeling, effective connectivity,
electroencephalography

INTRODUCTION

Motor imagery-based brain–computer interface (MI-BCI) systems allow users to control computer
applications by imagining a movement, without physically performing the muscle activity (Wolpaw
et al., 2002). For example, robot arms (Edelman et al., 2019), wheelchairs (Kim et al., 2016), and
exoskeletons (Jeong et al., 2020) can be controlled by the user’s brain activity. Thus, these systems
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have the potential for application in medical fields related
to disabled people and motor function rehabilitation. Many
researchers have recently sought to expand its application
to able-bodied people (Van Gerven et al., 2009; Lee et al.,
2016). Generally, MI-BCIs use electroencephalography (EEG)
to measure the voluntary modulation of brain rhythms.
One of the most representative features is event-related
desynchronization/synchronization (ERD/ERS), which reflects a
decrease or an increase of oscillatory activity pertaining to events,
respectively (Neuper et al., 2006). These changes in brain signals
are used as the fundamental characteristics of MI, which measure
the power decrease or increase at specific frequencies and in
certain brain regions. Many methods have been proposed to
improve the performance of MI-BCIs; however, considerable
issues must be addressed before MI-BCIs can be practically
implemented in real scenarios. The most prominent issue is the
inconsistent MI performance that results from the variations in
brain signals between different subjects and experiments (Lotte
et al., 2007; Lee et al., 2019a). Previous studies have reported that
subject performances fluctuate and 15–30% of subjects cannot
generate voluntary brain rhythms (Guger et al., 2003; Ahn and
Jun, 2015; Sannelli et al., 2019)—a phenomenon known as “BCI-
illiteracy” or “BCI-inefficiency” (Sannelli et al., 2019). Therefore,
understanding this phenomenon and performance variations is
considered an important issue in MI-BCI (Lotte and Jeunet,
2018). In addition, BCI-illiteracy is a methodologically improper
concept because it depends on faulty assumptions that BCI users
have functional or physiological characteristics that interfere with
their skilled BCI performance. Consequently, this term is an
inappropriate concept to describe the difficulties that users face
when operating a BCI system (Thompson, 2019). In this sense,
we use an alternative term, BCI-inefficiency.

Many studies have been performed to find pre-experimental
predictors of MI-BCI performance, to save resources and time
(Blankertz et al., 2009; Sannelli et al., 2019). Most of these
studies can be categorized into either (i) assessing a subject’s
condition through psychological questionnaires or (ii) assessing
their brain activity by taking EEG measurements directly
before the MI experiment. Among the psychological predictors,
fatigue is directly related to BCI performance. The feature was
extracted using dimension reduction and linear discriminant
analysis (LDA) classifier was trained. This BCI performance was
compared by quantifying into two groups according to the self-
reported rating about fatigue. As a result, BCI performance was
significantly high when self-reported fatigue was low during
BCI game. Because low fatigue showed effortless control of
BCI (Myrden and Chau, 2015). In addition, physical fatigue
recorded by physiological changes affected self-reported MI
ability. In specific, MI ability was significantly decreased after
intermittent exercise (Ferreira et al., 2020). One study surveyed
the questionnaire associated with kinesthetic imagery before
the MI experiment. Common spatial pattern (CSP) and Fisher
LDA were used in a conventional way. Consequently, users’
self-prediction responses to a questionnaire have been reported
to correlate with their MI-BCI performance (r = 0.64) (Ahn
et al., 2018). However, some psychological factors such as fatigue
are subjective and therefore are not suitable for describing

BCI-inefficiency. In addition, given the length of each training
session, limitations still exist in that mental state is unlikely to be
consistent overall.

Objective psychological factors such as spatial and
visuo-motor coordination abilities also were related to BCI
performance. The BCI performance measured from CSP
and shrinkage LDA and personality and cognitive profile
using psychometric questionnaires were compared. The
mental rotation test, which measures spatial ability, showed
significantly correlated with BCI performance (r = 0.69).
However, neurophysiological patterns such as alpha and beta
power did not relate to BCI performance (Jeunet et al., 2015,
2016). Similarly, MI performance was calculated using CSP
and LDA, and motor skills (r = 0.42) and concentration level
(r = 0.50) were explored as sensorimotor rhythm (SMR)
predictors (Hammer et al., 2012). This study focused on pattern
recognition rather than human learning for BCI control. So,
the next study explored these two psychological factors in the
neurofeedback training session. As a result, SMR could only
be modulated well by visuo-motor coordination ability, which
represents motor skills (r-squared = 0.082) in the neurofeedback
training session (Hammer et al., 2014). Another study had
reported the relationship with age and the average amount of
upper limb movement for modulating alpha power associated
with BCI. These two factors were positively correlated with
the strength of alpha power with 94% confidence using the
multiple linear regression (Randolph et al., 2010). The reliable
and reproducible predictors of BCI performance contribute
to a better understanding of the BCI control. However, these
predictors may be less practical because they cannot evaluate and
train potential BCI users in a locked-in state, in whose muscular
movement is impossible and BCI control is really necessary.

The SMR has been proposed as a neurophysiological indicator
(Blankertz et al., 2010), and it is calculated from the mu rhythms
(about 9–14 Hz) measured over sensorimotor areas in the C3
and C4 channels in resting-state EEG. These rhythms have
shown a significant correlation with MI performance trained
using CSP and LDA (r = 0.53). Furthermore, higher theta
and lower alpha powers were observed in the BCI-inefficiency
compared with the BCI-efficient subjects. As a result, this study
demonstrated a positive correlation between MI performance
using CSP and Fisher LDA and the alpha-theta ratio predictor
(r = 0.59) (Ahn et al., 2013). Some studies have indicated a
relationship between BCI-inefficiency and power spectral density
at different frequencies. In particular, gamma oscillations used to
infer a subject’s intention have a causal influence on a subject’s
BCI capacities. Consequently, BCI performance using spectral
power and support vector machine was significantly correlated
with predicted BCI accuracy using gamma power (r = 0.10)
(Grosse-Wentrup et al., 2011). However, these studies predicted
MI performance for a single session only. Given the variability
of brain signals across different conditions within the same
subject, it is necessary to investigate the effects of applying
these predictors across various sessions. In addition to the SMR,
other EEG features have been proposed to predict MI-BCI
performance. Spectral entropy in the C3 channel of eye closed
resting-state EEG has been found to correlate with SMR-BCI
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performance using CSP and LDA in both sessions (Session
1: r = 0.61; Session 2: r = 0.70) (Zhang et al., 2015a). This
predictor can apply for both intra- and inter-session conditions.
However, it has not been proven to be applicable to patients
such as stroke. In another approach, inter-region connectivity
was investigated, not simply the brain activity in a particular
region. One study used coherence and phase lag index as the
functional connectivity measure. Based on these two measures,
network properties were calculated. In the eye closed resting-
state, many network properties were directly related to BCI
performance. Specifically, mean functional connectivity, node
degrees, edge strengths, clustering coefficient, local efficiency, and
global efficiency were positively correlated with BCI classification
accuracy, whereas the characteristic path length was negatively
correlated with BCI classification accuracy. As a primary result,
a positive correlation with MI performance using CSP and
LDA was observed using a coherence-based clustering coefficient
across two sessions (Session 1: r = 0.29; Session 2: r = 0.42).
MI performance was predicted using coherence (except outliers)
in Session 2 [root mean square error (RMSE) = 12.2%] (Zhang
et al., 2015b). These studies applied the predictor to two sessions
and demonstrated that it had a significant correlation with MI
performance. However, the relationship was not sufficiently close
for the predictor to be employed as an MI-BCI performance
indicator in real life applications. Furthermore, these studies have
used only one classifier when calculating MI-BCI performance,
even though the performance variation depends on both classifier
and session. Therefore, a large public database should be used to
find possible predictors across a variety of classifiers and sessions,
to verify the utility of this MI predictor.

