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Prevention neuroscience investigates the brain basis of attitude and behavior change.
Over the years, an increasingly structurally and functionally resolved “persuasion
network” has emerged. However, current studies have only identified a small handful of
neural structures that are commonly recruited during persuasive message processing,
and the extent to which these (and other) structures are sensitive to numerous individual
difference factors remains largely unknown. In this project we apply a multi-dimensional
similarity-based individual differences analysis to explore which individual factors—
including characteristics of messages and target audiences—drive patterns of brain
activity to be more or less similar across individuals encountering the same anti-drug
public service announcements (PSAs). We demonstrate that several ensembles of brain
regions show response patterns that are driven by a variety of unique factors. These
results are discussed in terms of their implications for neural models of persuasion,
prevention neuroscience and message tailoring, and methodological implications for
future research.

Keywords: prevention neuroscience, persuasion neuroscience, individual differences, public service
announcements, health campaigns, media neuroscience

INTRODUCTION

The field of prevention neuroscience is organized around understanding the neural mechanisms
that underpin health attitude and behavior change (for a review, see Hall et al., 2018). Numerous
studies demonstrate that neural activity in response to persuasive messages can accurately predict
health attitudes and behavior change, and that adding neural activity to traditional self-report
measures results in substantially better prediction models (Chua et al., 2011; Falk et al., 2015; Weber
et al., 2015a). These findings have led to several important advances. For instance, a constellation of
structures in the persuasion network (Falk et al., 2010, see also section “Persuasion Neuroscience”)
has been shown to systematically vary in response to different persuasive messages (Kaye et al.,
2016), and research demonstrates that this variation is useful for accurately characterizing which
health communication campaigns are most likely to succeed (Falk et al., 2016).
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However, despite considerable progress, this research largely
depends on aggregating neural responses across individuals and
focusing on group-level results. This approach has undoubtedly
led to rapid and widespread advances in linking brain structure
to psychological function. However, group-level aggregation
does have two shortcomings1. First, it has the potential to
muddy the interpretation of results on a neuroanatomical level.
And second, it misses out on the potential power of using
neuroimaging to improve health message tailoring. For example,
regarding the first shortcoming, research shows that high drug-
risk individuals, characterized by high issue involvement, exhibit
qualitatively different patterns of brain activation and functional
connectivity (suggestive of counter-arguing against putatively
highly persuasive messages) than low drug-risk individuals
(Weber et al., 2015a; Huskey et al., 2017). In both cases, ignoring
the individual difference dimension of drug-risk would have led
to a hybrid pattern of results that likely did not occur in any of
these two groups. This logic can be extended to all individuals in a
neuroimaging study—ignoring theoretically relevant differences
on the individual level can lead to a hybrid pattern of results that
likely did not occur in any individual (Haxby et al., 2011; Davison
et al., 2016). Regarding the second limitation, particularly in
the context of health message campaigns, maximizing the
effectiveness of any particular message requires considering not
only the features of the message itself, but also how these features
align with the viewer on a number of different dimensions (Rimer
and Kreuter, 2006). In short, tailored messages are more effective
than untailored messages (Noar et al., 2007; Lustria et al., 2013).

Of course, heterogeneity in neural response can be partially
investigated by conducting moderation analyses (Schmälzle and
Meshi, 2020). But even this sort of analysis tells only part of the
story. Any approach that treats individuals as interchangeable
can only partially contribute to our understanding of tailoring
effects. To overcome these concerns, our study applied a multi-
dimensional similarity-based individual differences analysis
(Miller et al., 2002, 2009, 2012; van Baar et al., 2019; Turner, 2020)
to explore which individual factors—including characteristics of
messages and target audiences—drive patterns of brain activity
to be more or less similar across individuals encountering
the same anti-drug public service announcements (PSAs). We
demonstrate that several ensembles of brain regions show
response patterns that are driven by a variety of unique factors.
These results are discussed in terms of their implications
for neural models of persuasion, prevention neuroscience and
message tailoring, and methodological implications for future
research. We conclude with a discussion of future directions for
incorporating the individual as an entity of interest in persuasion
neuroscience research.

