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How do we come to like the things that we do? Each one of us starts from a relatively
similar state at birth, yet we end up with vastly different sets of aesthetic preferences.
These preferences go on to define us both as individuals and as members of our
cultures. Therefore, it is important to understand how aesthetic preferences form over
our lifetimes. This poses a challenging problem: to understand this process, one must
account for the many factors at play in the formation of aesthetic values and how
these factors influence each other over time. A general framework based on basic
neuroscientific principles that can also account for this process is needed. Here, we
present such a framework and illustrate it through a model that accounts for the
trajectories of aesthetic values over time. Our framework is inspired by meta-analytic
data of neuroimaging studies of aesthetic appraisal. This framework incorporates
effects of sensory inputs, rewards, and motivational states. Crucially, each one of
these effects is probabilistic. We model their interactions under a reinforcement-learning
circuitry. Simulations of this model and mathematical analysis of the framework lead
to three main findings. First, different people may develop distinct weighing of aesthetic
variables because of individual variability in motivation. Second, individuals from different
cultures and environments may develop different aesthetic values because of unique
sensory inputs and social rewards. Third, because learning is stochastic, stemming from
probabilistic sensory inputs, motivations, and rewards, aesthetic values vary in time.
These three theoretical findings account for different lines of empirical research. Through
our study, we hope to provide a general and unifying framework for understanding the
various aspects involved in the formation of aesthetic values over time.

Keywords: aesthetics (as scholarly discipline), reinforcement leaning, art, motivation, preference, computational
modeling

INTRODUCTION

Our aesthetic preferences are an important part of our lives because they shape our decision
making and consequently our personality (Skov, 2010). We define ourselves both as individuals
and as parts of larger groups through our likes and dislikes (Brown and Dissanayake, 2009).
How exactly do these individual preferences come about? Currently, little is known about how
preferences form early on and what happens to them throughout our lives. Understanding
this process of preference formation has important implications not just for aesthetics, but for
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philosophy, psychology, neuroscience, marketing, and many
other fields. Indeed, philosophy was likely the first discipline to
ponder this question (Sartwell, 2012). Philosophers have long
wondered whether beauty is shared (universal) or in the eye of
the beholder (individual)? We discuss this philosophical question
in greater detail elsewhere but touch on it briefly here to frame
our work. In our earlier publication, we argue that one can
think of universal aspects of preference as innate, formed due
to evolutionary pressures (Aleem et al., 2019). Examples include
preferences for round contours, symmetry, and contrast. Such
preferences are likely present at birth across all populations
(Göksun et al., 2014). Here, we are instead more interested in
the learned aspects of aesthetic preferences. Specifically, how do
individualized aesthetic preferences form under constraints from
our environment and experience? How do existing universal
aspects of these preferences undergo individual and context-
specific changes?

Aesthetic preferences form early on in life, such that by
preschool age, children already show idiosyncrasies of their
cultures (Senzaki et al., 2014). Furthermore, these preferences
continue to evolve over our lifetimes (Park and Huang, 2010).
What mechanisms underlie this lifetime evolution? Many of
the existing frameworks of aesthetics do not explicitly consider
the time-course of preferences. However, several frameworks
stress its importance implicitly by focusing on time sensitive
variables such as learning and exposure. For example, Leder et al.
stress the importance of familiarity, which has been shown to
influence preference over time (Leder et al., 2004). However,
the framework proposed by Leder et al. is primarily concerned
with understanding the aesthetic experience as it plays out, not
how preferences form. A closer perspective comes from Vessel
and colleagues, who develop an associative theory of aesthetics
(Biederman and Vessel, 2006; Vessel and Rubin, 2010). In their
view, aesthetic preferences are shaped by associative experiences
over our lifetimes. However, their theory focuses primarily on
reasons for shared versus individual tastes, not the dynamics of
preferences over time per se. Several other theories and empirical
findings have implications for temporal aspects of aesthetics (see
section “Discussion”), but a framework specifically dedicated to
understanding this aspect is so far missing.

What should a framework that aims to understand the
dynamics of preferences over-time look like? We have
constrained our search for such a framework to be within
the general principles of neuroscience. Moreover, we have
avoided frameworks in which aesthetic values are formed by
specialized mechanisms, but rather have focused on known and
existing circuitry. A relevant meta-analysis of neuroimaging
studies supports this viewpoint for our framework (Brown
et al., 2011). These authors analyzed commonalities of aesthetic
appraisal across multiple sensory modalities. The results show
generalized mechanisms for appraisal centered around a reward-
based learning circuit. The central importance of reward is
further bolstered by many other imaging studies of aesthetics and
appraisal (Lacey et al., 2011; Vartanian and Skov, 2014; Wang
et al., 2015). These studies suggest that a reward-based learning
mechanism, likely, reinforcement learning, is fundamental to any
framework for understanding how aesthetic preferences form.

However, these studies and the results from the meta-analysis
by Brown et al. (2011), suggest that many factors influence
this process of reward-based learning. For example, these
factors include interoceptive inputs such as motivations and
exteroceptive inputs such as the statistics of sensory stimuli
(Brown et al., 2011).

How can a reasonable mechanism of reinforcement learning
account for aesthetic individuality? Our individual motivations
can greatly influence how we interact with the environment
and what decisions we make, thereby having a direct effect
on our preferences (Nelson and Morrison, 2005). Motivations
can influence reward, for example, activation in reward related
regions in the brain in response to certain foods is greatly
modulated by food specific satiation (Howard and Kahnt, 2017).
Similarly, Brown et al., consider internal drives, or motivations
as a key factor in aesthetic appraisal. Since such motivations are
individual, they can help account for individuality (Silvia et al.,
2009). Therefore, this suggests that motivation may modulate
learning of aesthetic preferences. Next, we consider an important
factor in aesthetic learning not explicitly addressed by Brown
et al., that is, the statistical nature of inputs. Evidence suggests that
our perception of incoming inputs is statistical in nature (Pouget
et al., 2013). Sensory inputs show many statistical properties
that convey useful information which can influence aesthetic
preferences. For example, preference for facial symmetry has
been shown to be modulated by the presence of pathogen
cues (Little et al., 2011). This statistical nature also accounts
for differences in preferences amongst cultures, as they impose
contingencies on rewards through value systems (Park and
Huang, 2010). Finally, internal states such as motivation are also
statistical, because we act according to states that vary across
time (for example, hunger, tiredness, and sex drive) (Craig,
2009). Sensory inputs, rewards, and motivation do not form a
comprehensive list, since a theoretical framework for the learning
of aesthetic values is not complete without accounting for
semantics, expertise, and much more. However, our framework
may capture some of the essential components of aesthetic
learning and thus, helps us focus on a simpler model that raises
testable predictions. By keeping the model general, we leave
ample room for further modifications and increase in complexity.

Following the guidelines listed above, we developed a
theoretical framework and a related computational model to
investigate the formation and dynamics of aesthetic preferences.
The model focuses on visual aesthetic preferences, but our
interests go beyond vision or art per se. Instead, we are
interested in a theoretical framework that is general to the many
different domains of preferences. A detailed description of our
framework is presented in section “Theoretical Framework.”
In turn, section “Materials and Methods” develops the model
and described methods for computer simulations of this model.
We used these simulations and mathematical analyses to test
the following questions: First, we investigated whether aesthetic
values would show a dynamic time course, possibly with multiple
stages. Moreover, we considered whether these values would
be stochastic due to the probabilistic nature of the inputs.
Second, we explored how the contingent probabilities of the
different variables could lead to a segregation of different
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trajectories, possibly mimicking different cultures. Third, we
investigated whether the individual specific motivation variable
would lead to further partitioning of learning trajectories, leading
to individuality.

THEORETICAL FRAMEWORK

We have split the description of the theoretical framework
into two subsections, general and mathematical. The general
section has a description of the ideas without any equations.
Our goal here is to help the reader understand the elements
of the theoretical framework at an intuitive level. In turn, the
mathematical section lays out the equations used to specify the
framework precisely. The general description section may allow
some readers to skip the equations and go directly to the Results.