Brain connectivity describes the exchange of information
between brain regions (Zhang et al., 2017). The functional
connectivity is observable evidence that can be determined as a
measure of statistical dependencies. This measure of functional
connectivity between the two regions is the same, and it does
not indicate directionality (Friston, 2011). However, effective
connectivity explains how one region of the brain affects other
regions (Lee et al., 2019b). Therefore, it is useful to observe
interregional changes in brain networks when investigating
certain phenomena. Effective connectivity can be described using
a set of common measures that plot directionality between
brain regions. For example, there are the following measures:
Granger causality, partial directed coherence, and the direct
transfer function (Sakkalis, 2011). Above all, dynamic causal
modeling (DCM) reflects inferences about the couplings between
brain regions/sources and is based on a Bayesian approach
(Kiebel et al., 2008). As a consequence, in contrast to functional
connectivity and some causal model, DCM needs a defined
a priori knowledge and hypothesis-driven models (Kasess et al.,
2010). This Bayesian approach directly assesses the posterior
probability distribution of the estimated model parameters, given
measured EEG data and a specific priori model at the single-
subject level. For group-level analysis of model parameters, this
approach based on fixed-effects analysis as the inference method
has the advantage that the precisions of the subject-specific
multivariate parameter estimates are considered (Chen et al.,
2008; Kasess et al., 2010; Bönstrup et al., 2016). This approach

compares various hypothesis-based models and helps to select
an optimal specific model. Furthermore, volume conduction—
a problem for the conventional measurement methods—can
be avoided by including the source reconstruction to assess
directionality between brain regions (Lee et al., 2019b).

Many studies have used DCM to investigate the connections
between brain regions during MI. In a DCM study using
functional magnetic resonance imaging (fMRI), a forward
connection was found between the supplementary motor area
(SMA) and the primary motor cortex (M1). In particular, the
SMA exhibited a strong suppressive influence on M1 during
MI (Kasess et al., 2008). In addition, by using a combined
fMRI and EEG approach, the coupling between SMA and M1
was shown to contain significant information for MI (Bönstrup
et al., 2016). The SMA is considered to be the main active
region in MI generation and is involved in the preparation
of movements (Kuhtz-Buschbeck et al., 2003). Recent studies
have shown that effective connectivity is similar under motor
execution (ME) and MI tasks through DCM; furthermore,
these networks have been reported to include the dorsolateral
prefrontal cortex (DLPFC) and premotor cortex (PMC) in
addition to the SMA and M1 (Kim et al., 2018). These brain
regions are necessary to generate the rich MI sources used
to control BCIs (Hochberg et al., 2006; Aflalo et al., 2015).
The PMC exhibits overlapping between active and peripheral
regions during ME and MI, and it is employed in language
production, movement observation, and action recognition
(Lotze and Halsband, 2006). The DLPFC is closely connected
with the cortical control of movement and may be linked with the
SMA (Middleton and Strick, 1994). In this regard, certain brain
regions—though not directly related to the motor cortex—can be
associated with MI.

In this study, we investigate the correlations between MI-
BCI performance and the subject’s resting-state network before
the BCI experiment takes place. DCM was used to explore the
effective connectivity between two regions with directionality.
In particular, we considered the DLPFC in addition to the
conventional sensorimotor areas as the DCM region of interest
(ROI). We assessed the subjects’ psychological questionnaires
and band powers (from their resting-state EEG) before the
MI experiment, for comparison with previous studies. We
hypothesized that the coupling strength in the motor network
constructed using DCM would be correlated with the MI-BCI
performance. Finally, using linear regression, we predicted the
MI-BCI performance with the proposed coupling strength. These
findings could help build an understanding of the MI mechanism
and improve overall MI-BCI performances by investigating the
characteristics of poorly performing subjects.

MATERIALS AND METHODS

EEG Dataset
We used a public EEG dataset from GigaDB (Lee et al., 2019a).
These data contain EEG signals measured during MI experiments
focusing on left and right hand grasping motions. The subjects’
psychological and physical conditions were surveyed using
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questionnaires and 1 min eye-open resting-state EEG data were
recorded before the MI experiments. The experiments were
conducted over two sessions, which took place on different days.
The data comprised 54 healthy subjects (24.8 ± 3.8 years; 25
females). Among the subjects, 38 were naive BCI users and the
remainder had previous experience. EEG signals were recorded
using 62 Ag/AgCl electrodes.

MI-BCI Performance and Group
Categorization
The EEG signals were processed using the OpenBMI toolbox
(Lee et al., 2019a); the data were band-pass filtered between 8
and 30 Hz—the frequency band relevant to motor movements.
A 5th order Butterworth filter was used for all band-pass filter
analyses; next, the continuous EEG signals were segmented from
1 to 3.5 sec (measured from stimulus onset) (Pfurtscheller and
Neuper, 2001). Moreover, 20 channels were selected in the motor
cortex region (FC1, FC2, FC3, FC4, FC5, FC6, Cz, C1, C2, C3, C4,
C5, C6, CPz, CP1, CP2, CP3, CP4, CP5, and CP6).