Persuasion Neuroscience
The last decade has seen substantial progress in our
understanding of the persuasion network (Falk et al., 2010)—
that is, the collection of brain regions that are activated
while individuals are encountering persuasive messages (for

1It is important to note that these limitations extend to any fMRI-based research
that is organized around group-level analyses; see also Turner et al. (2019) for
further discussion of such limitations.

a recent critical review, see Cacioppo et al., 2017). Research
in this domain has led to a number of advances, including an
increasingly resolved map of the network’s putative constituent
regions (Falk et al., 2010; Kaye et al., 2016), the factors to which
they are sensitive (Falk and Scholz, 2018), how they represent
persuasive messages (Pegors et al., 2017), their interconnections
(Ramsay et al., 2013; Huskey et al., 2017; Cooper et al., 2018),
and their neural similarities in persuasive message processing
across audience members (Imhof et al., 2017, 2020). In addition
to shedding light on theoretical debates (e.g., Weber et al.,
2015a), these results in the neural domain have been shown to
offer real-world utility by improving predictions of subsequent
behavior above and beyond traditional measures (for a review,
see Berkman and Falk, 2013).

In parallel with this work toward characterizing the typical
persuasion network, persuasion scholars have made substantial
progress in the past two decades in understanding the effects
of message tailoring. All things being equal, tailored messages
(messages that align source, message, receiver, and context
factors) are more persuasive compared to untailored messages
(Rimer and Kreuter, 2006; Noar et al., 2007; Lustria et al., 2013).
Neuroimaging research demonstrates that a number of regions
of interest (ROIs) are more active when processing tailored
(as compared to untailored) persuasive messages, including:
the medial prefrontal cortex (MPFC), precuneus, and posterior
cingulate (Chua et al., 2009). Similarly, neural responses to
tailored messages, particularly in the MPFC, are predictive
of behavior change (Chua et al., 2011). Current models of
persuasion heavily implicate the ventral MPFC (vMPFC) as well
as the ventral striatum (VS) in persuasion (Falk and Scholz,
2018), and the MPFC has been targeted as a candidate region
of interest for examining the influence of message tailoring
(Tompson et al., 2015).

Despite this progress, a number of unanswered questions
remain (Cacioppo et al., 2017). First among them, pattern of
interest (POI) analyses demonstrate that whole-brain responses
to persuasive messages provide unique information above
and beyond that gained by ROI-based analyses (Doré et al.,
2019). This aligns with evidence in the behavioral literature
that identical persuasive outcomes (e.g., attitude changes,
behavioral intentions, or actual behavior changes) can be
observed with different sets of underlying cognitive processes
(for seminal research on this issue, see Petty and Cacioppo,
1984; also see Weber et al., 2013), and suggests potential
structural updates to the persuasion network. Second, many
of the aforementioned findings largely depend on aggregating
across individuals and focusing on group-level results. This
approach largely ignores individual variance in persuasive
message processing by treating individual-level variance as
noise. A complementary approach, one that treats individual-
level variance as a signal, has the potential to not only
expand our understanding of the neural basis of persuasion,
but to also improve our capacity for tailoring effective
persuasive messages.

The Individual Differences Approach
There is an increasing understanding that individuals vary and
that any given behavioral response might be driven by a variety of
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individually different neural processes (Marder, 2011; Krakauer
et al., 2017). In the present study, we examine this by applying
some of the techniques from individual differences research
in the neural domain (Miller et al., 2002, 2009, 2012; Dubois
and Adolphs, 2016) to a study of anti-drug public service
announcement (PSA) viewing. Briefly, an individual differences
analysis is one that seeks to link neural responses to relevant
individual characteristics (for an overview of the method, see
Turner et al., 2019). Some of the studies mentioned above,
particularly the ones that adopt a brain-as-predictor approach
(Berkman and Falk, 2013), already meet the rather expansive
criteria of this definition.

We expand on this approach with an analytical procedure
that is conceptually similar to representational similarity analysis
(Kriegeskorte et al., 2008). This multi-dimensional similarity-
based approach (see Miller et al., 2009, 2012) considers how
pairwise similarity in participant neural responses can be
explained by pairwise similarities in participant individual
difference measures. This procedure, which is an extension
of multivariate distance matrix regression (Anderson, 2001),
is beneficial because it provides researchers with a principled
method for identifying how much variance a given individual
difference measure explains in a neural response while also
controlling for other observed and unobserved individual
difference measures (Turner et al., 2019).

