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Recently, the dynamic properties of brain activity rather than its stationary values
have attracted more interest in clinical applications. It has been shown that brain
signals exhibit scale-free dynamics or long-range temporal correlations (LRTC) that
differ between rest and cognitive tasks in healthy controls and clinical groups. Little
is known about how fear-inducing tasks may influence dispersion and the LRTC of
subsequent resting-state brain activity. In this study, we aimed to explore the changes in
the variance and scale-free properties of the brain’s blood oxygenation level-dependent
(BOLD) signal during the resting-state sessions before and after fear learning and fear
memory extinction. During a 1-h break between magnetic resonance imaging (MRI)
scanning, 23 healthy, right-handed volunteers experienced a fear extinction procedure,
followed by Pavlovian fear conditioning that included partial reinforcement using mild
electrical stimulation. We extracted the average time course of the BOLD signal from 245
regions of interest (ROIs) taken from the resting-state functional atlas. The variance of
the BOLD signal and the Hurst exponent (H), which reflects the scale-free dynamic, were
compared in the resting states before and after fear learning and fear memory extinction.
After fear extinction, six ROIs showed a difference in H at the uncorrected level of
significance, including areas associated with fear processing. H decreased during fear
extinction but then became higher than before fear learning, specifically in areas related
to the fear extinction network (FEN). However, activity in the other ROIs restored the H
to its initial level. The variance of the BOLD signal in six ROIs demonstrated a significant
increase from initial rest to the post-task rest. A limited number of ROIs showed changes
in both H and variance. Our results imply that the variability and scale-free properties of
the BOLD signal might serve as additional indicators of changes in spontaneous brain
activity related to recent experience.

Keywords: scale-free dynamics, BOLD signal, fear extinction, variance, hurst exponent, detrended fluctuation
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INTRODUCTION

In recent years, research on the human brain demonstrates an
increasing interest to the dispersion and dynamic properties
of brain activity than to its stationary values. Fluctuations are
essential for maintaining the optimal state of brain activity and
for flexibility between states (McIntosh et al., 2010; Tognoli and
Kelso, 2014). In functional neuroimaging studies, the variability
of brain dynamics can be most simply described through the
variance (σ2) of the blood oxygenation level-dependent (BOLD)
signal. This variance provides additional information about the
signal change in comparison to conventional measures as the
averaged activity. Several works have shown strong associations
of the BOLD signal variance with age (Garrett et al., 2011, 2013;
Nomi et al., 2017), task performance (He, 2011; Garrett et al.,
2012), and performance efficiency (Burzynska et al., 2015). The
variance also differs with mental diseases, including autism (Di
Martino et al., 2014), Alzheimer’s disease (Zhao et al., 2015), and
schizophrenia (Yu et al., 2014).

A pattern of fluctuations or neural dynamics can be assessed
not only via the standard deviation of measured parameters but
also via the fractal properties of the brain signal. While temporal
variance depends on the size of time window, a multi-scale
approach measuring fractality considers variance across different
window sizes. Fractality is a quite frequent property in nature,
demonstrating self-similarity from micro- to macro-structures
(Bassingthwaighte et al., 1994). It can be found not only in the
spatial structure of some objects but also in the temporal behavior
of systems. The human brain is no exception. Brain activity
shows behavior that is fractal (also called self-similar or scale-
free), meaning that no characteristic scales dominate the neural
dynamics (Linkenkaer-Hansen et al., 2001; Bullmore et al., 2009).
Such behavior manifests in the long-range temporal correlations
(LRTC) of the signal and 1/f -like spectral power P(f ) → 1/fβ,
where P is power, f is frequency, and β is called the “power-law
exponent” (Bullmore et al., 2001; Bullock et al., 2003).

The LRTC can be parameterized using the Hurst exponent
(H), which is expressed as β = 2H− 1 regarding the power-law
exponent for fractional Brownian noise model (Hurst, 1951).
A larger H value indicates a more auto-correlated signal. The
value of H for a stationary signal can range from 0 to 1. Values
larger than 1 indicate a non-stationary process, and H calculates
as H = α− 1. Signal series, depending on the index, can be
divided into three categories. First, for 0 < H < 0.5, the series
are anticorrelated. Second, H = 0.5 is a property of random noise.
Third, 0.5 < H < 1 indicates the fractal complexity of the signal
and the presence of LRTC (Hardstone et al., 2012).