We used several popular methods to calculate MI
performance (Lee et al., 2019a). We extracted four features,
as follows: (i) CSP (Ramoser et al., 2000)—a spatial pattern
that maximizes the discrimination of the binary classes;
(ii) common spatio-spectral pattern (CSSP) (Lemm et al.,
2005)—a pattern using spectral information based on CSP;
(iii) filter bank common spatial pattern (FBCSP) (Ang
et al., 2012)—a pattern using optimal spatio-spectral filters
based on a filter bank composed of several frequency
bands; and (iv) Bayesian spatio-spectral filter optimization
(BSSFO) (Suk and Lee, 2012)—a pattern using subject-
dependent frequency bands within the Bayesian framework.
For the classifier, LDA was used to decode the left or
right hand imagery. Each experimental task comprised
a training phase and a testing phase. To validate the MI
performance, ten-fold cross-validation was used for all
data (training + testing data) (CSP-cv). In summary, we
achieved the MI-BCI performance with CSP-cv, CSP, CSSP,
FBCSP, and BSSFO.

To compare the MI performance against the resting-state
EEG, we divided them into two performance groups: high (good
MI performance group) and low (poor MI performance group).
The median performance in each five performance according to
classifiers was used to separate the subjects into high- or low-MI
performance groups (Zhang et al., 2016).

Relationship With MI-BCI Performance
Questionnaire Scores
We took seven response fields from the pre-experimental
questionnaire: comfort, motivation, concentration, eye fatigue,
drowsiness, physical condition, and mental condition. These
items were graded on a Likert scale from 1 to 5. For “comfort,” 1
signified relaxation, and 5 signified anxiety. Under “motivation,”
1 indicated excitement, and 5 indicated boredom. In the
“concentration,” “eye fatigue,” “drowsiness,” “physical condition,”
and “mental condition,” 1 and 5 indicated very good and very bad
or tired in intensity level, respectively.

Band Power of Resting-State EEG
We calculated the average power of the EEG signals, to
decompose them into functionally distinct frequency bands. We
further divided them into five regions: frontal (Fp1-2, AF3-4,
AF7-8, AFz, F3-4, F7-8, and Fz), sensorimotor (FC1-6, C1-6, Cz,
CP1-6, and CPz), temporal (FT9-10, T7-8, and TP7-10), parietal
(P1-4, P7-8, PO3-4, and POz), and occipital (O1-2, Oz, and PO9-
10) regions (Supplementary Figure S1). At the sensor level, EEG
signals were averaged according to five different cortical regions.
The band powers were also measured for the delta (1–4 Hz),
theta (4–8 Hz), alpha (8–15 Hz), beta (15–25 Hz), and gamma
(25–40 Hz) bands (Ahn et al., 2013).

Dynamic Causal Modeling of Resting-State EEG
Pre-processing
The continuous EEG signals were pre-processed using the
EEGLAB toolbox (Delorme and Makeig, 2004) based on
MATLAB. Data from 56 channels across the scalp surface
(using the international 10–10 system) were obtained to
implement DCM (Lee et al., 2017). The resting-state EEG
was band-pass filtered in the 4–45 Hz (Van de Steen et al.,
2019). The delta band in the 1–4 Hz range was excluded
because, unlike other frequency bands, it can be contaminated
relatively easily by artifacts such as eyeball movement and
blinking (Ahn et al., 2013). The continuous 1 min EEG
data were segmented from 1 sec without overlap (Van
de Steen et al., 2019). Then, the eye-blink correction was
manually performed using infomax, which is one of the
most widely used independent component analysis algorithm
to minimize the artifacts. Finally, the epoched data were
average-referenced.

3D source reconstruction
We used the statistical parametric mapping (SPM) toolbox
in MATLAB (Litvak et al., 2011). In the 3D channel location
information, EEG channel locations were transformed to
match the template head. This head model was assigned
to all subjects using 3D coordinate values. The boundary
element method (BEM) was used for building a head
model (forward model, mapping source signals to sensor
signals). Each source was also modeled by a single equivalent
current dipole (ECD) (Kiebel et al., 2006) for reconstructing
sources (inverse model, mapping sensor signals to the
source signals). To estimate the cortical sources, the
inversion index was set to 1 to trace different types of
forward models and inverse solutions. Mesh resolution
can be maintained at normal (approximately 4,000 vertices
per hemisphere).

DCM specification
M1, SMA, and PMC are well known to be linked to MI
(Kasess et al., 2008; Begliomini et al., 2015; Bönstrup et al.,
2016). Recently, the role of DLPFC in MI has been revealed
(Kim et al., 2018). Therefore, we selected the seven ROIs:
SMA, left/right M1, left/right PMC, and left/right DLPFC.
We also employed the Montreal Neurological Institute (MNI)
coordinates for both side regions, based on the source locations
reported in previous work (Kim et al., 2018). Table 1 lists
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TABLE 1 | Montreal Neurological Institute (MNI) coordinates for location
information.

ROI MNI coordinates

x y z

SMA 0 −4 65

Left M1 −38 −26 53

Right M1 38 −26 53

Left PMC −48 −15 50

Right PMC 48 −15 50

Left DLPFC −42 40 25

Right DLPFC 42 40 25

ROI, region of interest; SMA, supplementary motor area; M1, primary motor cortex;
PMC, premotor cortex; DLPFC, dorsolateral prefrontal cortex.

the MNI coordinates for seven ROIs. The prefrontal-dependent
regions were reported to have no physiologically specific
interactions with the M1 (Luppino et al., 1993; Rizzolatti
and Luppino, 2001). Therefore, we excluded the connection
between DLPFC and M1 and finally organized the eight
DCM models (Figure 1). In addition, for the resting-state, we
did not select an input from the neural model because no
external input exists.

Dynamic causal modeling uses a neural mass model to explain
the source activity of EEG signals (David and Friston, 2003). The
model imitates the source activity by using three neural sublayers
assigned to the three cortical layers, namely the granular sublayer,
the supra-granular sublayer, and the infra-granular sublayer.
This model has hierarchical features; forward connections start

in the infra-granular layer and end in the granular layer and
backward connections link agranular layers (Garrido et al., 2007).
All cortico-cortical connections are excitatory, so the DCM can
be identified in neuronal state equation by average synaptic
dynamics in each sublayer.

ẋ = f (x, u, θ) (1)

where ẋ indicates the evolution of neuronal state x parameterized
by θ of the state and input u.

y = L (θ) x0 + ε (2)

where x0 is output of specific states and L (θ) indicates the
local field indicating the location and orientation of sources (i.e.,
spatial forward model). In specific, θ includes the parameters
for forward and backward connections (coupling strength).
The ε refers to observation error. Finally, EEG signals y
connects the neuronal states to observed EEG channel data
(Kiebel et al., 2006).