The rationale for conducting such an analysis is
straightforward. A number of studies have shown that even
simple cognitive tasks such as episodic, semantic, and working
memory protocols (Miller et al., 2002, 2009, 2012), attentional,
resting, and multi-modal memory tasks (Davison et al.,
2016), and natural speech processing (Huth et al., 2016)
show considerable individual differences in neural response.
A common characteristic among these studies is variation in
neural response within participants was low (both across task
type and over time) while between participant variation was
high. A common interpretation of this result is that participants
use a number of different cognitive strategies to perform
the same behavioral task (for an extended discussion, see
Krakauer et al., 2017). By comparison, processing persuasive
messages such as the PSAs used in this study is a complex task
and requires an even higher number of cognitive processes
(e.g., audiovisual, speech/language, self/other-references,
logical/causal reasoning, emotions). Thus, we should expect that
processing persuasive messages corresponds to an even higher
level of variation in neural responses between participants (see
e.g., Hawco et al., 2020).

With this rationale in mind, a central question in this paper
is: what does variation in neural responses between participants
tell us? A number of prominent papers have forcefully argued
that these individual differences provide important signal that
helps us better map structure to function, identify and diagnose
pathology, and (crucially for this study) identify the sources of
variability (Van Horn et al., 2008; Gabrieli et al., 2015). Recent
evidence demonstrates that naturalistic tasks such as watching
audiovisual stimuli (e.g., the PSAs used in this study) are well
suited for examining sources of individual variability (for a
review, see Eickhoff et al., 2020).

Our study uses an individual differences analysis to address
two aims. The first is to better understand the mapping between
structure and function for persuasive message processing. The
second is to understand sources of individual variation in
persuasive message processing with an aim toward identifying
potential avenues for message tailoring. Together, these results
will help us understand what individual difference characteristics
drive neural responses to persuasive messages, which should
provide information that informs future attempts at message
tailoring while also identifying potential ROIs for future brain-
as-predictor based investigations.

The Present Study
In this study, we evaluate participant responses to a number
of 30 s anti-drug PSAs. These PSAs systematically vary in
terms of their argument strength (AS) as well as their levels of
arousal (message sensation value; MSV), two dimensions that
have been demonstrated to influence message persuasiveness (see
e.g., Weber et al., 2013). We expose participants who are at
either high- or low-risk for drug use to each of these messages.
Importantly, drug-risk has been shown to interact with message
characteristics, specifically the interaction between MSV and
AS, and result in different behavioral (Weber et al., 2013) and
neural (Weber et al., 2015a; Huskey et al., 2017) responses.
Moreover a large body of theoretical research investigating the
Elaboration Likelihood Model demonstrates that the interaction
between MSV and AS influences persuasive message processing
(Petty and Cacioppo, 1986). Therefore, we will focus our inquiry
on this interaction term. This procedure is particularly suitable
for the present study as it generates considerable variability
in individual-level responses. By systematically evaluating this
variability, we evaluate the extent to which a number of
a priori and exploratory ROIs are sensitive to individual
difference measures.

MATERIALS AND METHODS

Previous Reporting and General
Overview
This manuscript uses fMRI data previously reported in Weber
et al. (2015a). This earlier analysis relied on the classic
general linear model to characterize differences in group-level
activation maps for high- compared to low-drug use risk
participants. By comparison, the analysis and results reported
in this manuscript adopt a multi-dimensional similarity-based
individual differences approach to examine unique neural
activation patterns at the individual participant level. The
present study also includes several new individual difference
profiling variables that have not been previously reported on.
Together, this new analytical approach coupled with the inclusion
of new individual difference variables allows us to examine
new questions beyond what has been previously reported.
Nonetheless, because the analyses conducted for the current
study repurpose data originally collected to test related but
distinct hypotheses, the results should be seen as a starting
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point for inductive hypothesis generation and future research in
the deductive mode.

fMRI Data Acquisition
Data were acquired on a Siemens Magnetom TIM Trio scanner
with a 3-Tesla magnetic field strength. An 8-channel phased-
array headcoil was used during acquisition. T2∗-weighted
images were acquired using a single-short echo planar gradient
sequence (TR = 2,000 ms, TE = 27.2 ms, FA = 77 degrees,
FOV = 22 × 22 cm3). Forty interleaved slices were acquired
parallel to the AC-PC plane (slice thickness = 3 mm, 0 mm gap,
64× 64 matrix). A high-resolution T1-weighted sagittal sequence
(TR = 1,620 ms, TE = 3.87 ms, FOC 250 mm, voxel resolution
1 mm isotropic) was also collected.

fMRI Pre-processing
The fMRI data used in this study were pre-processed using FEAT
(fMRI Expert Analysis Tool v6.0) from the Oxford Center for
Functional MRI of the Brain (FMRIB) Software Library (FSL
v5.0). The pre-processing pipeline followed standard conventions
for cleaning fMRI data (Weber et al., 2015b). The data were
motion corrected using FSL’s Motion Correction FMRIB Linear
Registration Tool (Jenkinson et al., 2002) and the in-brain data
were masked using FSL’s Brain Extraction Toolkit (BET; Smith,
2002). Data were highpass filtered (σ = 59.5 s) and grand-
mean intensity normalized. FSL’s FLIRT utility (Jenkinson and
Smith, 2001; Jenkinson et al., 2002) was used to align participant
functional data to a high-resolution T1-weighted structural scan.
Finally, the data were resliced to 5 mm isotropic voxels using
FLIRT with nearest-neighbor interpolation.