General Description of the Theoretical
Framework
A general overview of our theoretical framework can be seen
in Figure 1. The green boxes in this figure illustrate the core
reinforcement-learning system. We discuss it briefly here but see
Sutton and Barto (2018) for an extensive overview. In typical
reinforcement learning, the system first receives inputs from the
external world and from the body (orange boxes). The system

then uses these inputs to form an internal model to estimate
the reward when taking some action (“Reward Estimation”
box), commonly referred to as value. When rewards arrive
(“Reward” box), they are compared with the estimated reward
(“Comparator” box). If there is a mismatch, the system “learns”
by updating the parameters of the internal model. This update
allows the system to achieve its goal of producing better reward
predictions in the future.

While we based our aesthetic-learning theoretical framework
largely on reinforcement learning, our framework has four
notable extensions, which make it noteworthy:

First, we propose that the estimate of reward is equivalent
to aesthetic value. To help understand this proposal, consider
the following example. Imagine a person looking at an apple
and smelling it, trying to decide whether to eat it. From the
information that the sensory systems collect from the apple, the
person makes a prediction about the rewards gained by eating
the apple, for example, how sweet and nutritive it is. Then, if
the person eats it, their brain will compare actual rewards and its
predictions, in updating its model of apples if necessary. Hence,
their brain learns that certain statistical properties of apples,
for example, shape or color can inform the prediction on their
value, which guides the preference for them. Now imagine that
the same individual gazes at a painting of an apple. Since some
of the same statistical signals may be present in the painting,

FIGURE 1 | A Schematic overview of our theoretical framework. The framework uses the core reinforcement-learning circuitry (green boxes) with three kinds of
inputs (orange boxes). These inputs are statistical, and are both external (sensory inputs and rewards) and internal (motivation) to the brain. The statistics are
conditional on each individual and the society of origin of the individual (blue boxes). We postulate the aesthetic value is equivalent to the statistically estimated
reward in the reinforcement-learning process.
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a similar prediction of reward, or value, is still generated. We
propose that the previously learned value will still influence
the experience of viewing the painting. If the statistics were
previously rewarding, the painting will also elicit high value and
generally elicit preference to a similar degree. Therefore, the
previous learned value is converted into an aesthetic value.

Second, we incorporate the concept of motivation within the
reinforcement-learning circuitry. Motivation, by our definition,
is somewhat akin to policy (Averbeck and Costa, 2017). It refers
to the internal drive of an individual, representing their likelihood
to act given an input. For example, if an individual is not hungry,
this person will not have the motivation to try a certain food and
therefore not learn about its value. However, motivation is not
limited to acts of consumption. Experimental interventions can
increase the “need” for abstract concepts such as complexity or
cognitive closure (Tinio and Leder, 2009; Steciuch et al., 2019).
Furthermore, one can choose whether to engage mentally with a
work of art if they are motivated. In our framework, motivation
is probabilistic, varying from one moment to another, a behavior
generally reflecting findings of interoceptive states in humans
(Craig, 2009). How does motivation ultimately affect learning?
In the simplest manner, motivation controls the rate of learning
by slowing it down or accelerating it when the motivation is low
or high, respectively. More generally, motivation may affect the
learning of certain aesthetic values. For example, an individual
who rarely eats fruits may not learn a high aesthetic value for
inputs related to fruit.

Third, both interoceptive and exteroceptive inputs to the
theoretical framework are statistical (orange/blue boxes in
Figure 1). The statistical distributions of these inputs should have
significant effects on the learning of values. In detail, statistical
interoceptive inputs reflect the variation of motivations across
individuals and over time in a single individual (blue boxes).
On the other hand, the exteroceptive inputs correspond to
both rewards and sensory signals (orange boxes). The statistical
nature of these signals reflects the variations of the external
world and how different individuals experience it (blue boxes).
Continuing our example above, an apple’s sensory signals would
be about smell, shape, color, and taste, the reward would be about
calories and vitamins, while the interoceptive signals would be
the appetite to eat it. The statistical nature of our theoretical
framework has three important implications: One, it allows us
to generalize over variations of individuals and objects. Two,
it ensures that the interoceptive and exteroceptive signals vary
stochastically over time, which better approximates real-world
conditions. Three, in real life, the statistics of rewards and sensory
signals are often correlated, for example, the color and shape of
an apple is an indicator of its ripeness. In turn, these attributes
influence internal states, for example, a ripe looking apple will
be more appetizing. We can model these relationships by using
probabilistic distributions for these variables.

Fourth, the inputs to our theoretical framework (orange
boxes) depend not only on individuals but also across societies
(blue boxes). Therefore, we propose the existence of a parameter
space whose values are different across groups (nations, cultures,
societies). This means that the distributions of individual
statistics are largely conditional on these external parameters.

These parameters may specify ecological differences, for example,
differences in climates, genetic predispositions, or exposure
to diseases (Little et al., 2007; Sorokowski et al., 2014). The
social parameters may also specify cultures values, for example,
different rewards for certain colors or styles (Masuda et al., 2008;
Park and Huang, 2010). By setting the model in the context of
social and environmental backgrounds, we can approximate how
different societies and cultures form distinct aesthetic values.

In sum, our model begins from a basic circuitry of reward-
based learning. Inspired by empirical findings, we expand on this
circuitry to include probabilistic inputs, internal drives, and other
external contingencies. The combination of these factors allows
our model to account for a range of phenomena from the societal
all the way to the individual level.

Mathematical Description of the
Theoretical Framework
Let the sensory inputs be N dimensional, with the various
components corresponding to variables that the brain uses to
represent the external world:

Eu (t) = [u1 (t) , u2 (t) , · · · , uN (t)]

where the overhead arrow indicates a vector, and t indicates that
sensory inputs vary (stochastically) over time.

In this paper, we assume that the model used for estimating
reward is linear. Although this assumption is common in
reinforcement-learning models (Dayan and Abbott, 2001), it is
not necessary. We make this assumption here for the sake of
simplicity, but address the consequences in the Discussion. The
assumption means that a parameter vector:

Ew (t) = [w1 (t) , w2 (t) , · · · , wN (t)]

exists such that the estimated reward is:

v (t) = m (t) Ew (t) · Eu (t) (1)

where 0 ≤ m(t) ≤ 1 is the motivation function. This equation
is important, because learning occurs in the presence of actual
rewards by adjusting the w’s. The introduction of the m function
is a modification of standard reinforcement-learning models,
which would use Eq. 1 with m = 1. This modification is necessary,
since people only get rewards if they act. Thus, if we interpret m
as the probability of acting, then the received reward is:

r (t) = m (t) r∗ (t) (2)

where r∗ is the reward that a fully motivated person would get.
The presence of m in the reward estimate (Eq. 1) considers that
reward itself varies with motivation (Eq. 2).

The typical learning in reinforcement-learning
theories follows the precept of temporal difference
(Dayan and Abbott, 2001)

δ (t) = r (t)− v(t) (3)

dEw (t)
dt
= kδ (t) Eu (t) (4)
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where k > 0 is a constant. Equation 4 is a continuous version of
the delta rule and thus, tends to minimize the difference between
v and r. Therefore, this minimization makes the estimated reward
as close as possible to the real one. An important property of
this equation is that because motivation affects both v and r
(Eqs. 1 and 2), it affects learning through the delta (Eq. 3). This
is important, since it shows that with no motivation, learning
freezes. The freezing makes sense, since for example, if a person
is not hungry, then the person will not eat. Thus, the person
cannot learn if the estimated reward is large or small in regards
to that specific food.

To complete the theoretical framework, we need to specify the
statistical properties of Eu, m, and r∗ Let us begin by considering
Eu and r∗. Both these variables are exteroceptive signals but with
different origins. While Eu is sensory (for example, seeing and
smelling an apple) and used for estimating reward, r∗ arises
from the action (for example, eating the apple). As explained
in section “General Description of the Theoretical Framework,”
these variables are dependent, possibly exhibiting correlation. In
a sense, the model acquires this correlation, using it to predict
r∗ from Eu. Thus, we are interested in the probability density
functions:

P
(
EIu|EB

)
, P
((
Eu (t) , r∗ (t)

)
|EIu
)

(5)

where EB indicates the vector of parameters characteristic of the
social and environmental background under consideration and
EIu is the vector of parameters of an individual in this society.
Consequently, the first probability density function in Eq. 5 is the
probability of finding an individual, while the second gives the
rewards and sensory inputs that this individual gets over time.