Beginning with a study by Linkenkaer-Hansen et al. (2001),
LRTC were actively explored in EEGs, which showed the scale-
free behavior of brain oscillations in various frequencies. The
fractal pattern was also found in the temporal dynamics of the
BOLD signal (Zarahn et al., 1997; Bullmore et al., 2001). Initially,
it was assumed that self-similar fluctuations in functional
magnetic resonance imaging (fMRI) signals could be pink noise
from the operation of the equipment (Zarahn et al., 1997). Later,
more detailed studies provided strong evidence that scale-free
dynamics is an intrinsic property of the signal (He et al., 2010).

Remarkably, different brain tissues produce different dynamics:
the power-law exponent varies between the gray and white matter
and the cerebrovascular fluid (Bullmore et al., 2004), as well as
between different functional networks (He et al., 2010).

The LRTC in specific brain areas may change with conditions.
H decreased during task performance in comparison to during
the resting state (He, 2011; Ciuciu et al., 2012), suggesting that
resting-state neural activity exhibits more long-term memory.
Furthermore, the LRTC altered with healthy aging (Suckling
et al., 2008; Dong et al., 2018); personal traits, including
impulsivity (Hahn et al., 2012; Akhrif et al., 2018); and mental
diseases, including major depressive disorder (Wei et al., 2013),
schizophrenia (Sokunbi et al., 2014), and Alzheimer’s disease
(Maxim et al., 2005). The increased temporal variance was also
shown to reflect system functioning efficiency as it positively
correlated with an increase of functional connectivity depending
on higher cognitive processing (Garrett et al., 2012, 2018).
However, little is known about how fear-inducing conditions may
influence the variance and fractality of brain activity during the
task and subsequent resting state. Previous studies reported that
stress and fear could induce temporal changes in the resting-state
functional connectivity (Schultz et al., 2012; Feng et al., 2015;
Martynova et al., 2020). Abnormal resting-state connectivity
was also repeatedly shown in fear-conditioning studies in
patients who had post-traumatic stress disorders (PTSD) (Rauch
et al., 2006; Rabinak et al., 2011) and anxiety (for review,
Northoff, 2020). Few papers have shown a positive relation of
anxiety scores and the BOLD signal LRTC of brain regions
involved in emotional and cognitive processing (Tolkunov et al.,
2010; Churchill et al., 2015). The increase of the amygdala’s
temporal variance was found to be associated with state anxiety
and functional connectivity of the BOLD signal during acute
systemic inflammation (Labrenz et al., 2019). Nevertheless, to
our knowledge, there were no direct studies of task-based and
resting-state fMRI fractality and variance behavior induced by
fear conditioning paradigms.

Based on our previous findings on persistent changes of
functional connectivity in resting state after fear learning and
fear memory extinction (Tetereva et al., 2020; Martynova et al.,
2020), we assumed that if a regional and network correlation
of the brain activity can change after stimulation, it should
consequently be reflected in the variance and scale-free properties
of the BOLD signal. To test this hypothesis, we tested changes
that occurred in the LRTC of resting-state BOLD signals after
fear learning and fear memory extinction in comparison to the
initial pre-task resting state. A similar design comparing “rest–
task–rest” activity has been applied in only a few fMRI studies.
One focused on the spectral density of the BOLD response
(Duff et al., 2008). Another used working-memory tasks to
investigate the fractal properties of the brain dynamics in the
rest–task–rest paradigm (Barnes et al., 2009). We hypothesized
that short exposure to emotionally negative stimulation during
Pavlovian fear conditioning might change neural efficiency and
corresponding variance and scaling exponent of the BOLD signal
in the subsequent resting state in the specific regions related to
fear processing. Therefore, we expected a decrease of the scaling
exponent during fear extinction in the fear-processing brain
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network, similar to the findings on its suppression with cognitive
load (Barnes et al., 2009; Churchill et al., 2016). Simultaneously,
we hypothesized that the variance should increase during the task
as an indirect index of neural efficiency (Labrenz et al., 2019).
We also expected to find residual changes of both LRTC and
variance in areas of fear-processing brain network in the post-task
resting state, as it was early reported for functional connectivity
of the BOLD signal (Schultz et al., 2012; Feng et al., 2015;
Martynova et al., 2020). Understanding the variability and fractal
properties of brain dynamics may enhance knowledge regarding
the spatiotemporal structure of spontaneous brain activity, its
modulation after emotional stimulation, and its potential as a
biomarker of affective disorders.