Bayesian model selection (BMS)
Bayesian model selection (BMS) is an effective method of
deciding the most likely set of competitive hypotheses for
the models that generated the observed data (Stephan et al.,
2009). We applied BMS averaging with fixed-effects analysis to
determine the most likely model given the data.

The inversion of a particular DCM, m, coincides with an
approximation of the posterior probability on the several models.

p(θ |y,m) ∝ p
(
y|θ,m

)
p(θ |m) (3)

FIGURE 1 | Model specifications of effective connectivity based on the dynamic causal model. The regions of interest (ROIs) consist of the SMA, left/right PMC,
left/right M1, and left/right DLPFC. The resting-state has no external stimulus, thus no input is specified. The selected connection for each model is indicated by a
black arrow. SMA, supplementary motor area; PMC, premotor cortex; M1, primary motor cortex; DLPFC, dorsolateral prefrontal cortex.
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TABLE 2 | Statistical results for the differences in MI performance.

Classifier Session Group Session × Group

dof F p-value dof F p-value dof F p-value

CSP_cv 1 0.40 0.527 1 2.28 0.133 1 0.09 0.768

CSP 1 0.16 0.690 1 1.87 0.174 1 0.71 0.401

CSSP 1 0.16 0.692 1 0.81 0.369 1 0.04 0.835

FBCSP 1 0.16 0.694 1 1.51 0.221 1 0.02 0.899

BSSFO 1 0.20 0.658 1 0.29 0.592 1 0.24 0.626

The session factor indicates Session 1 and Session 2, whereas the group factor indicates high-MI performance group and low-MI performance group. The session× group
represents the interaction between session and group factors. dof, degree of freedom; CSP_cv, common spatial pattern with cross-validation; CSP, common spatial
pattern; CSSP, common spatio-spectral pattern; FBCSP, filter bank common spatial pattern; BSSFO, Bayesian spatio-spectral filter optimization.

This approximation uses the Bayes factor based on
Expectation-Maximization algorithm. This aims to minimize
the free energy F = − ln p(y|m) as the negative marginal
log-likelihood. Then, the variational Bayes factor is used
as an approximation and the log-evidence is used for

FIGURE 2 | Averaged MI classification performance based on CSP-cv for
both sessions. The group was divided based on the median of MI
classification accuracy across all subjects. The p-values below 0.05 are
highlighted by an asterisk.

model comparison. Finally, the best model is the highest
log-evidence ln p(y|m) (Garrido et al., 2007). In our
study, eight DCM models were estimated and one was
selected using BMS.

Statistical Analysis
We first performed the one-way analysis of variance (ANOVA)
to investigate the differences in MI performance using CSP-cv,
CSP, CSSP, FBCSP, and BSSFO. Next, the correlation was used
to verify that the MI performance between the two sessions
was similar. To investigate the differences in resting-state
EEG between the high- and low-MI performance groups,
we performed the two-way ANOVA (session × group). In
all ANOVA, the two-sample t-test was used with Bonferroni
correction for multiple comparisons as post hoc analysis.
Pearson’s correlation was also used to examine the relationship
between MI performance and resting-state EEG. Similarly,
Bonferroni correction was applied to correlation analysis
for multiple comparisons. For the questionnaire and band
power, we used only the MI performance measured by CSP-
cv for a fair comparison with previous studies (Ahn et al.,
2013, 2018; Zhang et al., 2015b). We also predicted the
MI performance based on significantly selected coupling
strength, by applying linear regression to the MI-BCI
performance in the resting-state. The 10-fold cross-validation
was used to prevent overfitting (Lever et al., 2016). Then,

TABLE 3 | Statistical results for the differences in questionnaire scores according to MI performance using CSP-cv.

Questionnaire Session Group Session × Group

dof F p-value dof F p-value dof F p-value

Comfort 1 0.01 0.963 1 2.28 0.134 1 0.89 0.348

Motivation 1 0.01 0.922 1 0.16 0.692 1 0.01 0.906

Concentration 1 0.08 0.782 1 1.03 0.312 1 0.62 0.434

Eye fatigue 1 0.36 0.552 1 0.08 0.784 1 0.27 0.607

Drowsiness 1 0.04 0.838 1 0.50 0.481 1 0.20 0.655

Physical condition 1 0.28 0.597 1 2.80 0.097 1 2.40 0.124

Mental condition 1 0.64 0.423 1 0.49 0.486 1 0.26 0.608

The questionnaires consisted of seven questionnaires and were taken for each session before the MI experiment took place. The session factor indicates Session 1 and
Session 2, whereas the group factor indicates high-MI performance group and low-MI performance group. The session × group represents the interaction between
session and group factors. dof, degree of freedom.
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TABLE 4 | Statistical results for correlation in questionnaire scores according to MI
performance using CSP-cv.

Questionnaire Session 1 Session 2

r-value p-value r-value p-value

Comfort 0.043 0.758 −0.147 0.295

Motivation 0.042 0.764 −0.002 0.990

Concentration −0.020 0.888 −0.154 0.271

Eye fatigue 0.089 0.520 0.020 0.886

Drowsiness −0.133 0.379 −0.076 0.588

Physical condition −0.096 0.490 −0.197 0.158

Mental condition −0.144 0.300 −0.039 0.784

The questionnaires consisted of seven questions and were taken for each session
before the MI experiment took place.

we evaluated the predicted MI-BCI performance compared with
the actual MI-BCI performance based on CSP-cv, CSP, CSSP,
FBCSP, and BSSFO, using the r-squared and RMSE, where
r-squared is a statistical value of how close the data are to the
fitted regression line, and RMSE is a measure of the difference

between the actual and the predicted MI-BCI performance
(Varatharajan et al., 2018).

RESULTS

Differences in MI Performance
Using CSP-cv, CSP, CSSP, FBCSP, and BSSFO, we observed
a significantly positive correlation of the two-class MI
performances between two sessions on different days (CSP-
cv: r = 0.986, p < 0.001; CSP: r = 0.988, p < 0.001; CSSP:
r = 0.993, p < 0.001; FBCSP: r = 0.993, p < 0.001; BSSFO:
r = 0.993, p < 0.001). We also investigated the differences in MI-
BCI performances using five methods within each session. No
significant differences in MI performances using five methods
with Bonferroni correction were observed in both sessions
[Session 1: F(4,265) = 0.22, p = 0.929; Session 2: F(4,265) = 0.33,
p = 0.859].