Finally, we must specify the statistical properties of m. Because
it represents interoceptive signals related to motivation, m
depends on each individual. However, motivation also depends
on the sensory input Eu. If, say, a person is hungry, but the sensory
input is not food, then the individual will not have a motivation
to act, that is, to eat. But if by changing the gaze, the sensory input
is changed to an appetizing food, the person will be motivated to
act. We thus write the probability density function of m as:

P
(
EIm|EB

)
, P
(
(m (t)) |Eu (t) ,EIm

)
(6)

where we insert EB to indicate that individual motivation may
depend on environmental and social backgrounds. For example,
the motivation to smoke is prevalent in some societies but
not others (Dechesne et al., 2013). As for Eq. 5, the first
probability density function in Eq. 6 is the probability of finding
an individual, while the second gives the motivations that this
individual has over time.

MATERIALS AND METHODS

We studied the implications of our theoretical framework
through mathematical analyses and computer simulations. In
section “Methods for Computer Simulations,” we describe the
mathematical details of simulating the model, with steps to
simplify the procedure. Next, in section “Illustrative Model,” we
describe the properties of the illustrative model used in this

paper, listing each component and its technical rationale. We
then describe the algorithm to simulate the model in section
“Summary of the Simulation Procedures.” Finally, we describe
the parameters used in the standard simulation in section
“Standard Simulation Parameters.” For those readers who do
not have a mathematical background, we suggest first reading
section “Summary of the Simulation Procedures.” That section
may help get an overall understanding before reading the other
sections for details.

Methods for Computer Simulations
We must simulate Eqs. 1–4. Combining these equations, we get:

dEw (t)
dt
= km (t)

(
r∗ (t)− Ew (t) · Eu (t)

)
Eu (t) (7)

This is a stochastic differential equation, because the Eu, m,
and r∗ come from samples of the probability distributions
in Eqs. 5 and 6.

We simplify our simulations through a mean field
approximation of Eq. 6:

dEw (t)
dt
= km̄

(
Eu (t) : EIm

) (
r∗ (t)− Ew (t) · Eu (t)

)
Eu (t) (8)

where m̄
(
Eu (t) : EIm

)
is the mean motivation as a function of the

sensory input Eu (t) and parametric on EIm. The advantage of the
approximation in Eq. 8 is that we do not simulate the noise in
the motivation states, but only their deterministic dependence
on the sensory inputs. Nevertheless, the motivation will remain
stochastic, because so are the sensory inputs.

To approximate a solution to Eq. 8, we must discretize time
and sample Eu, m, and r∗ for every t. We do this discretization as
follows:

Ew
(
tk+1

)
= Ew (tk)+ εm̄

(
Eu
(
tk+1

)
: EIm

)(
r∗
(
tk+1

)
− Ew (tk) · Eu

(
tk+1

))
Eu
(
tk+1

)
(9)

where ε = k
(
tk+1 − tk

)
, with tk+1 − tk being constant (for k = 0,

1, 2, . . .).

Illustrative Model
We performed computer simulations using an illustrative model
developed from our theoretical framework. Although this model
is just illustrative, we point out in the Results outcomes
of mathematical analyses showing that the most important
conclusions of the model simulations are general. We also address
the generality of the simulation results in the Discussion. In this
section, we specify the illustrative model used in the simulations.
Because this section is highly technical, we provide a summary
of the model with figures in the next section (section “Summary
of the Simulation Procedures”). Section “Standard Simulation
Parameters” describes the standard parameter set used in the
model simulations.

To specify a model, we need to provide the probability
functions in Eq. 5, the P

(
EIm|EB

)
function in Eq. 6, and the m̄

function in Eq. 8. To begin, we took five steps to simplify the
model to make the simulations fast:
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A. We did not simulate social noise by implementing
explicitly P

(
EIu|EB

)
and P

(
EIm|EB

)
. Instead, we set individual

parameters by hand, changing them for different
individuals to study the parametric dependence of
the model:

B. We split the individual parameters EIu into sensory related
(EIs) and reward related (EIr):

EIu =
[
EIs,EIr

]
(10)

Thus, we divided the EIu parameters into lower-dimensional
ones that separately control the samplings of Eu and r∗.

C. We made Eu two-dimensional. One component was visual
balance (ub) and the other was visual complexity (uc),
making:

Eu = [ub, uc]

where 0 ≤ ub, uc ≤ 1, as per the definitions in
(Aleem et al., 2017).

While our model is amenable to a range of sensory inputs,
we simplified it to two variables in the visual domain
for illustrative purposes. We briefly describe these two
variables here, but refer the reader to existing literature
to gain a deeper understanding. The component of visual
balance but can best be surmised as an equal amount
of visual weight across an image, often measured by
pixel intensities (Wilson and Chatterjee, 2005). Visual
complexity, on the other hand, can be best described as the
amount of information in an image, for example the range
of pixel intensities present (Donderi, 2006). An important
interaction exists between these two variables in that they
are generally negatively correlated. For example, as an
image becomes more balanced (organized), its complexity
generally decreases (Aleem et al., 2017). We explore this
relationship in our experiments to test whether the two
variables compete and influence learning.

D. We split the second term of Eq. 5 into:

P
((
Eu, r∗

)
|EIu
)
= P

(
ub, uc|EIs

)
P
(
r∗|ub, uc,EIr

)
(11)

Thus, instead of sampling directly from a relatively
complex three-dimensional space (two for Eu and one for
r∗), we split the problem. We first sampled from a simpler
two-dimensional space and then used the outcome to
condition the sampling of a one-dimensional space. The
splitting of probabilities in these steps greatly reduces
the computation time required for sampling. However,
having separate sensory and reward parameters in the
two probability distributions increases the degrees of
freedom, potentially leading to a wider range of observable
behaviors. For example, the sensory and reward functions
could be varied independently.

E. To model the various variables in our simulations, we
assumed they had Gaussian distributions. While natural
scene statistics and neural-reward related processes can
have a multitude of probability distributions (Field, 1994),
one can often approximate them with Gaussian processes
(Wainwright and Simoncelli, 2000; Dabney et al., 2020).

Hence, using Gaussian distributions here allowed us to
explore the theory from a parsimonious viewpoint. In
addition, sampling Gaussian distributions is fast, because
of the abundance of code available for this purpose.
However, future iterations could benefit from employing
other distributions.

We modeled the first term of the right-hand side of Eq. 11 with
a truncated bivariate Gaussian distribution (Rosenbaum, 1961),

P
(
ub, uc|EIs

)
= Tr (G2 (ub, uc : µb, µc, 6)) (12)

where G2 is the Gaussian over the variables ub and uc, with means
Eµ = [µb, µc] and covariance matrix:

6 =

[
σ2

ub
ρσubσuc

ρσubσuc σ2
uc

]

where σub and are standard deviations in the ub and uc directions
respectively, and ρ is the correlation between ub and uc. In turn,
the truncation function Tr(G2) is:

Tr
(
G
(
x, y

))
=

1∫ 1
0
∫ 1

0 G2
(
x, y

)
dxdy

{
G2
(
x, y

)
if 0 ≤ x, y ≤ 1

0 otherwise

With these definitions for the first term of the right-hand side of
Eq. 11, the individual sensory-parameter vector is therefore,

EIs =
[
µb, µc, σub , σuc , ρ

]
(13)

To model rewards associated with the sensory variables, we
assumed independent contributions of rewards from balance (r∗b )
and complexity (r∗c ), and then summed these contributions, that
is,

r∗ = r∗b + r∗c (14)

Hence, if we have P
(
r∗b |ub,EIr

)
and P

(
r∗c |uc,EIr

)
, then we can

calculate P
(
r∗|ub, uc,EIr

)
as:

P
(
r∗|ub, uc,EIr

)
=

∫
∞

−∞

P
(
r∗b |ub,EIr

)
P
(
r∗c = r∗ − r∗b |uc,EIr

)
dr∗b

Consequently, all that remains to do to specify the second right-
hand term of Eq. 11 is to define P

(
r∗b |ub,EIr

)
and P

(
r∗c |uc,EIr

)
.

To start with the probability density function P
(
r∗b |ub,EIr

)
,

balance was positively related to reward (Wilson and Chatterjee,
2005). In the simplest mathematical form, balance and reward
would obey a linear relationship. We thus define:

P
(
r∗b |ub,EIr

)
= G1

(
r∗b : −α+ 2αub, σr∗b

)
(15)

where G1 is the univariate Gaussian distribution over the variable
r∗b , and α, σr∗b

> 0 are parameters. The mean of the Gaussian is
−α+ 2αub and the standard deviation is σr∗b

. The mean is such
that the integral of −α+ 2αub over the range of ub(0 ≤ ub ≤ 1)
is zero. Positive and negative rewards occur in equal amounts.