Participants and Experimental Procedure
Twenty-eight participants were characterized along a number
of individual difference dimensions (see section “Intrinsic
Measures” below). Participants viewed 32 anti-marijuana PSAs
(for complete details, see Kang et al., 2006) made available by
the anti-drug PSA archive at the University of Pennsylvania,
Annenberg School for Communication. The stimulus PSAs were
extensively pre-tested to constitute a fully crossed design of low
and high message sensation value (MSV) with low and high
argument strength (AS; for more details regarding the rationale,
operationalization, and interpretation of these variables, see
Weber et al., 2013). Each PSA lasted 30 s, and PSAs were
interspersed with control clips (also 30 s in length) where
the video was scrambled (thus destroying message meaning
while preserving luminosity and auditory amplitude), and with
blank 10 s intervals between each PSA. In addition, participants
completed a number of individual difference measures (see
section “Participant PSA Evaluations” below) and evaluated each
PSA on various dimensions. We examined the relationships
between these individual difference measures, PSA evaluation
measures, and patterns of brain activity across a set of regions.
These regions were selected a priori from previous findings in
the literature and a posteriori from functional maps using the
interaction of MSV and AS as contrast (see Table 1 and section
“Region of Interest Analysis” below).

Intrinsic Measures
A number of theoretically relevant measures intrinsic to
participants were collected via self-report. Specifically,
participants were evaluated on their risk for using marijuana,
sensation seeking, and overall compliance with the task.

Drug use risk was measured with the “risk for marijuana use
scale” by Cappella et al. (2003). Sensation seeking is defined as
the tendency to seek out novel, complex, or exciting situations
and stimuli. The construct was measured using a four-item
scale derived from Zuckerman (1994). The items were “I like to
explore strange places,” “I like to do frightening things,” “I like
new and exciting experiences even if this breaks rules,” and “I
prefer exciting and unpredictable friends” (1–5, strongly disagree,
disagree, neutral, agree, strongly agree). Overall involvement
and compliance with the task was measured with a self-made
four-item scale (1–5, strongly disagree, disagree, neutral, agree,
strongly agree). The items were “The study was fun,” “The study
was interesting,” “I would recommend friends doing the study,” “I
enjoyed being part of this study.”

Participant PSA Evaluations
In addition to these intrinsic measures, participants completed
a number of self-reported perceptions of each PSA. Perceived
message sensation value (pMSV; Palmgreen et al., 2009) was
measured to evaluate participant perceptions of PSA emotional
arousal, dramatic impact, and novelty. Perceived argument
strength (pAS; Zhao et al., 2011) measured how strong/weak
participants thought a PSA was. Ad liking (AdLike) was
measured with a single seven-point Likert item asking the
degree to which participants liked each PSA (Kang et al., 2006).
Another set of questions, each rated on a 1–4 Likert scale,
asked participants to agree with 14 emotion statements of the
form “Please indicate how much this ad made you feel. . .”
These 14 items were collapsed into two measures by averaging
three positive (pos: “good,” “happy,” “inspired”) and seven
negative (neg: “sad,” “afraid,” “bad,” “guilty,” “angry,” “disgusted,”
“sympathetic”) items. Finally, thought valence (ThVal)—the
degree to which positive or negative thoughts about the message
predominate following message receipt—was measured as the
difference score between two 7-point Likert items regarding the
PSA generating thoughts about wanting to try marijuana and
generating thoughts about staying away from marijuana (Petty
and Cacioppo, 1986; Kang et al., 2006). Each of these ratings was
assessed after a second viewing that took place outside of the
scanner. For the analyses described below, missing values for any
given scale or question were simply replaced by the mean across
all non-missing responses for that scale/question.

Open Science Practices
In accordance with recent calls to make scientific studies more
transparent and reproducible (Poldrack et al., 2017; Dienlin et al.,
2020), the preprocessed data and analysis code for the results
reported in this submission are available in a public repository
on the Open Science Framework2.