MATERIALS AND METHODS

Participants
Twenty-seven volunteers participated in the fMRI study. None
had histories of psychiatric or neurological disorders, and all
had a normal or corrected-to-normal vision. Functional imaging
data of four participants with excessive averaged displacement
and motion spikes bigger than voxel size were excluded from
the analysis. The final study sample included 23 healthy,
right-handed volunteers (23.90 ± 3.93 years old, 8 females).
In addition, participants completed the State-Trait Anxiety
Inventory (STAI) before scanning (state: 33.70 ± 10.95; trait:
41.22 ± 12.87). In Russian adaptation (Khanin, 1976), the score
may vary from 20 to 80 points. The score below 30 points means
low anxiety level, and above 46 means very high. The scores
in interval 31–45 mean a moderate level. The study’s protocol
followed the requirements of the Helsinki Declaration, and the
study was approved by the Ethics Committee of the Institute of
Higher Nervous Activity and Neurophysiology of the Russian
Academy of Science. All subjects provided written, informed
consent before the study.

Procedure
The study procedure was as follows: (1) initial resting-state (RS1)
scanning, (2) procedure of fear learning (FL) out of scanner
(Pavlovian fear conditioning), (3) fear extinction (FE) scanning,
and (4) second resting-state (RS2) scanning after FE. The time
between the RS1 and FE sessions was ˜45 min and between
the FE and RS2, 1–2 min. The scanner parameters for the RS1,
FE, and RS2 were the same, with equal session durations of
10 min (Figure 1). During the resting-state scanning, participants
were asked to remain calm with eyes closed and to try not
to think purposefully. A full description of the experimental
procedure can be found in our previous article (Martynova et al.,
2020). In the current study, we concentrated on analyzing three
sessions on the first day of scanning to capture the immediate
changes in the LRTC.

Fear Learning and Fear Extinction
Procedures
To minimize the association of the MRI scanner with negative
stimulation, the procedure of FL was conducted in a separate

room in the behavioral laboratory. The training constituted the
presentation of two pseudo-random sequences with a short break
between them. For FL, we used a delayed fear-conditioning
paradigm with partial negative reinforcement. It consisted of
presenting three visual stimuli. A Type 3 (CS-) figure was
always neutral. The other two figures (CS1+ and CS2+) had
the reinforcement probabilities of 70 and 30%, respectively.
The unconditional stimulus (US) was weak electrical current
stimulation for 500 ms, which was presented immediately after
the figure when a white screen appeared. The strength of the
stimulation was selected individually to be a tolerable but painful
stimulus. Before each stimulus, participants saw a fixation cross
lasting 2 s. The duration of each conditional stimulus (CS) varied
randomly from 4 to 8 s with a step of 2 s. The presentation of
each CS was followed by a white screen for a random duration of
8–12 s with a step of 2 s.

The second sequence was the same as the first, except that
the probabilities of reinforcement for the CS1+ and CS2+ were
changed by 30 and 70%, respectively. The total duration of each
FL block was 8 min 54 s.

During the FE session, the same stimuli were presented, but
in a different pseudo-random order and with a more extended
overall sequence (10 min) and without US. An FE session was
held during fMRI scanning. During this FE session, volunteers
were asked to expect the US, but with a different reinforcement
rule than in the previous two sessions.