We divided the high- and low-MI groups in each classifier.
There was no significant difference in MI performance with
Bonferroni correction according to session and group using

TABLE 5 | Statistical results for the differences in band power according to MI performance using CSP-cv.

Region Frequency Session Group Session × Group

dof F p-value dof F p-value dof F p-value

Frontal Delta 1 3.24 0.074 1 4.27 0.041 1 0.85 0.357

Theta 1 0.20 0.655 1 0.96 0.338 1 0.24 0.624

Alpha 1 0.45 0.505 1 0.01 0.942 1 0.77 0.383

Beta 1 0.06 0.814 1 0.75 0.389 1 0.46 0.497

Gamma 1 0.69 0.406 1 0.05 0.825 1 0.66 0.418

Sensorimotor Delta 1 1.08 0.301 1 2.20 0.141 1 0.01 0.950

Theta 1 0.36 0.552 1 2.12 0.148 1 0.09 0.762

Alpha 1 0.01 0.919 1 2.64 0.107 1 0.01 0.965

Beta 1 0.30 0.583 1 5.58 0.020 1 0.39 0.533

Gamma 1 1.09 0.299 1 1.39 0.241 1 0.01 0.996

Temporal Delta 1 0.45 0.504 1 1.15 0.286 1 0.13 0.715

Theta 1 0.19 0.661 1 1.74 0.189 1 0.13 0.719

Alpha 1 0.01 0.963 1 0.52 0.472 1 0.11 0.745

Beta 1 0.05 0.822 1 0.88 0.349 1 1.80 0.182

Gamma 1 0.32 0.573 1 0.44 0.506 1 1.38 0.243

Parietal Delta 1 0.95 0.330 1 0.77 0.381 1 0.06 0.813

Theta 1 0.64 0.426 1 0.36 0.551 1 0.07 0.790

Alpha 1 0.01 0.912 1 0.03 0.856 1 0.04 0.835

Beta 1 0.03 0.863 1 2.72 0.102 1 0.34 0.563

Gamma 1 0.13 0.717 1 0.72 0.399 1 0.53 0.467

Occipital Delta 1 0.76 0.386 1 0.28 0.596 1 0.14 0.705

Theta 1 0.26 0.608 1 0.04 0.837 1 0.06 0.805

Alpha 1 0.04 0.847 1 0.77 0.383 1 0.02 0.877

Beta 1 0.08 0.777 1 0.01 0.969 1 0.80 0.373

Gamma 1 0.01 0.996 1 0.01 0.911 1 0.51 0.476

The brain region was divided into five sub-regions, and the frequency was also divided into five bands as follows: delta (1–4 Hz), theta (4–8 Hz), alpha (8–15 Hz), beta
(15–25 Hz), and gamma (25–40 Hz) bands. The session factor indicates Session 1 and Session 2, whereas the group factor indicates high-MI performance group and
low-MI performance group. The session × group represents the interaction between session and group factors. The p-values below 0.05 are highlighted in bold. dof,
degree of freedom.
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five methods (Table 2). Nevertheless, we compared the MI
performance of each group because the classification accuracy
in high-MI group was all higher than that in the low-MI
group by dividing each group based on the median of the
performance of all subjects. For MI-BCI performances based on
the CSP-cv, five subjects were displaced from a low-MI group
to a high-MI group; moreover, two subjects were displaced
from a high-MI group to a low-MI group between Sessions 1
and 2. The significant differences in MI performance observed
between the high- and low-MI groups were explored using CSP-
cv [Session 1: t(52) = 14.125, p < 0.001; Session 2: t(52) = 12.115,
p< 0.001] (Figure 2). As expected, the MI classification accuracy
for the higher group was greater than that for the lower group
during both sessions. Supplementary Figure S2 shows the
MI performances in high- and low-MI groups for CSP, CSSP,
FBCSP, and BSSFO. Similar to CSP-cv, there were significant
differences observed in MI performance across the other four
classifiers [CSP – Session 1: t(52) = 16.323, p < 0.001, Session
2: t(52) = 13.094, p < 0.001; CSSP – Session 1: t(52) = 17.833,
p < 0.001, Session 2: t(52) = 15.341, p < 0.001; FBCSP –
Session 1: t(52) = 19.320, p < 0.001, Session 2: t(52) = 15.509,
p < 0.001; BSSFO – Session 1: t(52) = 19.777, p < 0.001, Session
2: t(52) = 18.961, p < 0.001]. In addition, 7, 5, 6, and 7 subjects
changed from the low- to high-MI group between Sessions 1 and
2 under CSP, CSSP, FBCSP, and BSSFO, respectively; conversely,
3, 4, 6, and 5 subjects changed from the high- to low-MI group on
different days under CSP, CSSP, FBCSP, and BSSFO, respectively.
To summarize, the MI classification accuracy for the low-MI
group tended to not exceed 60%, whereas the high-MI group
showed an average classification accuracy greater than 80%.

Relationship With Questionnaire Score
We investigated differences in questionnaire score between the
high- and low-MI groups based on CSP-cv (Table 3). There were
no significant differences observed in any score according to
session and group with Bonferroni correction. In addition, we
calculated the correlation with MI-BCI performance (Table 4).
Similarly, no significant correlation with MI-BCI performance
with Bonferroni correction was found in either session.

Relationship With Band Power
Table 5 summarizes the statistical differences in band power
between the high- and low-MI groups according to session and
group. As a result, the beta power in the sensorimotor region
showed a significant difference between the high- and low-MI
groups in Session 1 with Bonferroni correction [t(52) = 2.67,
p = 0.009]. However, no significant power differences in
other frequency bands were found between the two groups in
either session. In addition, an only positive correlation was
observed between theta power in the parietal region and MI-BCI
performance based on CSP-cv (Table 6).

Relationship With Coupling Strength
Based on DCM
For Session 1, Model 4 was chosen through BMS and the
connectivity strengths of 20 connections were calculated. For

TABLE 6 | Statistical results for band power correlations according to MI
performance using CSP-cv.