We next define P
(
r∗c |uc,EIr

)
. Several studies have shown that

the preference for complexity displays an inverted U-curve
behavior, that is, people like moderate amounts of complexity
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more than they do little or much complexity (Berlyne, 1971;
Donderi, 2006; Güçlütürk et al., 2016). A simple form for the
relationship between reward and complexity is a Gaussian shape.
We thus define:

P
(
r∗c |uc,EIr

)
= G1

(
r∗c : φ (β, γ, θ)+ βe−

(uc−γ)2

2θ2 , σr∗c

)
(16)

where G1 is now over the variable r∗c . The parameters are β, σr∗c >
0, 0 ≤ γ ≤ 1, and θ, while φ (β, γ, θ) is a function of them. The
integral of φ+ βexp

(
− (uc − γ)2 /

(
2θ2)) over the range of uc

(0 ≤ uc ≤ 1) is zero. Because φ+ βexp
(
− (uc − γ)2 /

(
2θ2)) is

the mean of the Gaussian and σr∗c is the standard deviation, we
have the same amount of positive and negative rewards.

With the definitions in Eqs. 15 and 16, the individual reward
parameter vector is therefore,

EIr =
[
α, σr∗b

, β, γ, θ, σr∗c

]
(17)

Finally, we defined the motivation function in Eq. 8, namely,
m̄
(
Eu (t) : EIm

)
. For the sake of simplicity and illustration, we

modeled m̄ as independent of ub. As for the dependence on uc,
we consider different individuals with different peak preferences
in terms of complexity. We also use the Gaussian shape to model
this peak:

m̄
(
Eu (t) : EIm

)
= mmin + (mmax −mmin) e

−
(uc−µm)2

2σ2
m (18)

where 0 ≤ mmin, mmax, µm ≤ 1 and σm are parameters. The
parameters mmin and mmax are the minimal and maximal
motivations respectively. In turn, µm is the complexity yielding
maximal motivation and σm controls how quickly motivation
falls as uc moves away from µm. With Eq. 18, the individual
motivation parameter vector is:

EIm = [mmin, mmax, µm, σm] (19)

Summary of the Simulation Procedures
The simulations proceed with the following algorithm:

a. Suppose that at time tk the weights are Ew (tk).
b. Sample sensory inputs, Eu

(
tk+1

)
=[

ub
(
tk+1

)
, uc

(
tk+1

)]
from Eq. 12.

c. Sample reward for balance, r∗b
(
tk+1

)
from Eq. 15.

d. Sample reward for complexity, r∗c
(
tk+1

)
from Eq. 16.

e. Compute overall reward, r∗
(
tk+1

)
from Eq. 14.

f. Compute motivation, m̄
(
Eu
(
tk+1

)
: EIm

)
from Eq. 18.

g. Compute updated aesthetic weights, Ew
(
tk+1

)
from Eq. 9.

h. Start the process again at Step a, but at time tk+1.

An example of 30,000 samples of the sensory inputs
from Step b in a typical simulation appears in Figure 2.
Figure 2A illustrates that balance and complexity exhibit
negative correlation. Figures 2B,C show typical examples of the
distributions used for the samples in steps c and d, respectively.
In our model, reward tends to increase linearly with balance,
except for the probabilistic distribution of rewards (Wilson
and Chatterjee, 2005). Probabilistic fluctuations also affect the

dependence of reward on complexity, but the general trend is
that of an inverted U-curve behavior (Figure 2C; Donderi, 2006).
Importantly, the distributions in Figures 2B,C illustrate that
rewards can be both positive and negative. In these figures and
in our simulations, positive and negative rewards are balanced,
summing to zero. Finally, Figure 2D illustrates the typical
shape of the motivation function in Step f. The illustration
superimposes color-coded magnitudes of motivation on samples
of sensory inputs as in Figure 2A. In our illustrative model,
motivation only depends on complexity and has a peak at a
particular magnitude of complexity. The peak complexity is
distinct for different individuals (not shown in Figure 2D). One
may associate individuals with motivations for higher complexity
with risk-taking, because high complexity tends to present
more uncertainties, at the possible benefit of more information
(Furnham and Bunyan, 1988). Similarly, motivations for low
complexity may be associated with risk aversion.

All simulations were performed with code specially written
in MATLAB R2019b (MathWorks, Natick, Ma, United States).
This code is available in an online repository (Supplementary
Materials, Section A).

Standard Simulation Parameters
In this paper, we report on simulations with different parameter
sets to explore the model. We have designated one of these sets as
our standard set (see Table 1), because the corresponding results
capture the data in the literature reasonably well. We also show
simulations with other parameter sets to illustrate individual
differences and analyze the various behaviors of the model. The
table below shows the parameters of the standard simulations.
Parameters for other simulations are indicated as appropriate in
the Results.

RESULTS

The following sections outline the results of our simulations
and the mathematical analyses. In our first experiments (sections
“Learning Dynamics of Aesthetic Weights” and “Understanding
the Fast and Slow Phases of Learning”), we looked at the
time course of how aesthetic values form by looking at the
learned weights. We were particularly interested to see if there
were multiple phases (section “Learning Dynamics of Aesthetic
Weights”). We found this to be the case, thus in section
“Understanding the Fast and Slow Phases of Learning,” we
investigated the reasons behind this and found it has to do
with the shape of the function linking error between actual and
predicted rewards to balance and complexity. The results of our
first two experiments also showed that the weights for balance
and complexity diverged, indicating an apparent competition.
We explored the reasons for this apparent competition by varying
different aspects of our model (section “Understanding Apparent
Competition between Aesthetic Weights”). We found that
motivation was a key component of this apparent competition.
Therefore, in the next experiment, we further explored the role
of motivation (section “The Role of Motivation and Reward on
Aesthetic Individuality”). We found that differing motivation
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FIGURE 2 | Illustrations of the main functions of the model. (A) An illustration of 30,000 samples of the sensory inputs. (B,C) Illustrations of observed reward values
related to balance and complexity respectively. (D) An illustration of the motivation function related to sensory inputs. See Section “Summary of the Simulation
Procedures” after Points a-h for a detailed description of these illustrations.

functions can profoundly change the aesthetic weights learned.
We then compared this finding to that obtained with differing
social reward contingencies and saw a similar effect on aesthetic
weights. Finally, we explored the landscape of the learned
aesthetic values as a function of complexity and balance (section
“Beauty and the Emergence of the Peak-shift Effect”). We
discovered that certain regions of the sensory space had higher
learned values than average. We hypothesized that this landscape
might explain the value-exaggeration effect often observed in art.

Learning Dynamics of Aesthetic Weights
If aesthetic values are learned, then their corresponding aesthetic
weights change over time. Ideally, their dynamics would be so
that the values, i.e., the predicted rewards would approach the
actual rewards as much as possible. However, weights are not
free to change arbitrarily. They may exhibit interdependencies
(e.g., Figure 2A), and have different dependences on rewards and
motivations (Figures 2B–D). We performed multiple computer
simulations to gain an understanding of the dynamics of aesthetic
weights. An example with the model described in section
“Illustrative Model” and the standard parameters (Table 1)
appears in Figure 3.

The simulations in Figure 3A show an example of the
dynamics of the aesthetic weights for balance and complexity.
The weights start at [0,0], i.e., they reflect a hypothetical
individual who knows nothing about the importance of balance
and complexity at the initial point of learning (see section
“Discussion”). These weights then rise quickly in an initial
fast phase and then slow down in a divergent phase. In the
initial phase, both balance and complexity weights rise equally

in relation to each other (Figure 3A inset). However, after
this phase, an inflection point occurs. In the new phase, the
complexity weight continues to rise while the balance weight
drops, as if they are competing. Thus, these weights reach a state
of slow divergence. As time increases, both weights appear to
arrive to a stochastic equilibrium in relation to each other, with
their separation increasing at a slow pace.

A phase-phase plot is especially helpful to visualize the
learning dynamics (Figure 3B). Such a plot graphs the complexity
weight as a function of the balance weight, color-coding for
time. As the inset of Figure 3A shows, the rise of balance and
complexity in the initial phase is tightly correlated, indicated by
the linear slope in the phase plot. However, after the inflection
point, a much slower drift can be seen through the formation
of a cloud region. The dynamic moves slowly toward greater
complexity and lower balance, eventually forming a relatively
stable stochastic cloud.