fMRI Data Acquisition
The MRI data were collected from the National Research
Center Kurchatov Institute (Moscow, Russia) using a 3T scanner
(Magnetom Verio, Siemens, Germany) equipped with a 32-
channel head coil. The anatomical images were collected using
a T1-MPRAGE sequence: TR 1470 ms, TE 1.76 ms, FA 9◦; 176
slices with a slice thickness of 1 mm, a slice gap of 0.5 mm, and
a 320-mm field of view (FoV) with a matrix size of 320 × 320.
Functional images (300 volumes) were collected using a T2∗-
weighted echo-planar imaging (EPI) sequence having a GRAPPA
acceleration factor equal to 4 and the following sequence
parameters: TR 2,000 ms, TE 20 ms, FA 90◦; 42 slices acquired
in interleaved order and having a slice thickness of 2 mm, a slice
gap of 0.6 mm, and a 200-mm FoV with an acquisition matrix of
98 × 98. In addition, to reduce the spatial distortion of the EPI,
the magnitude and phase images were acquired using a field-map
algorithm that had the following parameters: TR 468 ms, TE1
4.92 ms, TE2 7.38 ms, FA 60◦, 42 slices, and a 200-mm FOV.
The imaging sequences and their durations were equal for the
RS1, FE, and RS2.

fMRI Preprocessing
The data regarding both the resting-state and FE sessions were
processed using MELODIC, a part of FSL (FMRIB’s Software
Library1). The following preprocessing steps were applied:
motion correction (MCFLIRT), slice-timing correction using
Fourier-space time-series phase-shifting, non-brain removal
(BET), spatial smoothing using a Gaussian kernel of FWHM

1www.fmrib.ox.ac.uk/fsl
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FIGURE 1 | Scheme of the experimental paradigm.

5 mm, grand-mean intensity normalization of the entire 4D
dataset using a single multiplicative factor, high-pass temporal
filtering with a removing of the linear trends (Gaussian-weighted,
least-squares, straight-line fitting, with sigma = 50.0 s, which
equals a cutoff of 0.01 Hz) (Jenkinson et al., 2002; Smith,
2002). The B0-distortion was removed during the inserted B0-
unwrapping algorithm. Registration of functional images to
the individual anatomical and standard space MNI152 2 mm3

was conducted using FLIRT (Jenkinson and Smith, 2001;
Jenkinson et al., 2002). Then, as part of the preprocessing step,
independent component analysis (ICA) was performed using
probabilistic ICA as implemented in MELODIC (v 3.14). For
each participant fMRI signal, 38 independent components were
extracted (Hyvarinen, 1999; Beckmann and Smith, 2004).

Next, additional de-noising of the data was conducted using
FIX v1.068 [FMRIB’s ICA-based Xnoiseifier (Salimi-Khorshidi
et al., 2014; Griffanti et al., 2014)] and ICA-based automatic
removal of motion artifacts (ICA-AROMA) (Pruim et al.,
2015a,b). First, the AROMA was applied to 15 datasets (five
randomly chosen from each RS1, FE, and RS2 task group) in the
classification regime to detect motion-related components. Then,
the results were visually inspected according to recommendations
(Griffanti et al., 2017) to detect additional artifact components,
including cerebrospinal fluid (CSF) pulsation in the ventricles.
Second, FIX was trained based on the preliminarily classified
15 datasets, and new automatic classification was applied to the
remaining 54 sets (23 participants ∗ 3 scanning sessions) to detect
noisy components, which were filtered out using FIX cleanup
mode with the option to clean up the motion confounds (24
regressors). There were no significant within-subject differences
in the number of removed components between sessions (mean
19.4 ± 5.06 ICs). Finally, the cleaned data were subjected to
filtering to resting-state frequencies of 0.01–0.1 Hz using the
“3dTproject” AFNI algorithm (Cox, 1996).

Brain Parcellation
To extract time series for the LRTC analysis, the brain
was parcellated into 246 areas according to the resting-state
Brainnetome (BN) Atlas (Fan et al., 2016). Each mask was
converted to each individual subject space using FLIRT FSL. The
analysis found that region 94 in the BN Atlas, which corresponds
to the right inferior temporal pole (BN-94-ITP-R), was absent in

some persons who had brain sizes larger than the size of the FoV.
Therefore, that mask was excluded from the subsequent analysis
for all subjects, and only 245 areas were used.