Region Frequency Session 1 Session 2

r-value p-value r-value p-value

Frontal Delta 0.130 0.350 0.219 0.111

Theta 0.075 0.589 0.225 0.102

Alpha 0.032 0.817 0.231 0.093

Beta 0.014 0.920 0.233 0.089

Gamma −0.018 0.896 0.221 0.109

Sensorimotor Delta −0.022 0.876 0.089 0.523

Theta 0.067 0.633 0.093 0.503

Alpha 0.048 0.732 0.077 0.580

Beta −0.039 0.781 0.078 0.575

Gamma −0.050 0.719 0.033 0.813

Temporal Delta −0.108 0.438 0.147 0.289

Theta 0.224 0.104 0.246 0.073

Alpha 0.064 0.645 0.136 0.325

Beta 0.057 0.680 0.068 0.625

Gamma −0.004 0.980 −0.022 0.874

Parietal Delta 0.130 0.349 0.180 0.193

Theta 0.272 0.047* 0.106 0.446

Alpha 0.132 0.341 −0.029 0.837

Beta 0.147 0.289 0.134 0.335

Gamma 0.070 0.613 −0.038 0.786

Occipital Delta 0.192 0.165 0.106 0.445

Theta 0.137 0.323 0.025 0.855

Alpha 0.097 0.486 −0.046 0.742

Beta 0.047 0.737 0.057 0.680

Gamma 0.035 0.800 0.031 0.827

The brain region was divided into five sub-regions, and the frequency was also
divided into five bands as follows: delta (1–4 Hz), theta (4–8 Hz), alpha (8–15 Hz),
beta (15–25 Hz), and gamma (25–40 Hz) bands. The p-values below 0.05 are
highlighted in bold. ∗ with no correction.

Session 2, Model 2 was determined as a suitable model; this model
included 16 connections.

Difference Between High- and Low-MI Performance
Groups
Table 7 lists the differences across 20 connections between
high- and low-MI performance groups for MI-BCI performance,
based on CSP-cv. Figure 3 shows the significant connectivity
strength between the two groups in each session, based on
CSP-cv. In particular, the coupling strength from the SMA
to the right DLPFC in the high-MI group was significantly
higher than in the low-MI group in both sessions [Session 1:
t(52) = 2.71, p = 0.008 with Bonferroni correction; Session 2:
t(52) = 4.31, p < 0.001 with Bonferroni correction]. Additionally,
in Session 1, a higher coupling strength from left DLPFC to
SMA was observed in the high-MI group [t(52) = 2.76, p = 0.008
with Bonferroni correction], whereas a lower coupling strength
from right M1 to left M1 was observed in the high-MI group
compared with the low-MI group [t(52) = −2.78, p = 0.009 with
Bonferroni correction]. In addition, the differences in coupling
strength between high- and low-MI groups based on CSP
(Supplementary Table S1), CSSP (Supplementary Table S2),
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TABLE 7 | The statistical differences in effective connectivity between high- and low-MI performance groups based on CSP-cv.

ROI Session Group Session × Group

From To dof F p-value dof F p-value dof F p-value

lM1 SMA 1 1.58 0.211 1 0.48 0.489 1 0.52 0.474

rM1 SMA 1 0.78 0.380 1 0.39 0.534 1 0.01 0.942

lPMC SMA 1 1.72 0.192 1 1.42 0.236 1 0.10 0.747

rPMC SMA 1 0.98 0.324 1 0.62 0.434 1 0.01 0.991

lDLPFC SMA 0 0 NaN 1 7.62 0.008 0 0 NaN

rDLPFC SMA 0 0 NaN 1 0.45 0.506 0 0 NaN

SMA lM1 0 0 NaN 1 0.56 0.455 0 0 NaN

rM1 lM1 1 3.43 0.067 1 4.79 0.030 1 1.38 0.242

lPMC lM1 1 1.34 0.250 1 2.65 0.106 1 0.69 0.409

SMA rM1 0 0 NaN 1 0.04 0.842 0 0 NaN

lM1 rM1 1 0.88 0.350 1 0.03 0.861 1 0.01 0.973

rPMC rM1 1 0.99 0.322 1 1.06 0.306 1 0.01 0.941

rPMC lPMC 1 3.53 0.062 1 0.36 0.547 1 0.14 0.709

lPMC rPMC 1 0.42 0.517 1 0.23 0.634 1 0.64 0.423

SMA lDLPFC 1 0.51 0.477 1 0.02 0.898 1 0.37 0.542

lPMC lDLPFC 1 0.14 0.704 1 2.33 0.130 1 2.47 0.119

rDLPFC lDLPFC 1 0.35 0.552 1 0.08 0.780 1 0.06 0.813

SMA rDLPFC 1 0.74 0.391 1 25.01 <0.001 1 1.66 0.200

rPMC rDLPFC 1 0.13 0.714 1 0.29 0.593 1 0.99 0.323

lDLPFC rDLPFC 1 1.59 0.210 1 0.21 0.648 1 0.01 0.974

In Session 1, Model 4 is selected and there are 20 connections. In Session 2, Model 2 is selected and there are 16 connections. Therefore, four connections in
Session 2 are excluded (‘NaN’). The session factor indicates Session 1 and Session 2, whereas the group factor indicates high-MI performance group and low-MI
performance group. The session × group represents the interaction between session and group factors. The p-values below 0.05 are highlighted in bold. ROI, region
of interest; dof, degree of freedom; l/rM1, left/right primary motor cortex; l/rPMC, left/right pre-motor cortex; l/rDLPFC, left/right dorsolateral prefrontal cortex; SMA,
supplementary motor area.

FBCSP (Supplementary Table S3), and BSSFO (Supplementary
Table S4) are listed. As with CSP-cv, the coupling strength
from the SMA to the right DLPFC in the high-MI group was
higher than in the low-MI group in two sessions based on
four classifiers in both Session 1 [CSP: t(52) = 3.26, p = 0.001
with Bonferroni correction; CSSP: t(52) = 3.96, p < 0.001 with
Bonferroni correction; FBCSP: t(52) = 2.93, p = 0.005 with
Bonferroni correction; BSSFO: t(52) = 2.76, p = 0.008 with
Bonferroni correction] and Session 2 [CSP: t(52) = 2.90, p = 0.005
with Bonferroni correction; CSSP: t(52) = 2.91, p = 0.005; FBCSP:
t(52) = 2.76, p = 0.008 with Bonferroni correction; BSSFO:
t(52) = 2.46, p = 0.017 with Bonferroni correction]. Similarly,
differences in coupling strength from left DLPFC to SMA
between two MI groups were observed in Session 1 based on four
methods [CSP: t(52) = 3.40, p = 0.001 with Bonferroni correction;
CSSP: t(52) = 2.64, p = 0.010 with Bonferroni correction; FBCSP:
t(52) = 3.12, p = 0.002 with Bonferroni correction; BSSFO:
t(52) = 3.07, p = 0.003 with Bonferroni correction]. However,
there was significant difference in coupling strength from right
M1 to left M1 in Session 1 using four classifiers, and in Session 2,
strength from left PMC and left DLPFC showed the significant
differences between two groups only in CSP [t(52) = −2.55,
p = 0.013 with Bonferroni correction].