Why does this stable cloud form in the phase plot? A
simple hypothesis would be that the weights gravitate around a

TABLE 1 | Standard set of parameters.

Parameter(s) Equation Values

Ew(t0) 9 [0,0]

ε 9 0.01

tk+1 − tk 9 1
EIs = [µb, µc, σub , σuc , ρ] 13 [0.5,0.5,0.2,0.2,−0.5]
EIr = [α, σr∗b

, β, γ, θ, σr∗c ] 17 [0.6,0.1,1,0.75,0.1,0.1]
EIm = [mmin, mmax, µm, σm] 19 [0.1,0.6,0.65,0.1]
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FIGURE 3 | The dynamics of aesthetic weights. (A) Balance (blue) and complexity (red) weights as a function of time. The early times of the dynamics appear in the
inset. (B) A phase-plot of the weights in (A) with time color-coded. Initially, the balance and complexity weights grow quickly at similar rates, but later, the complexity
weight grows whereas the balance weight falls, both at increasingly slower rates. These simulations of aesthetic-weight dynamics used standard parameters
(Table 1).

fixed point, not converging to it just because of the stochastic
nature of our model. Our mathematical analyses show a
more complex and interesting picture on the outcome of
learning than this hypothesis suggests. The learning process
leads to a gradient-descent-like optimization of the prediction of
reward (Supplementary Materials, Section B). Specifically, value
approaches reward as much as statistically possible as follows: If
for every τ there is a t > τ such that m (t) > 0, then the learning
process minimizes:

E (Ew) =

〈
(r (t)− v (t))2

m (t)

〉
t

(20)

where 〈 〉t stands for time average. The minimization of E (Ew)
with respect to the components of Ew in Eq. 20 implies that v (t)
tends to become statistically close to r (t). The near optimization
of value in terms of estimating reward as predicted by Eq. 20 is
confirmed by our computer simulations (Figure 4A). However,
v (t) does not converge exactly to r (t) because of two reasons:
First, the theoretical framework is stochastic. If the process were
not stochastic, then the value would converge exactly to the
reward. Second, the optimization of Eq. 20 is modulated by the
statistics of m (t), Eu, and r∗.

However, the mathematical analysis also shows that although
value tends to gravitate around a fixed point, the weights do
not necessarily do so (Supplementary Materials, Section C).
Different sets of weights can produce the same value. To be
more precise, we can define the following hyperplane in terms
of weights:

N∑
i=1

ai (t) wi (t) = v (t) (21)

where they ai (t) are:

ai (t) = m (t) ui (t) (22)

such any point in this hyperplane is compatible with the
value v (t). Because of this redundancy, the exact Ew (t) are
not always meaningful. Is having such a redundancy in weight
representation wasteful? The mathematical analysis shows that
this redundancy in weights is not arbitrary, but allows the
improvement of the learning rate (Supplementary Materials,
Section C). Mathematically, the weights Ew (t) aim to reach
the nearest point of the ideal hyperplane in a way that is
dependent on their initial conditions. Consequently, because of
the stochastic nature of the theoretical framework, the Ew (t) can
drift even if the value stays close to reward (Supplementary
Materials, Section C). With each new sample of Eu (t), m (t),
and r∗ (t), the Ew (t) simply pushes value toward the new
hyperplane defined by this sample. Thus, Ew (t) may not return
to past positions, possibly drifting according to a random-walk-
like trajectory.

Understanding the Fast and Slow Phases
of Learning
What are the underlying reasons for the fast and slow phases
of learning observed in Figure 3? Considering that values
follow a gradient descent (section “Learning Dynamics of
Aesthetic Weights”), we look toward the error between value
and reward for an answer. As Figure 4B shows, the error
function has a hammock-like shape when plotted against balance
and complexity weights. Consequently, the error function varies
rapidly along one direction and slowly along its perpendicular.
This shape leads to differences in gradients across regions of
the function. Thus, if the aesthetic weights start at a point with
an especially large error, they will experience a large gradient,
descending fast toward the minimum of the function (red line
in Figure 4B). If instead they start at a point with an especially
small error, they will descend slowly toward the minimum (green
line). Ultimately, as the weights approach the minimum of
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FIGURE 4 | Minimization of error and its relationship to learning dynamics. (A) Error between value and reward conditional on the statistics of motivation as a
function of time (Eq. 20). (B) Error between value and reward as a function of balance and complexity weights with three aesthetic-weight trajectories from different
initial conditions. In one trajectory, the error for the initial condition is especially large, leading to a fast, straight descent (red line). In another, the error for the initial
condition is especially small, leading to a slow, straight descent (green line). More typically, the descent is initially fast toward the shallow bed, and then curves and
slows down when there. These simulations used the standard parameters except for the initial conditions, which were [−1, −1] (red line), [1, −0.6] (green line), and
[0, 1] (yellow line).

the error function, gradients get smaller and the convergence
becomes more stochastic. Thus, weights become more sensitive
to variations of sensory inputs, rewards, and motivations. When
gradients are steep, weights tend to move to reduce the error
rapidly even in presence of input variations. Such initial fast
approach is consistent with the fast learning-rate explained in
section “Learning Dynamics of Aesthetic Weights.” Hence, the
initial conditions may dictate an initial fast approach to the
shallow bed, and a more slowly stochastic dependence once there.
The direction of gradient descent in the shallow bed is typically
different from in the initial fast phase. These different directions
lead to curved trajectories (yellow line). Such curved trajectories
explain the complex shape of the phase plot (Figure 3B).

Understanding Apparent Competition
Between Aesthetic Weights
What is the reason for the apparent competition between
balance and complexity weights during the slow phase of
learning in Figure 3? A simple hypothesis is that the apparent
competition arises from the negative correlation between
balance and complexity, i.e., between the components of Eu
(Figure 2A). However, inspection of Eq. 7, suggests alternate
hypotheses beyond the negative correlation between balance and
complexity. For example, they have different reward structures
(Figures 2B,C), possibly leading the weight of one becoming
more relevant than the other is. Finally, because motivation
affects balance and complexity in different manners, it too,
could create an apparent competition (Figure 2D). To test
these hypotheses, we ran six new simulations varying input
correlation, reward structures, and motivation functions. These
simulations eliminated the negative correlation between balance
and complexity, made the reward structures identical, or set the
motivation to a constant independent of balance and complexity.
The results of these simulations appear in Figure 5.

When we eliminated the negative correlation between balance
and complexity (standard parameters, except that ρ = 0), the
apparent competition between their weights did not vanish
(Figure 5A). Consequently, this negative correlation is not a
necessary condition for the apparent competition. However, the
negative correlation affects the apparent competition, because
it becomes weaker when we eliminate this correlation, and we
see slightly larger balance than complexity weights. Similarly,
having different reward structures is not a necessary condition
for the apparent competition. If we make the reward structures
for balance and complexity identical (both linear as in Figure 2B),
the apparent competition remains (Figure 5B). This change leads
to an initial rise in both weights followed by an overwhelming
relative increase in the balance weight. Finally, in Figure 5C, we
remove the effect of motivation from the simulation, by setting
m ≡ 1. This change results in an isotropic cloud, showing that
the shape of the motivation function is a major contributor to the
apparent competition. An appropriate motivation function may
even be a necessary condition for the apparent competition.

Can the negative correlation between balance and complexity,
different reward structures, or the shape of the motivation
function be a sufficient condition for the apparent competition
between the aesthetic weights? To answer this question, we
eliminated two of these conditions at a time. We thus left
only one condition in place in each simulation. As seen in
Figure 5D, when m ≡ 1, and the reward structures are similar
for balance and complexity, there is no apparent competition
between the weights. Hence, the apparent competition vanishes
although the negative correlation is still present. Similarly,
when m ≡ 1 and we eliminate the negative correlation between
balance and complexity, the apparent competition vanishes. It
disappears although we still have differences in reward structures
(Figure 5E). Thus, neither the negative correlation nor the
difference in reward structures is a sufficient condition for the
apparent competition. In contrast, the apparent competition
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FIGURE 5 | Contributions of the Properties of Eu, r∗, and m to the Apparent Competition between Aesthetic Weights. (A) Eliminating the negative correlation between
the components of Eu weakens but does not kill the apparent competition. (B) Making the reward function r∗ similar for balance and complexity may even strengthen
apparent competition. (C) Making m a constant leads to the virtual elimination of apparent competition. (D) When both m is a constant, and the reward function r∗ is
similar for balance and complexity, there is no apparent competition. (E) The same happens when both m is a constant and we eliminate the negative correlation
between the components of Eu. (F) In contrast, apparent competition remains and can even become stronger when both we eliminate the negative correlation
between the components of Eu and the reward function r∗ is similar for balance and complexity. Thus, the main factor determining apparent competition in our
illustrative model may be the shape of the motivation function.

continues when we eliminate the correlation and the difference
in reward structure, leaving the shape of the motivation
function intact. This result thus gives further evidence that the
appropriateness of this shape may be a sufficient condition for
the apparent competition.