In addition, the fear extinction network (FEN) from a meta-
analysis (Fullana et al., 2018) and the task-related contrast (TRC)
from our previous fear extinction study (Martynova et al., 2020)
were used as regions of interest (ROIs). We took only 17 ROIs
from the FEN (see Supplementary Table 1), which overlapped
with those from the BN Atlas but were not located in the
brainstem or the cerebellum. The same procedure was performed
for the selection of TRC ROIs (11 clusters) (Supplementary
Table 1). An averaged, normalized time course of BOLD response
was extracted from each ROI.

Analysis of Variance and Long-Range
Temporal Correlations
The variance (σ2) was calculated for each time series, except for
ROI BN-94-ITP-R, using the numpy.var Python function.

We used detrended fluctuation analysis (DFA) to access the
LRTC in the fMRI signal. This method enables the estimation
of long-range temporal dependence in time series. To perform
DFA analysis, a Python script was applied from the Nolds package
to the time courses extracted from the ROIs (Schölzel, 20192).
First, the trend was removed from the signal using a process of
mean subtraction from each time point. Then, the cumulative
sum was calculated by summing all numbers in the series.
In the next step, the signal was divided into equal-size parts
called windows. Within each window, the detrending procedure
was repeated, and the standard deviation was calculated. The
fluctuation intensity was measured by averaging the standard
deviation of all windows. Using the same algorithm, fluctuation
intensities were obtained for various chosen window sizes. The
H value was calculated as the trend slope of the function of
fluctuation intensity means vs. the window sizes in logarithmic
scale (Peng et al., 1994; Hardstone et al., 2012). We chose non-
overlapped windows with sizes of 12, 15, 20, 25, and 30 TR, and
trend fitting was accomplished using the least-squares method.
The minimal and maximal window lengths were selected based
on those in previous studies. The minimal size chosen was 12
because Tagliazucchi et al. (2013) reported a trend deviation from

2https://pypi.org/project/nolds
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linearity if the size of the time windows selected was less than 10
TR volumes on low-frequency resting-state BOLD signals. The
maximum size was equal to one-tenth of the signal length (in
volumes), as was suggested by Hardstone et al. (2012). Our data
also showed a trend decline from linearity on windows larger
than 30 volumes.

Furthermore, we estimated the goodness of fit for each H
to understand how well it described the data. The goodness
of fit was calculated as the squared correlation coefficient (R2).
The mean R2 for each mask was > 0.95, which means they
described the data well.

Statistical Analysis
Because our aim was to trace the changes in variance and the
LRTC in the resting state after fear exposure, as a first step, we
used a non-parametric Wilcoxon signed-rank test to detect ROIs
that had statistically significant differences in H and variance
between RS1 and RS2. Then, we used only these ROIs to compare
pairwise H and variance in the rest- and FE task-related signals
using a Wilcoxon test. The association among anxiety scores,
H, and the variance of all ROIs was tested using Spearman’s
correlation analysis. The false discovery rate (FDR) correction
(Benjamini and Hochberg, 1995) for multiple comparisons was
applied to all statistical tests (MATLAB Bioinformatics Toolbox
function mafdr).

RESULTS

Variance of the BOLD Signal
During variance analysis of the signal, we found 91 areas that
had a difference between the RS1 and RS2, but the changes
passed FDR correction in only 7 ROIs (Table 1 and Figure 2).
Five of them were located in subcortical areas [right nucleus
accumbens (BN-224-NAcc-R) and thalamic nuclei]. The other
two were the right fusiform gyrus (BN-108-FuG-R) and the
right medio-ventral occipital cortex (BN-196-MVOcC-R). All
showed a difference in variance for a direct RS1–RS2 comparison
(Table 1). Importantly, the variance of the BOLD signal in these
ROIs demonstrated a steady increase from RS1 session to FE
and RS2 session.

LRTCs of BOLD Signals
Of the 245 compared ROIs, we found 7 areas having substantial
changes in the LRTC (H) between the pre-task and post-task
resting states (puncorr < 0.05).

One area, the right superior frontal gyrus (BN-4-SFG-
R), was excluded from further analysis, as its R2 values
differed significantly during two RS sessions (W = 62,
p = 0.0208), implying that they could not be statistically compared
(Tagliazucchi et al., 2013) (Supplementary Table S2).