2https://osf.io/vmc8e/
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Region of Interest Analysis
Our goal was to explore how message and audience
characteristics relate to individual differences in patterns of
brain activity across 23 regions of interest, which comprised a set
of a priori regions within the persuasion network as well as those
defined a posteriori on the basis of whole-brain analyses. Each
of these steps—defining ROIs, defining individual difference
measures, and relating brain activity to these measures—is
described in turn below.

Regions of interest were derived from three sources: (1) A
priori ROIs: these are ROIs that are derived from the past
literature (see Table 2, IDs 1–4). (2) Exploratory ROIs: these
reflected the 10 peaks that demonstrated the most between-
participant variability in the MSVxAS contrast (chosen for its
theoretical interest; see Weber et al., 2013; Table 2, IDs 5–
14). (3) Confirmatory ROIs: these peaks come from Table 2
of Weber et al. (2015a), from the MSVxAS contrast for the
high drug-risk group (Table 2, IDs 15–23). For every ROI
irrespective of source, a mask was created by including the central
voxel along with all neighboring voxels within a Manhattan
distance of 2 voxels (i.e., 10 mm) of the central voxel (total
mask volume = 25 voxels; 675 mm3). In each ROI, for each
pair of participants, we computed similarity as the Euclidean
distance between the activity patterns in the MSVxAS contrast
statistical parametric map (SPM) within that ROI for that pair of
participants (Figures 1A,B).

In addition to MSVxAS SPM similarity, which we take as our
dependent variable, we quantified individual differences along a

number of other dimensions that might explain this MSVxAS
SPM similarity. These dimensions are partitioned into three
broad groups: neural measures, other intrinsic measures, and
PSA-related measures.

Neural Measures
Our neural measures include structural and functional measures
of similarity, at both the whole-brain (wbFxnSim) and ROI level.
It is important to point out that the whole-brain measures of
similarity ostensibly serves as a control by which each ROI
might be meaningfully compared. The structural measures are
derived from a probabilistic segmentation of each participant’s
anatomical scan, while the functional measures come from SPMs
of the activity related to the two different control conditions
(ROIneur) shown in the PSA experiment (scrambled videos as
well as a blank screen). Both structural and functional pattern
similarity (Euclidean distance between vectorized maps) at the
same level (whole-brain with whole-brain, ROI with ROI) were
included as explanatory variables. Additionally, for each of the
ROI-specific analyses, the whole-brain MSVxAS SPM similarities
were included as an additional explanatory variable, increasing
ROI specificity by preventing brainwide differences from driving
relationships between MSVxAS SPM similarity within any given
ROI and other variables (Figures 1A,B).

Intrinsic Measures
The intrinsic measures we considered were participants’
sensation seeking trait, marijuana risk, and study compliance

TABLE 1 | A list of definitions for key terms and acronyms in the manuscript.

Term/Acronym Definition

Regression model

Intrinsic measures Participants were evaluated on their risk for using marijuana, sensation seeking, and overall compliance with the task (see “ID Variables” below).

PSA measures PSA-related measures considered participants’ responses to the videos along a number of dimensions, including thought valence, ad liking,
positivity/negativity, as well as pAS and pMSV (see “ID Variables” below).

Neural measures Neural measures include structural and functional measures of similarity, at both the whole-brain and ROI level (see “ID Variables” below).

Shared variance Captures the (shared) variance explained in the full model that is not explained by any unique variable or set of variables — the variance that is
explained in the subspace defined by the covariance amongst the other predictors.

Unexplained A set of participant-specific intercepts (subints)—in other words, unexplained by the set of variables we have included, but in principle explainable
on the basis of other (unknown) individual difference factors.

ROIs

A priori ROIs that are derived from the past literature (Table 2, IDs 1–4).

Exploratory The 10 peaks that demonstrated the most between-participant variability in the MSVxAS contrast (see Weber et al., 2015a; Table 2, IDs 5–14).

Confirmatory These peaks come from Table 1 of Weber et al. (2015a), from the MSVxAS contrast for the high drug-risk group (Table 2, IDs 15–23).

Individual difference (ID) variables

MJrisk “Risk for marijuana use scale” by Cappella et al. (2003).

SSscore Sensation seeking is defined as the tendency to seek out novel, complex, or exciting situations and stimuli (Zuckerman, 1994).