Overall, the key factor for the apparent competition between
aesthetic values in our illustrative model may be the motivation
function. It generates the apparent competition by modulating
both sensory sampling and reward. Negative correlations

between the components of the sensory inputs do play a role in
the apparent competition but a lesser one.

The Role of Motivation and Reward on
Aesthetic Individuality
An important consequence of our theoretical framework is that
different individuals develop distinct aesthetic weights. If two
individuals were from different societies or cultures, they would
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tend to have differences in their learning parameters. These
differences are illustrated by the blue boxes Society 1 and 2 in
Figure 1. Mathematically, these individuals would have different
B parameters in Eqs. 5 and 6. However, even if individuals came
from the same society, their learning parameters would tend to
be distinct (blue boxes labeled Individual 1 and 2 in Figure 1).
Again, in Eqs. 5 and 6, these individuals would have different EIu
and EIm parameters. In Figure 6, we illustrate through computer
simulations how this individuality emerges.

To illustrate the effect of individualized learning of aesthetic
value in a society, we modeled a scenario for the case of
motivation for complexity. While we could have investigated
motivation for balance as well, existing research shows different
personality traits can account for changes in preference for
complexity (Furnham and Bunyan, 1988). Furthermore, it
has been shown that the motivation for complexity can be
experimentally manipulated (Tinio and Leder, 2009). Thus, we
sought to see what happens when motivation for complexity
changes across individuals. To test this hypothesis, we varied the
peak complexity of the motivation function (Figures 2D, 6A).
The larger the peak complexity is, the more motivation the
individual must act on high complexity. As seen in Figure 6B,
changing this form of motivation has a direct effect on learned
aesthetic weights. Specifically, when the motivation is shifted
toward high complexities, late aesthetic weights weight for
balance becomes weaker. In contrast, those for complexity
become stronger. Hence, the three different individuals in
Figure 6B (in terms of peak complexity) express different learned
aesthetic weights. Moreover, because our theoretical framework
is stochastic, the aesthetic weights form clouds in limited regions
of the so-called neuroaesthetic space (Aleem et al., 2017). The
separation and partial overlap between these clouds is like what
we observe for different artists (inset of Figure 6B).

In turn, to illustrate how social variations may influence
aesthetic learning of individuals, we modulated the reward
structure for balance (Figures 2B, 6C). The larger the slope of
this structure, the more social reward an individual got with
highly balanced sensory inputs. As a result, we can see in the
Figure 6D that the changing of the reward structure has an
appropriate effect on aesthetic weights. Increasing the balance
slope expectedly increases the weights toward balance, reducing
those for complexity. Again, the three different individuals in
Figure 6D (in terms of social reward structure) express different
learned aesthetic weights. Finally, once again, our theoretical
framework is stochastic. Consequently, the aesthetic weights
form clouds in limited regions of the neuroaesthetic space as also
seen in the analysis of aesthetic weights in portraits by master
painters of the Early Renaissance (Aleem et al., 2017).

In conclusion, individuality in aesthetic learning emerges in
the theoretical framework through variations in either cultural
norms or individual motivational states.

Beauty and the Emergence of the
Peak-Shift Effect
Any theory for aesthetic learning must account after convergence
for as many relevant properties in the literature as possible.

So far, we have discussed the dynamics of learning aesthetic
weights. However, we have not yet explored the amount of
value possible in different regions of the neuroaesthetic space.
This exploration naturally leads us to the broader question of
creation of art and beauty. Where does beauty, or in our case,
regions of highest value, exist? We looked to the literature for
existing hypotheses on this question. One of the most prominent
hypotheses in this regard has to do with the “peak-shift” effect
(Ramachandran and Hirstein, 1999). It supposes that the beauty
of an object is partly owed to the exaggeration of some of its
characteristics. According to the hypothesis, if an attribute signals
value normally, exaggerating that attribute would lead to greater
value. This effect is theorized to explain the tendency of artists
to exaggerate variables that contribute to aesthetic emotions.
Accordingly, visual artists should tend to exaggerate certain
statistical properties like symmetry, complexity or even certain
facial features as compared to what one observes typically (Costa
and Corazza, 2006; Graham and Redies, 2010; Aleem et al., 2017).
Thus, because of this exaggeration effect, beauty is not merely
copying reality.

In this section, we study whether and why our theoretical
framework is consistent with such a peak-shift effect. To perform
this study, we calculated aesthetic values of images with different
complexities and balances in our simulations. We used these
calculations to compare the aesthetic values of images with
the most typical statistics with those with less probability of
occurring. The comparison appears in Figure 7.

As seen in Figure 7A, there are many possible regions
of the neuroaesthetic space that a certain scene or painting
could occupy. However, not all these regions are identical
in terms of value. For example, the region indicated by the
black dot represents what is most typical. If we turn to
Figure 7B, we see that this region leads to the learning of
moderate overall value. It is apparent that there are regions
with greater or lesser value. In our example in Figure 7A,
the yellow and green dots represent regions with lower value
in relation to the black dot. In turn, the regions around the
red and blue dots yield greater value than the regions around
the black dot. Consequently, if an artist wants to maximize
value, they would be keen to paint with attributes in the
regions of the upper-right quadrant of this neuroaesthetic
space. In our case, artists would thus tend to exaggerate the
complexity and balance concurrently to increase the aesthetic
appeal of their work.

Mathematical analyses show that this value-exaggeration
result is a general property for our theoretical framework
(Supplementary Materials, Section D). Thus, this result is
applicable beyond the parameters of the simulations in Figure 7.
The analysis also extends the results for broad classes of learning
models that are nonlinear, that is, not following Eq. 1. If
the properties of these learning models and of the probability
distribution of sensory signals obey general conditions, then the
value-exaggeration result will hold. The linear model in Eq. 4 will
almost always obey these conditions.

In conclusion, our analyses support the peak-shift effect.
Our framework does so by predicting that the most typical
inputs are not necessarily the sources of highest predicted value.
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FIGURE 6 | Aesthetic individuality in the theoretical framework. (A) Sampling of the motivation function with peak complexities µm = 0.4 (Red), µm = 0.6 (Green),
and µm = 0.85 (Blue). (B) Sampling of aesthetic weights for simulations with standard parameters except for variations of the peak complexity in the motivation
function as color-coded in (A). The inset is the data from Aleem et al. (2017). (C) Sampling of the reward as a function of balance with slopes α = 0.5 (Red), α = 1.25
(Green), and α = 1.7 (Blue). (D) Same as in (B), except that the slope of the reward as a function of balance varies as color-coded in (C). The sampling started at
tinital = 10, 000, was at every 1t = 200, and ended at tfinal = 30, 000. Variations of either individual parameters such as peak complexity of the motivation function or
social parameters such as the slope of the reward-balance function give rise to individuals with different aesthetic values. The expression of individuality is like the
data from our previous work (Aleem et al., 2017).

FIGURE 7 | Illustration of the Value-exaggeration effect as an emergent property. (A) The distribution of balance and complexity (as in Figure 2A) with overlaid points
from which we calculate value. (B) Aesthetic values as a function of time at the overlaid points in (A) (with the same color-code). The black dot represents the most
typical (most probable) images. The yellow and red images represent stimuli regions with the least value, whereas the blue and green discs represent regions with
the most value. Therefore, to increase the aesthetic liking, artists should strive to paint in the red and blue regions, or more generally, in the upper-right quadrant.

Other possible inputs yield more aesthetic value than reality,
thus appearing more beautiful. As an important extension,
our theoretical framework predicts that the value landscape of
possible inputs is different for each individual. Our explanation
for this effect is thus that what matters for aesthetics is not the
statistics of sensory inputs but their values to perceivers.