The other six areas (Table 2 and Figure 3) showed prominent
differences in H (1H) between RS1 and RS2. Only two of
the areas exhibited a significant decrease in H during FE task
performance: the right middle frontal gyrus (BN-22-MFG-R) and
the right lateral occipital cortex (BN-202-LOcC-R). In contrast TA
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FIGURE 2 | Areas exhibiting differences in variance of BOLD signal. Colors indicate different areas: BN-108 right fusiform gyrus, dark green; BN-196 right
medio-ventral occipital cortex, red; BN-224 right nucleus accumbens, green; BN-233 left pre-motor thalamus, violet; BN-234 right pre-motor thalamus, yellow;
BN-239 left posterior parietal thalamus, cyan; BN-246 right lateral pre-frontal thalamus, blue.

to other areas, which exhibited increased LRTC, BN-22-MFG-
R demonstrated decreased LTRC of the BOLD signal in the RS2
compared to that in the initial RS1.

Variance and LRTC Changes in
Task-Related Regions of Interest
The H dynamic in the rest–task–rest paradigm was tested
separately in the FEN and TRC clusters. There were no significant
changes inside any of these areas. However, we found that five
ROIs from the BN Atlas, that had significant 1H, overlapped with
the FEN clusters from the meta-analysis and the TRC clusters of
the brain activations previously observed in FE (Supplementary
Table 3 and Figure 4).

The BN-202-LOcC-R, BN-22-MFG-R, left middle frontal
gyrus (BN-15-MFG-L), and right precentral gyrus (BN-62-PrG-
R) areas overlapped with areas from both the FEN and TRC sets
of clusters. The left insula (BN-173-INS-L) overlapped only with
the FEN (Supplementary Table 3).

In addition, the H was calculated in each overlapping region
of the BN ROIs with the FEN and the TRC separately. However,
none of these overlaps had significant changes between sessions.

Furthermore, we checked the variance in ROIs, which
exhibited 1H. Some 1H areas also showed changes in the
variance: BN-62-PrG-R, left paracentral lobule (BN-65-PcL-
L), BN-173-INS-L, and BN-202-LOcC-R (Table 3). In these,
the variance insignificantly decreased during the task, but
significantly increased during the post-task resting state.

In contrast to the H, the variance of the BOLD signal differed
significantly in the FEN and TRC ROIs (Supplementary Table 4).
Most ROIs exhibited a slight increase in variance during the task
and RS2 (Supplementary Table 4).

We found no correlations of STAI scores with either variance
or H of the BOLD signal in BN, FEN, and TRC ROIs
or their overlaps.

DISCUSSION

In the present study, we investigated the variance and LRTC of
brain activity measured using the BOLD signal in the rest–task–
rest sequence. The process of extinguishing fear memories served

as a task condition, as we were primarily interested in testing
a hypothesis that short, negative emotional experiences during
Pavlovian fear conditioning could influence the brain’s dynamics
in the subsequent resting state after fear memory extinction. We
compared the variance and the LRTC (measured using H) of the
BOLD signal for 245 brain regions from the functional resting-
state atlas (BN-ROIs) (Fan et al., 2016) in ROIs obtained from
a meta-analysis of FE (FEN-ROIs) (Fullana et al., 2018) and in
ROIs from an analysis of brain activation during the FE process in
the same group of subjects (TRC-ROIs) (Martynova et al., 2020).

Changes in the Variance of the BOLD
Signal After Fear Learning and Extinction
Of the 245 BN-ROIs, we found 7 areas that had significant
variance changes in dynamics during the rest–task–rest
sequence. All areas exhibited the variance increase in RS2
relative to the RS1.

Increased nucleus accumbens (NAcc) variance has previously
been shown to be associated with financial risk tasks (Samanez-
Larkin et al., 2010). The NAcc also plays a role in fear
conditioning and FE (Fullana et al., 2018). The increasing
variance appeared consistent with prior literature showing a
positive association between increasing variance and functional
efficiency during active cognitive tasks (Garrett et al., 2012, 2018;
Labrenz et al., 2019). The thalamic nuclei were associated with
visual (BN-239-PPtha-L) and action execution (BN-233-PMtha-
L) functions (Fan et al., 20163), and their changes in variability
seemed related to the experimental environment. A few other
works have also shown changes in the variance of fMRI signals.
A comparison of task-related and resting-state brain activity
found increased dispersion of the BOLD signal in the inferior
and dorsal prefrontal cortex and the default mode network areas
(Garrett et al., 2012; Grady and Garrett, 2014). Higher variance
was associated with higher cognitive performance (Garrett et al.,
2013; Burzynska et al., 2015), which could indicate the level
of adaptability and efficiency of neural systems because a more
significant range of fluctuations enabled faster adaptation to
various stimuli (Garrett et al., 2012). Other researchers have
reported decreased variance in the visual cortex during visual