Correlation With MI Performance
To verify the reliability of the proposed predictors, we
investigated their correlations with MI-BCI performance. Table 8

lists the correlations between 20 connections in a resting-
state EEG and MI-BCI performance, based on CSP-cv. Positive
correlation in connectivity strength from the SMA to right
DLPFC with Bonferroni correction was observed in both
sessions. In Session 1, strength from the left DLPFC to
SMA was positively correlated with the MI-BCI performance.
Furthermore, the strength from the left PMC to left DLPFC
was negatively correlated with MI performance in Session 2.
However, there was no correlation with the directionality from
right M1 to left M1 that had significant differences between the
two MI groups in Session 1. Similar results to those obtained
under CSP-cv were obtained when assessing MI performance
with CSP, CSSP, FBCSP, and BSSFO (Supplementary Table S5).
In particular, the coupling strength from the SMA to right
DLPFC was significant in both sessions, for all classifiers.
Thus, we depicted the correlation between coupling from
SMA to right DLPFC and MI-BCI performance through five
methods (Figure 4). In both sessions, this coupling strength was
significantly correlated. In Session 1, strength from left DLPFC
to SMA was correlated with MI-BCI performance using five
methods (Supplementary Figure S3).

Prediction of MI Performance Using
Coupling Strength
We predicted MI-BCI performance using the coupling strength
from SMA to right DLPFC in resting-state EEG. Table 9
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FIGURE 3 | Averaged connectivity strength in resting-state EEG between high- and low-MI performance groups based on CSP-cv. Each colored arrow represents a
connection with a significant difference between the high- and low-MI performance groups. SMA, supplementary motor area; PMC, premotor cortex; M1, primary
motor cortex; DLPFC, dorsolateral prefrontal cortex.

shows the r-squared and RMSE values between the predicted
and the actual MI classification accuracies, based on CSP-cv,
CSP, CSSP, FBCSP, and BSSFO. The predicted performance
had the highest r-squared with actual MI performance, based
on CSP and FBCSP in Sessions 1 and 2, respectively (Session
1: r-squared = 0.31; Session 2: r-squared = 0.17). The lowest
RMSE for actual MI performance was found under CSP-
cv in both sessions (Session 1: RMSE = 13.79%; Session
2: RMSE = 14.55%).

DISCUSSION

In this study, we investigated coupling strength as a new correlate
with MI-BCI performance, using the DCM of the resting-state
EEG. The MI-BCI performance was predicted by measuring
this coupling between brain regions. A connection from the
SMA to right DLPFC in the high-MI group was observed to be
significantly higher than in the low-MI group. Moreover, this
connection showed a significantly positive correlation with MI
performance in both sessions under five classifiers.

The MI involves a variety of brain regions and successfully
performs the information exchange for the integration of
relevant regions. Specifically, a resting-state network with an
efficient exchange of information facilitates MI-BCI performance

(Zhang et al., 2015b). Interestingly, our results show that the MI-
BCI performance can be predicted using the coupling strength
from the SMA to right DLPFC in resting-state EEG; during
MI, the SMA and DLPFC exhibited observable activations
(Mizuguchi et al., 2013). The SMA plays a central role in
the preparation of behavior, and it acts as a high-level motor
control prohibiting the execution of MI responses (Nachev
et al., 2008; Kim et al., 2018). These findings have already been
proved using the DCM (Kasess et al., 2008). The DLPFC has
been reported to be involved in the early phases of motor
training (Pascual-Leone et al., 1996). The frontal region is also
affected by cognitive events, and it is responsible for motor
planning and programming (Kim et al., 2018). In particular,
the right DLPFC plays a crucial role in cognitive controls such
as motor attention or inhibition (Mizuguchi et al., 2013). In
fact, it is already reported that right DLPFC in the resting-
state as a core region is correlated with MI-BCI performance
(Zhang et al., 2016). During MI, coupling from SMA to DLPFC
has been reported to play a critical role in the motor control
needed to move a finger (Kim et al., 2018). As a result of
fMRI, DLPFC was not connected to M1, but to SMA during
MI (Mizuguchi et al., 2013). The SMA is causally connected
into the DLPFC and this relates to higher-order cognitive
motor processes such as motor control and preparation (O’Shea
and Moran, 2017). Therefore, the coupling strength from the
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SMA to right DLPFC, which is already determined in the
resting-state, affects brain activity during MI; it influences MI-
BCI performance.

We observed changes in MI-BCI performance across different
sessions with various classifiers. This was motivated by the
variations observed in EEG (Lotte et al., 2007). We also
confirmed that different coupling strengths correlated with MI-
BCI performance (depending on the session or classifier), except
for the connections from the SMA to right DLPFC. Although
we did not observe a significant correlation with MI-BCI
performance across both sessions, coupling strength from the
left DLPFC to SMA, or from the left PMC to left DLPFC, may
also be important. Because there is no actual movement taking
place during MI, secondary motor areas such as the PMC and
SMA are more relevant to MI than M1 (Park et al., 2015b). We
found relations across several motor areas; however, none were
observed for M1. Even in stroke patients, the activity of the SMA
affects MI performance more than M1 (Park et al., 2015a).

The crucial relationship with MI-BCI performance was not
found using band power and questionnaires. Some studies
have reported that SMR such as mu rhythms in the resting-
state is related to MI performance (Blankertz et al., 2010;
Kwon et al., 2020). In fact, this argument seems plausible
because alpha and beta power are decreased during the MI
and used as typical features of the MI paradigm. However,
other studies did not observe the significant correlation between
spectral power and MI-BCI performance (Jeunet et al., 2015).
Interestingly, even though it turns out to be an obvious consistent
relationship between the MI-BCI performance and SMR, no
significant correlation has been revealed. This is probably
due to differences in experimental protocols. Previous studies
presented SMR as a reliable predictor were instructed to imagine
moving the hand itself. However, in other studies, the rotation
of hand can be imagined. In other words, it is a different
protocol. In our study, the subject imagines grasping their
hands. Therefore, the resting-state SMR is clearly associated
with brain changes during the MI, but their role as an MI-BCI
predictor may vary depending on the experimental protocol.
We also used the mu power based on a shorter baseline
period, whereas the mu rhythm predictor in another study was
computed as the maximum difference between the power spectral
density and the estimated noise floor over the Laplace-filtered
sensorimotor channels (Blankertz et al., 2010). In this regard,
different ways of extracting mu rhythm are likely to have had
these different observations. In addition, the brain activity—
such as band power during resting-state—simply indicates
the state of certain brain regions, but it cannot indicate the
interregional relationships (Lee et al., 2017); these connections,
in addition to the sensorimotor cortex associated with the motor
network, seem significant (Sharma et al., 2006). In fact, resting-
state connectivity is correlated with motor task performance
(Gregory et al., 2014). Previous studies have investigated several
networks enacting MI (Lorey et al., 2011). It appears that brain
connectivity is more relevant to MI performance than the brain
activity of certain regions. Furthermore, the questionnaires were
too subjective because each subject had different criteria for
predicting MI-BCI performance.