Compliance Overall involvement and compliance with the task.

pAS Perceived argument strength (Zhao et al., 2011).

pMSV Perceived message sensation value (Palmgreen et al., 2009).

pos/neg 14 items collapsed into two measures by averaging three positive (pos: “good,” “happy,” “inspired”) and seven negative (neg: “sad,” “afraid,” “bad,”
“guilty,” “angry,” “disgusted,” “sympathetic”) items.

AdLike Ad liking was measured with a single seven-point Likert item asking the degree to which participants liked each PSA (Kang et al., 2006).

ThVal Thought valence—degree to which positive or negative thoughts about the message predominate (Petty and Cacioppo, 1986; Kang et al., 2006).

ROIneur SPMs of the activity related to two different control conditions shown in the PSA experiment (scrambled videos as well as a blank screen).

wbFxnSim Whole-brain functional similarity, which we treat as a control.
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TABLE 2 | Location and source of each ROI for a priori, exploratory, and
functional ROIs.

ID Source x Y z Region

A priori ROIs

1 Chua et al., 2009 −8 54 32 BA8/9

2 Ramsay et al., 2013 −46 28 12 BA46

3 Ramsay et al., 2013 −30 12 54 BA6

4 Falk et al., 2016 −4 56 −4 BA10

Exploratory ROIs

5 Exploratory −36 −38 68 BA5

6 Exploratory −22 −12 18 Striatum

7 Exploratory 22 −18 −14 BA35

8 Exploratory 46 −50 −10 ITG

9 Exploratory −12 46 14 BA9

10 Exploratory −54 4 −26 BA21

11 Exploratory 18 56 4 Forceps Minor

12 Exploratory −36 −6 16 BA13

13 Exploratory −36 −2 −14 Inferior Insula

14 Exploratory −32 12 −42 BA38

Confirmatory ROIs

15 Weber et al., 2015a −26 −76 −42 Cerebellum

16 Weber et al., 2015a −44 −60 6 MTG

17 Weber et al., 2015a −58 −68 0 iLOC

18 Weber et al., 2015a −38 −84 20 sLOC

19 Weber et al., 2015a 56 4 −18 STG

20 Weber et al., 2015a 6 −52 48 Precuneus

21 Weber et al., 2015a 8 56 38 Frontal Pole

22 Weber et al., 2015a 48 24 28 MFG

23 Weber et al., 2015a 46 −2 28 Precentral Gyrus

All coordinates given in MNI space. BA, Brodmann area; ITG, inferior temporal
gyrus; MTG, middle temporal gyrus; iLOC, inferior lateral occipital cortex; sLOC,
superior lateral occipital cortex; STG, superior temporal gyrus; MFG, middle frontal
gyrus.

(see section “Intrinsic Measures” above). Between-participant
similarities were operationalized as the absolute value of
the difference between values for each pair of participants
(Figure 1C). Note that although some studies report that treating
measures based on multiple items as multivariate and computing
a distance in higher-dimensional space yields advantages over
using a summary measure (e.g., Chen et al., 2020), in this case,
because each measure was theoretically univariate, we opted for
the more straightforward summary-score absolute difference.

PSA Measures
Lastly, as PSA-related measures we considered participants’
responses to the videos along a number of dimensions, including
thought valence, ad liking, positivity/negativity, as well as pAS
and pMSV (see section “Participant PSA Evaluations” above),
all of which were again converted into between-participant
similarities (Figure 1C). In this case, in contrast to the intrinsic
measures, the measures are meaningfully multidimensional—
e.g., one summary “positive” score (which itself combines across
several measures that all conceptually measure “positivity”) for
each of 32 videos. Therefore, similarity between individuals was
computed in three ways: as the Pearson correlation between
each individuals’ 32-video vector; as the absolute difference

FIGURE 1 | Visual schematic of the analysis. (A) Neural SPMs were extracted
for the MSVxAS interaction term for confirmatory, a priori, and exploratory
ROIs. (B) Pairwise similarity was calculated by computing the Euclidean
distance between SPMs for each participant for each ROI (here, we show this
procedure for the pairwise comparison between participant 1 and participant
2). (C) For individual difference variables, pairwise similarity was calculated by
taking the absolute value of the difference between participant pairs (again,
we show the pairwise comparison for participant 1 and participant 2).
(D) Pairwise similarities for each ROI were regressed on the pairwise
similarities for each individual difference measure. A round-robin procedure
was used to extract R2 for each regressor.

between the mean across all 32 videos for each participant;
and as the absolute difference between the standard deviation
across all 32 videos for each participant. Note that although this
results in three measures of similarity for each participant pair,
rather than the one that would result from a simpler summary-
based similarity, it still represents a considerable dimensionality
reduction compared to the underlying data (for instance, for the
variable neg, there were 7 ratings for each of the 32 videos, for a
total of 224 values for a single individual).