DISCUSSION

The field of neuroaesthetics has progressed rapidly lately,
especially with regards to the understanding of the “what” and
“where” of aesthetic preferences. However, one of the biggest
remaining questions has to do with “how” we develop aesthetic
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values in the first place (Göksun et al., 2014). The origin of certain
preferences such as that for contour, symmetry, or contrast can be
explained by evolutionary accounts (Reber et al., 2004; Bar and
Neta, 2006). However, even these seemingly innate preferences
are subject to experience dependent changes (Germine et al.,
2015; Huang et al., 2018). Therefore, it is important to consider
the dynamics of aesthetic preferences over time. Here, we
presented a theoretical contribution to the understanding of these
dynamics. Our theoretical framework proposes that learning
forms a large component of aesthetic values. We operationalized
this proposal through a computational model of reinforcement
learning. We discuss our interpretation of some of the important
findings of this modeling effort in greater detail here. For a quick
summary of the results, please refer to the beginning of the
Results section.

Interpretations of the Simulation Results
Our results suggest that the time course of aesthetic learning has
different phases. Such a multi-phase result is expected from a
reward-based learning model. If complete prior inexperience is
assumed, then a rapid initial phase is bound to happen, followed
by a slower one. These fast-then-slow learning dynamics are
characteristic of reinforcement-learning frameworks, where the
change of weights is proportional to the error (Dayan and Abbott,
2001; Sutton and Barto, 2018). The fast phase corresponds to the
large initial errors, but when they decrease, the learning rate slows
down. Our decision for setting the initial weights at zero allows
us to understand general principles of learning and to see that
it has distinct phases. Such fast aesthetic learning should occur
mostly early on in life. However, whether we are born without
any aesthetic preconceptions is an open question. What is the
likelihood that we come across a completely novel stimuli in our
adult lives? More likely, we see previously learned attributes in
a novel way, as for example, a drummer seeing a table for the
first time. Or take abstract art, which combines familiar visual
primitives in a novel way. In these cases, some type of initial
prediction of value may exist, albeit with low confidence and high
noise. Here too, our theoretical framework would predict that as
soon as learning occurs it would be multi-phasic, rapid initially,
and then coming to a consolidation.

A surprising result of our model was the apparent competition
between aesthetic variables in the second phase of learning.
We investigated the source of this apparent competition in our
illustrative model and found that motivation is the main driving
force. Therefore, motivation appears to be crucial in guiding
different trajectories of learning. While motivation in our model
seems like a simple gating mechanism, the results show that
motivation has complex consequences on learning. This is due
to the probabilistic dependence of motivation on sensory inputs
and social rewards. Hence, motivation allows for state-dependent
learning, accounting for aesthetic diversity and individuality.
This result makes intuitive sense, as while we may all start from
similar points, our motivations to engage with certain objects and
environments will be different. Therefore, different motivations
will lead us to divergent paths. These motivations in turn will
be influenced by many internal and external factors including
the environment and social standards. The interaction and

co-dependence of these factors leads to many unique outcomes
from a shared starting point.

A unique aspect of our theoretical framework and thus, of
our illustrative model is their statistical nature. Coupled with the
nonlinearities in the model, this statistical nature leads to many
important and surprising results. One such result is the apparent
competitive interactions mentioned above. Another important
result is that the learned aesthetic weights are stochastic, that
is, we should not expect them to be constant and stable, but to
fluctuate over time. In our illustrative examples with only two
variables, the aesthetic values eventually converge stochastically
around a fixed point. The situation should be more complex
in the real world, because the number of variables would be
higher, possibly leading to multiple fixed points instead of just
one. Such a multiplicity would give the appearance of multiple
possible aesthetic stable states. Another complexity stems from
the key difference between aesthetic weights and values. Aesthetic
weights are different from the values, as different weights can lead
to same values. Therefore, any apparent fixed-point in aesthetic
weights could drift over time adding more variability to aesthetic
preferences. The associated aesthetic values, as seen in Figure 7
are stochastic as well. Therefore, our theoretical framework
makes a surprising prediction that aesthetic preferences are not
the same from one moment to another. This goes against the
common assumption that our preferences are relatively stable
and thus, that we only need to account for them once. In
support of this, converging evidence is beginning to call the long-
held assumption of preference stability into question (Höfel and
Jacobsen, 2003; Chen and Risen, 2010; Kościński, 2010; McManus
et al., 2010; Pugach et al., 2017). The observed instability is
commonly attributed to noise within the internal sampling of
subjective values. Our theoretical framework makes an additional
prediction that the values themselves may be stochastic.

Limitations and Outlook
At first glance, our theoretical framework for aesthetic learning
may seem too reductionist. Aesthetic experiences are complex
and many factors are at play. We propose that low-level
features and reward-based learning forms just one component of
acquiring and using aesthetic values. Our theoretical framework
does not address other important aspects for aesthetic emotions,
such as semantics, attention, and memory (Leder et al., 2004). We
acknowledge these factors play a role in the formation of aesthetic
values and their omission is not to undermine them. Instead, we
chose to limit the complexity of our theoretical framework at
this first iteration to serve as a basic building block on which to
incorporate the aforementioned factors. However, even a model
based on low-level features can still be highly informative on
aesthetic preferences of individuals, as recently demonstrated by
Iigaya et al. (2020). Additionally, a reinforcement learning circuit
is easily amenable to additional factors, for example Leong et al.
incorporate attention directly into the reinforcement-learning
circuitry computing subjective value, as we did with motivation
(Leong et al., 2017).

A factor that features prominently in studies of aesthetic
preference formation but not considered in our framework
here is familiarity (Zajonc, 1968). Numerous studies show
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that increased familiarity tends to improve appraisal, with
no apparent reward (Leder et al., 2004; Park et al., 2010;
Lindell and Mueller, 2011). However, we argue that familiarity
may either be intrinsically rewarding or a promoter to value.
For instance, every new exposure leading to familiarity improves
our processing of the stimuli. This improvement likely facilitates
object recognition and ability to extract semantic and emotional
content, which is rewarding (Reber et al., 2004). At a conceptual
level, familiarity is intimately tied with novelty, which may also be
intrinsically rewarding (Biederman and Vessel, 2006). However,
the relationship between these two factors is not entirely clear.
For example, roles of familiarity and novelty may be dependent
on context (Tinio and Leder, 2009; Park et al., 2010). To help
understand this, future iterations of our framework would benefit
by incorporating these related factors. For example, one could
incorporate an aspect of reward that is contingent both on
the novelty and the number of exposures to certain stimuli, as
suggested by Biederman and Vessel (2006). As of now, we do not
differentiate between these aspects of reward, but this distinction
is important and a necessary addition for the future.

As far as implementation, our model assumes a linear
relationship between aesthetic weights and values (Eq. 1).
Biologically, this linearity is not reflective of typical reward-
related synapses (Schultz, 2015). Recent assessments of the field
of neuroaesthetics have signaled the need for a new conception
of aesthetics that incorporates distributed processing and non-
linear recurrent networks (Leder and Nadal, 2014; Nadal and
Chatterjee, 2019). While we agree, we suggest that linearity is
a suitable starting point. Recent work comparing a linear rule
versus a deep neural network to predict subjective aesthetic value
found that both fared comparably (Iigaya et al., 2020). We argue
that this also applies for our theoretical framework for aesthetic
learning. We have shown that most nonlinearities can explain
the value-exaggeration effect (section “Beauty and the Emergence
of the Peak-shift Effect” and Section D of Supplementary
Materials). Most of our other results would likely be similar if
we used a monotonic nonlinear relationship between aesthetic
weights and values. For example, Eq. 4 is all that we need to
explain the fast-then-slow dynamics of aesthetic learning. From
that equation, when the error is large or small, so is the rate of
learning, regardless of whether the relationship between aesthetic
weights and values is linear. Likewise, Eq. 4 is all that we need
to explain the near optimality of the learned value, because
this equation predicates the tendency of the minimization of
error. Consequently, near optimality should occur regardless of
whether the relationship between aesthetic weights and values is
linear. We can make similar arguments for the non-necessity of
linearity for almost all the results in this paper. Thus, assuming a
linear relationship between aesthetic weights and values is not a
major problem for the validity of our results.