TABLE 8 | Correlations between connectivity strength and MI performance based
on CSP-cv.

ROI Session 1 Session 2

From To r-value p-value r-value p-value

lM1 SMA 0.054 0.698 0.018 0.898

rM1 SMA −0.084 0.546 0.034 0.805

lPMC SMA −0.193 0.163 −0.177 0.200

rPMC SMA −0.076 0.584 −0.069 0.618

lDLPFC SMA 0.381 0.005* NaN NaN

rDLPFC SMA −0.037 0.791 NaN NaN

SMA lM1 −0.117 0.398 NaN NaN

rM1 lM1 −0.217 0.115 −0.082 0.554

lPMC lM1 −0.173 0.212 −0.104 0.453

SMA rM1 0.010 0.940 NaN NaN

lM1 rM1 −0.055 0.694 −0.052 0.708

rPMC rM1 0.091 0.513 0.058 0.675

rPMC lPMC 0.175 0.206 −0.030 0.831

lPMC rPMC 0.073 0.599 0.076 0.586

SMA lDLPFC 0.010 0.943 −0.071 0.610

lPMC lDLPFC −0.061 0.659 −0.331 0.014*

rDLPFC lDLPFC 0.117 0.398 −0.211 0.125

SMA rDLPFC 0.536 <0.001** 0.419 0.002**

rPMC rDLPFC −0.020 0.883 0.154 0.266

lDLPFC rDLPFC 0.036 0.795 −0.017 0.906

In Session 1, Model 4 is selected and there are 20 connections. In Session 2, Model
2 is selected and there are 16 connections. Therefore, four connections in Session
2 are excluded (‘NaN’). The p-values below 0.05 are highlighted in bold. ROI, region
of interest; l/rM1, left/right primary motor cortex; l/rPMC, left/right pre-motor cortex;
l/rDLPFC, left/right dorsolateral prefrontal cortex; SMA, supplementary motor area.
* with no correction and **<Bonferroni correction.

By applying our results to the BCI-inefficiency problem,
it can be seen that a possible reason for BCI-inefficiency
is that subjects have a less active motor network in the
motor preparation regions related to cognitive processes in the
resting-state (Ahn et al., 2013). Therefore, improvement of MI
performance requires a new approach to activate the motor
network. Performing upper extremity exercises is a good way
to activate a motor network during the resting-state (Ma et al.,
2011). In stroke patients, upper extremity rehabilitation has
been shown to activate the resting-state effective connectivity of
the motor network (Andrew James et al., 2009). This implies
that MI-BCI performance can be improved by enhancing the
connectivity strengths associated with motor planning, such
as the coupling strength from the SMA to right DLPFC.
Therefore, if subjects had been asked about their exercise habits
in the pre-experimental questionnaire, the responses may have
shown some correlation with MI performance. As another
approach, the resting-state motor network can be improved
by the direct stimulation of the brain, through transcranial
direct current stimulation or transcranial magnetic stimulation
(Fischer et al., 2017).

This study had a few limitations. First, we did not check
whether ME performance was predictable using our proposed
coupling strength. ME and MI share a common mechanism
and motor circuit-related motor network (Lee et al., 2016;
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FIGURE 4 | Correlation between connectivity strength from SMA to right DLPFC and MI-BCI performance. Each colored dot represents an individual connectivity
strength from SMA to right DLPFC and MI performance. Blue and red indicate Session 1 and Session 2, respectively. SMA, supplementary motor area; DLPFC,
dorsolateral prefrontal cortex; CSP-cv, common spatial pattern with cross-validation; CSP, common spatial pattern; CSSP, common spatio-spectral pattern; FBCSP,
filter bank common spatial pattern; BSSFO, Bayesian spatio-spectral filter optimization.

TABLE 9 | Relationship between actual MI performance and predicted MI
performance using connectivity strength from SMA to right DLPFC.

Classifier Session 1 Session 2

r-squared RMSE (%) r-squared RMSE (%)

CSP_cv 0.28 13.79 0.11 14.55

CSP 0.31 15.78 0.10 16.73

CSSP 0.25 16.46 0.14 17.21

FBCSP 0.20 17.97 0.17 17.05

BSSFO 0.21 18.04 0.11 17.63

CSP_cv, common spatial pattern with cross-validation; CSP, common spatial
pattern; CSSP, common spatio-spectral pattern; FBCSP, filter bank common spatial
pattern; BSSFO, Bayesian spatio-spectral filter optimization.

Daeglau et al., 2020). In this regard, it would have been more
effective to examine the relationship with ME performance, to
enable the wider use of the predictor in the future. Second,
we used all brain regions when finding predictors through
the DCM. However, measuring the entire brain is impractical.
Therefore, based on our results, we need to use only a small
number of EEG channels to predict MI-BCI performance in
the future. Third, we used only grasping imagery, and brain
activity is known to vary depending on the type of action. For
example, the SMA activity depends on whether it executes a
large movement (e.g., wrist movements of hand rotation) or

a small movement (e.g., finger movements in hand grasping)
(Park et al., 2015b). Therefore, it is necessary to apply them
accordingly to different actions. Last, computation time is
very important in real applications. The model and specific
ROIs are already selected, so we can measure the proposed
strength in sec. Nevertheless, we did not directly compare the
existing paper with the computation time. Therefore, in the
future, it is necessary to compare the computing time for
this practicality.

CONCLUSION

We proposed an MI-BCI predictor from the resting-state
EEG using DCM. Our study is valuable in two ways. The
first is its investigation of the effective connectivity (with
directionality) related to MI performance; it facilitates a
more analytical understanding of why the performance
is lower in low-MI groups. Our results suggest that for
subjects with “BCI-inefficiency,” appropriate alternatives can
be implemented to improve MI-BCI performance. Second,
we show the possibility of predicting MI performance
using predictors measured before the time-consuming
MI-BCI experiment takes place. Therefore, our predictor
can be used to sort out BCI-inefficiency before subjects
perform a task in the real application. This can help prevent
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the unnecessary waste of time and resources when implementing
MI-BCI in practice.
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