3http://atlas.brainnetome.org/bnatlas.html
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discrimination tasks (Bianciardi et al., 2009) and in the areas
of the resting-state networks when performing button-pressing
tasks (He, 2011). These conflicting findings indicate that the
dispersion of the BOLD signal may differ during different tasks
depending on the experimental design.

Changes in LRTC After Fear Learning
and Extinction
We compared resting-state brain activity before and after the FE
task and found 6 areas of 245 BN ROIs in which the LRTC of the
BOLD signal changed but at uncorrected levels of significance.

In addition, we checked the possible differences in H between
rest–task–rest sessions in the specific brain regions previously
associated with fear processing, including the ROIs of the FEN
taken from a meta-analysis of FE (Fullana et al., 2018) and areas
of task-related brain activation during fear conditioning (TRC
ROIs) obtained from the same group of subjects (Martynova
et al., 2020). The LRTC of the BOLD signal did not change
significantly. We assume that significant LRTC changes in the
FEN and TRC ROIs might have been missing due to that our
study focused on the resting-state data and the corresponding
preprocessing pipelines, while masks of the FEN and TRC ROIs
were obtained in the task-based fMRI designs and preprocessing
based more on the task-induced neural activity rather than neural
efficiency. However, we found that the most of regions from
the BN Atlas, which demonstrated changes in H, overlapped
with some FEN and TRC areas. This concurrence enables us to
presume that the observed changes in H that reflected the LRTC
were not accidental.

The LRTC of the BOLD signal decreased during the FE
session. This finding is consistent with previous data reporting
decreased LRTCs of fMRI signals during tasks (He, 2011;
Ciuciu et al., 2012; Churchill et al., 2016). The decreased
LRTC could be associated with neural activity underlining the
more efficient processing of online information (He, 2011).
Tasks that involved increased cognitive loads and increased
novelty were accompanied by larger decreases in the LRTC
(Churchill et al., 2016).

In the RS2, most areas, which had demonstrated decreased
H during the task, experienced recovery of the H value to the
initial levels of RS1. Importantly, the areas associated with FE
showed not only recovery but also increased LRTC in the RS2,
except the right middle frontal gyrus (BN-22-MFG-R). Barnes
et al. (2009) traced the recovery of the H in the resting state after
a memory task. The experiment’s design was similar to that of
the current work, however, in Barnes et al. (2009), the second
rest was twice as long as the initial rest and the task. The RS2
was divided into eight equal intervals, and the H was calculated
for each. The signal complexity was gradually restored to its
original level during a period of up to 15 to 18 min. In the present
study, the H of the BOLD signal was averaged throughout a 10-
min interval of RS, which might indicate the general complexity
level of the neural activity after the FE task. It is also possible
that a slight increase in the H index of the right middle frontal
gyrus might reflect memory processing after the task, as this
Brodmann area (BA46) is known to play a crucial role in working
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FIGURE 3 | Regions depicting significant (puncorr < 0.05) changes in Hurst exponent. Numbered areas: 1, Middle frontal gyrus, left; 2, Middle frontal gyrus, right; 3,
Precentral gyrus, right; 4, Paracentral lobule, left; 5, Insular gyrus, left; 6, Lateral occipital cortex, right.

FIGURE 4 | Overlapping areas among 6 identified 1H regions, the fear extinction network, and task-related activity. (A) Whole-brain view of the overlaps. (B) Right
lateral occipital cortex (C) Right inferior part of precentral and right middle frontal gyrus. (D) Left insula and middle frontal gyrus.

memory and attention (Pochon et al., 2002; Japee et al., 2015;
Ueda et al., 2017).