Regression Model
To relate these explanatory variables to our outcome measures,
for each ROI, we regressed each MSVxAS SPM similarity
measure on the full complement of neural, intrinsic, and
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PSA-related measures (Figure 1D). We also examined three
other sources of variance. The first, in line with previous studies
using this same similarity-based individual differences approach
(Miller et al., 2012), was a set of participant-specific intercepts,
which we refer to as “Unexplained” variance—in other words,
unexplained by the set of variables we have included, but in
principle explainable on the basis of other (unknown) individual
difference factors. The second, which we refer to as “Shared
Variance,” is not a separate predictor at all, but rather captures the
variance explained in the full model that is not explained by any
unique variable or set of variables—in other words, the variance
that is explained in the subspace defined by the covariance
amongst the other predictors. We have split out this source of
variance because it is part of the overall variance explained by
the model, but previous studies have treated all variance beyond
the sum of the unique variances explained by each variable
as unexplainable. Finally, as described above, the model also
included a whole-brain functional similarity (wbFxnSim) term,
which we treat as a control. Specifically, this term acts as a stand-
in for all possible control regions since it is orthogonal to all other
explanatory variables in the model.

In order to assign credit to each original predictor variable
(some of which were operationalized in the model using multiple
regressors), we used a round-robin regression approach—that is,
for each original group of regressors, we compared the R2 of
the full model3 with the R2 of a reduced model that excluded
those variables, and took the 1R2 as our measure of interest.
We converted these R2 to (pseudo) p-values using a novel
constrained bootstrap approach that takes the non-independence
of the similarity values (because any given subject contributes
N 6=1 similarities to every regressor, along with the regressand)
into account, which we refer to as p∗-values to denote the result
of this novel approach. We treat these p∗-values as reflecting the
strength of evidence that a particular 1R2 is not due to, e.g.,
non-independence amongst the similarity values. To simplify
visualization of the results, we grouped regions together based
on their p∗-values using hierarchical clustering (Ward’s criterion;
Murtagh and Legendre, 2014) and summarized per-group R2-
values using maximum a posteriori (MAP) estimates for each
group. These MAP estimates are also used only for visualization,
to capture the natural intuition that larger groups, along with
more homogeneous groups, should produce means further from
zero (to the degree supported by the evidence).

RESULTS

A fundamental goal of this study is to characterize neural
responses that are, broadly, sensitive to message tailoring. To
that end, we have identified neural ROIs drawn from: the past
literature (referred to as a priori ROIs), our own previous
GLM-based investigations into the MSVxAS contrast on this

3This full model excluded the participant-specific intercepts described above for
all regressions except for the one for determining the unique contribution of those
intercepts. This is akin to hierarchical regression, and is done to prevent this non-
specific variable from absorbing variance that can be explained by the other specific
variables.

dataset (referred to as confirmatory ROIs), and a set of ROIs
that showed considerable between-participant variability in the
MSVxAS contrast (referred to as exploratory ROIs). We utilized a
multidimensional similarity based approach where we regressed
pairwise similarities on a variety of neural, intrinsic, and PSA-
related measures on pairwise neural similarities in the a priori,
confirmatory, and exploratory ROIs. In what follows, we describe
the results of this analysis.

Figure 2 presents the results of the round-robin regressions
for each of our 23 ROIs. In order to reduce dimensionality,
these results were organized according to the groups discovered
by the Ward clustering procedure4. To simplify (and at the
same time, enrich) the results regarding strength of evidence
presented in Table 3, Figure 3 visualizes the MAP estimate of
the percent variance accounted for by each variable within each
group. A number of patterns emerge. Most notably, relative
to other cluster groups, Group 2 evinces a large contribution
of similarity in pMSV (4.5% versus an average of 1.1%). As a
reminder, this means that above and beyond all other variables,
controlling for whole-brain changes, and shrinking the estimate
toward 0 in inverse proportion to the strength of the evidence,
the similarity between pairs of individuals in terms of their
pMSV ratings of the 32 PSAs explained 4.5% of the variance in
the similarity between individuals in the patterns of MSVxAS
activity within the three areas that make up this cluster. Group
5 meanwhile shows large contributions from the whole-brain
MSVxAS similarity (wbFxnSim; 18.7% versus an average of
6.4%), neural similarity in terms of structure and control activity
(ROIneur; 3.6% versus an average of 1.3%), and similarity of
sensation seeking score (SSscore; 2.0% versus an average of 0.3%).
Group 1, by comparison, shows the second largest contribution of
wbFxnSim, but also pMSV, pAS, and ThVal.