Other limitations are not with the theoretical framework but
with the illustrative model. For example, we limit the sensory
inputs in our model to two visual statistics. While this simplifies
our simulations of the model, it is not reflective of the external
world, where a deluge of variables is at play. These variables may
all exist in some complicated multi-dimensional space, which we
have previously termed the “neuroaesthetic space” (Aleem et al.,

2017). Future implementations would certainly have to increase
the dimensionality and type of sensory inputs into the model.

Overall, our model, while limited, provide a platform for
further research, such as by increasing the richness of the
model in the many ways mentioned above. Equally as important
are efforts to test empirically the predictions of the model.
More developmental and longitudinal empirical studies of
aesthetic preferences are needed. For example, one could conduct
extensive reinforcement learning studies to determine how
learning modulates subjective values over long periods as shown
by Wimmer et al. (2018). Similarly, one could empirically test the
prediction of temporal variability in aesthetic values.

Compatibility With Existing Frameworks
Where does our contribution fall into place within the
existing theories of aesthetics? Most of the extant theoretical
frameworks for aesthetics aim to explain the phenomena at
hand. That is not to say that some of these frameworks do not
consider the importance of temporal aspects, albeit implicitly.
In particular, learning is a key part of many of the existing
influential theoretical frameworks. For example, in Chatterjee
and Vartanian’s “Aesthetic Triad” model, aspects of learning
and reward make two out of the three nodes (Chatterjee and
Vartanian, 2014). Others have made reward-based learning
central to their theories. For example, in formulating the
“Aesthetic Preference Formation” model, Skov defines nodes
associated with sensory stimuli, reward prediction, learning, and
context amongst others (Skov, 2010). Like us, he stresses the
involvement of a reinforcement learning mechanism that is not
unique to aesthetics.

In regards to the time frames of learning, Nadal and Chatterjee
describe three time-scales influencing aesthetic preferences
(Nadal and Chatterjee, 2019). Our model is most like their
middle-range time scale, which concerns “individual experience
and cultural context.” In a similar vein, Vessel and colleagues
build on the reward circuitry with an explicit emphasis on time
(Biederman and Vessel, 2006; Vessel and Rubin, 2010). Like us,
they implicate associative processes as a central mechanism of
time-dependent preference formation. In their view, aesthetic
preferences are shaped by the temporal summation of their
associative components. In contrast to us, their theory mainly
focuses on mechanisms of shared associations. For example, most
people will have favorable memories of beaches, therefore leading
to a large consensus of preference. However, our model accounts
for this preference effect as well by incorporating social statistics
of rewards. Another important aspect of Vessel and colleagues
work is that “deeper” and more meaningful rewards will lead to
stronger preferences. While we do not consider this aspect in our
framework, it would be a compatible addition.

Unlike the theories mentioned above, our theoretical
framework is specified in a fully computational manner.
However, other theories are computational, too! Perhaps
the earliest computational theory of aesthetics comes from
Martindale. This theory largely focuses on pleasure, formulating
that the enjoyment derived from an aesthetic stimulus is
proportional to the number of cognitive units activated by it,
as envisioned in a neural network (Martindale, 1984). Another
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computational theory comes from Schmidhuber, who contends
that aesthetic preferences are largely driven by intrinsic reward
(Schmidhuber, 2010). According to him, when we learn new
things and improve our predictions of the world, we maximize
this reward. This idea is similar to the theory put forth by Van de
Cruys and Wagemans who propose that aesthetic value results
from the resolution of prediction errors caused by ambiguities in
art (Van de Cruys and Wagemans, 2011). However, all of these
theories are primarily focused on the nature of the aesthetic
experience and its ensuing reward. While these theories use
reinforcement learning circuitry as their basis, unlike us, they
do not explicitly consider the learning of aesthetic values over
time. But both Schmidhuber and Van de Cruys and Wagemans
do argue that experience with different environments over time
will lead to differences in predictions, accounting for individual
and cultural differences. Nevertheless, unlike these theories,
we do not concern ourselves with the nature of reward. In our
view, rewards form aesthetic values, whether the rewards are
external or internal.

In our framework, the predicted reward, often termed “value”
is akin to aesthetic value. This is arguably the most important
assumption of our framework. Thus, we propose that our
prior experiences with an object influence the values assigned
to the many attributes of that object. When we sense these
attributes in a new sensory input, their associated values will
influence our aesthetic preference for that input (Barrett and
Bar, 2009). An illustration of this aesthetic value transfer effect
is shown by Strauss et al. (2013). They found that preferences
for two-dimensional color patches were systematically altered
by looking at positive or negative objects of the same color.
More direct studies using instrumental conditioning show that
preferences for cues proportionally coincide with their ability
to predict reward, even when subliminal (Pessiglione et al.,
2008). Therefore, we contend that as certain stimulus attributes
signal reward, they themselves become secondary reinforcers,
and hence obtain aesthetic value. For example, humans and
other animals may have initially preferred symmetry because of
its health cues, such as in faces (Treder, 2010). However, after
eons of evolution, symmetry may now be a secondary reinforcer
itself, signaling value independently (Pombo and Velasco, 2019).
Neuroimaging studies support this viewpoint, showing that
secondary reinforcers activate similar regions associated with
pleasure as do primary reinforcers (Sescousse et al., 2013).

Whether the pleasure from aesthetic value is
phenomenologically distinct from other pleasures is an
open question (Christensen, 2017; Nadal and Skov, 2018;
Menninghaus et al., 2019; Skov and Nadal, 2020). On the one
hand, neuroimaging studies show that a range of rewarding,
pleasure-giving experiences are processed in the same brain
regions. This common processing of reward allows us to make
value-based decisions across various goods (Levy and Glimcher,
2012). On the other hand, network-based studies of deeply
rewarding phenomena show the concurrent role of other brain
processes (van Elk et al., 2019). For example, the default-mode
network has been shown to be modulated by intense aesthetic
experiences (Vessel et al., 2012). Thus, a subjectively deep
experience is likely to activate different brain networks, yet
simultaneously be under the constrain of the neurobiological

roots of “basic” pleasures. The broader implications of these
differences remain to be discovered.

What Is Beautiful According to Our
Theoretical Framework?
“Beauty is natures brag.” Thus, the poet John Milton wrote
in praise of the beauty that one often experiences in nature
(Milton, 1858). We hear of such experiences commonly, but
not all natural scenes are pleasant or breathtaking. For example,
some scenes may be repulsive to some people by including a
rotting corpse, an approaching snake, or a spider web. What is
it that makes some natural scenes beautiful? Following from the
discussion in section “Compatibility with Existing Frameworks,”
our theoretical framework proposes that when a certain natural
scene appears beautiful, it does so, because its statistics elicit
high positive value. Our results showed that when looking at the
overall value landscape, certain regions that are far away from the
norm will correspond to higher value (Figure 7). These are the
regions that our theoretical framework may consider “beautiful.”
Accordingly, only the minority of scenes might be truly beautiful
by eliciting high values. These are the scenes that exaggerate
high-value attributes. This sentiment is similar to Ramachandran
and Hirstein’s application of the “peak-shift” effect to beauty,
proposing that it often comes from exaggeration (Ramachandran
and Hirstein, 1999). We thus may ask, to what “exaggerated”
natural scenes was Milton referring to? Perhaps, Milton’s scenes
would have some sort of exaggerated statistics related to attributes
that were innate, that is, formed due to evolutionary pressures
(Aleem et al., 2019). Alternatively, according to the theoretical
framework here, Milton’s scenes would have exaggerated sensory
statistics related with positive experiences in his youth.

Why would the brain evolve a mechanism that prefers
exaggeration rather than the most common reality? We argue
that any learning system such as the brain would likely prefer
exaggeration if its goal is to maximize reward. Consequently,
perhaps evolution has allowed our ancestors to choose actions
that maximize value. However, there are limits to exaggeration.
For example, our results show that exaggeration in the wrong
direction will lead to lower than normal aesthetic values, or what
one may consider “ugly.”

In sum, our theoretical framework extends the peak-shift
hypothesis through individualized value exaggeration. According
to the framework, the aesthetic weights that maximize reward
are not universal across all individuals. Each person has an
individual set of near-optimal aesthetic weights according to
personal motivations, and social and environmental contexts.
Neuroaesthetic-space regions of high value, or beauty, to one may
be regions of low value or ugly to another. We conclude that the
different senses of beauty across individuals are not arbitrary, but
stem from a personalized near optimization of values.
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