The increased H in the other five areas can be explained
by the relaxation of the neural activity and the possible
consolidation of memory traces after the task. Duff et al.
(2008) found increased low-frequency power spectral density
during the RS2, and these changes occurred precisely in
the areas associated with the motor task. In the present
study, presumably, the increased H in the ROIs associated
with the FEN resulted from internal neural adaptation and
memory consolidation after the FE task. However, unlike in

Duff et al. (2008), the H index was not adjusted for a specific
frequency band but was based on the RS BOLD fluctuation
filtered to low frequencies of 0.01–0.1 Hz. Our findings, in
combination with Duff’s data, may indicate a possible interaction
of scale-free processes with a change in a wide low-frequency
range of the BOLD signal associated with neural activity
during the task.

The BN ROIs, which had between-session differences in LRTC
and variance, did not overlap. However, we also checked the
signal variance in the ROIs with the changes in H between the
RS1 and RS2. Few areas showed simultaneous increase of H and
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variance in post-task rest: the left paracentral lobule (BN-65-
PcL-L), left insula (BN-173-INS-L), right precentral gyrus (BN-
62-PrG-R), and right lateral occipital cortex (BN-202-LOcC-R).
The decrease of variance and H in these areas during the FE
was insignificant. Our findings are inconsistent with the data
of B.J. He (2011), who reported a simultaneous decrease of
the variance and LRTC in fMRI signals during task activation.
The most significant changes were observed for the BOLD
signal variance, showing a steady increase from RS1 to FE and,
consequently, RS2. Importantly, we observed altered variance
and H (at the uncorrected level of significance) in the resting-
state brain activity after fear learning and extinction only in the
specific brain regions related to the fear memory network (Feng
et al., 2015; Fullana et al., 2018). These findings support our
hypothesis that task-related activity during fear processing may
modulate post-task spontaneous neural activity.

LIMITATIONS

A few assumptions may limit the results of our research. First,
neither did we have a control group that had similar scanning
parameters nor did we compare the experimental group with a
control, which should be done in future research. Fear-induced
changes of BOLD dynamic may be confounded by regular
changes over time, which can only be determined with a control
group. The second limitation relates to the correction for multiple
comparisons. Because we provided exploratory analysis without
any directional hypothesis, we performed a pairwise comparison
of H values in 245 ROIs. However, only 7 of the 245 showed
a difference at the uncorrected p-value level. We assume that
the pattern was not random, as all these ROIs overlapped with
areas from a meta-analysis of the FEN (Fullana et al., 2018). The
third limitation is due to the choice to parcellate the brain into
ROIs rather than conduct voxel-wise analysis. This ROI-based
approach averaged the BOLD signal across the brain area, which
could considerably smooth the variability and fractality of the
brain’s dynamics. However, we assume that the neural activity in
these ROIs is synergistic, as we used ROIs from the brain atlas
built on the functional parcellation of resting-state fMRI signals
(Fan et al., 2016). Finally, the validity of the obtained results
should be tested in further research using other methods for
estimation of scale-free properties such as wavelet domain-based
multifractal analysis.

CONCLUSION

Using DFA and variability analysis, we demonstrated the changes
in the scale-free properties and variance of the BOLD signals
during the resting states after fear learning and extinction
compared to the initial baseline resting-state condition. The
pattern of changes in the LTRC (H) overlapped with those in the
FEN ROIs in the brain cortex We found decreased H during the
FE task, which replicated a previous finding (He, 2011), but we
also found post-task changes in H only in areas related to fear
processing network. The decreased LRTC may serve as a marker
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of specific task-related brain and residual memory processing.
As a different method of analyzing fluctuation, the variance
provided an additional measure of brain functional efficiency. It
significantly increased in areas related to the processing of visual
and emotional information. Not all areas with session-dependent
H showed simultaneous changes in variance. However, in the
right precentral gyrus, left paracentral lobule, lateral occipital
cortex, and left insula, both the H and the variance decreased
during tasks and increased during post-task rests. Overall, our
work shows that changes in the resting states after fear learning
and extinction can be captured using not only linear methods
but also non-linear ones, including the variance and fractality
of brain dynamics.
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