As an alternate way of evaluating the analysis, the variance
explained for each group of ROIs (a priori, exploratory,
confirmatory) was averaged without shrinkage for each category
of individual difference measure (Figure 4). For a priori and
exploratory ROIs, neural measures explain the most variance,
even after controlling for unexplained sources of variation.
Interestingly, PSA measures account for considerable variance
across all three ROI groups. Somewhat surprisingly, intrinsic
measures explained comparably little variance, regardless of ROI
group. However, it is important to point out that according to our
novel p∗-values, and exactly analogous to a typical OLS context,
variables with large amounts of explained variance (or large betas)
do not necessarily correspond to those for which there is the
strongest evidence that the true amount of explained variance
(beta value) is non-zero.

To further examine these results and to more clearly
demonstrate broad trends in ROI group differences revealed by
our analytical approach, we selected three representative regions
(Figure 5), one each from each of the groups of ROIs: MPFC
(a priori group, from Falk et al., 2016), insula (exploratory
group), and inferior lateral occipital cortex (iLOC; confirmatory
group). Here we see that each region (and by extension, to

4Note: Each analysis was run independently; see Table 2 for ROI labels and Table 3
for the assignment of ROIs to groups.
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FIGURE 2 | Results from the round-robin regression, split by confirmatory, exploratory, a priori ROIs. ROI key corresponds to Table 2.

varying degrees, each group of ROIs) is particularly sensitive to
a number of theoretically relevant individual difference variables.
For instance, the similarities on participants’ sensation seeking
traits explain considerable variance in MSVxAS similarities
within the insula. By comparison, similarities in marijuana risk
more prominently account for MSVxAS similarities within the
iLOC. Variance in the MSVxAS contrast within the MPFC was
not strongly explained by some of the intrinsic or PSA-related
individual difference variables we measured here, although it was
explained to a higher degree by measures of neural similarity,
as well as unspecified individual difference factors not among
those we included here (the “Unexplained” variance visible in
Figure 5).

DISCUSSION

In this study, we used a multi-dimensional similarity-based
approach for characterizing how a number of brain regions,
chosen in several distinct ways, are sensitive to a variety of
individual difference factors. We applied this approach to PSAs
that were systematically varied in terms of MSV and AS.
Previous research has shown that MSV and AS interact to shape
persuasive message processing and subsequent behavioral (Petty
and Cacioppo, 1984, 1986; Weber et al., 2013) and neural (Weber
et al., 2015a; Huskey et al., 2017) outcomes. We show that
brain structures across a priori, confirmatory, and exploratory
ROIs demonstrate different response profiles to intrinsic, PSA-
specific, and neural individual difference measures. We now turn

to a discussion of these results in terms of their implications
for neural models of persuasion, prevention neuroscience and
message tailoring, and for methodological advancements.

Implications for Neural Models of
Persuasion
Two important yet unresolved questions in the persuasion
neuroscience literature are: (1) what are the relevant structure-
function mappings in persuasive message processing, and (2)
how selective are these mappings to the putative processes of
interest (Huskey et al., 2020). On one hand, a small handful
of structures including the vMPFC and VS have been strongly
implicated in persuasive message processing as well as in message
tailoring (Tompson et al., 2015; Falk and Scholz, 2018) and neural
activity in these structures has been repeatedly shown to predict
persuasive message outcomes above and beyond what is capable
with more traditional measures (Falk et al., 2012, 2016; Pegors
et al., 2017; Cooper et al., 2018; Doré et al., 2019).

On the other hand, it has also been demonstrated that a
diversity of neural structures (in addition to vMPFC and VS) are
recruited during persuasive message processing (e.g., Falk et al.,
2010; Doré et al., 2019) and that these structures are sensitive
to a number of theoretically relevant moderators (Weber et al.,
2015a; Huskey et al., 2017). In fact, several review articles now
highlight the diversity of neural structures that are implicated in
persuasive message processing (Kaye et al., 2016; Cacioppo et al.,
2017). While reiterating that our results are data driven, they
come from theoretically informed linkages between intrinsic,
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TABLE 3 | Variables with a high strength of evidence (p* < 0.05, one-tailed,
uncorrected; as described in the text, this is meant only for dimensionality
reduction for clustering, rather than drawing inferences) for each ROI, along with
the group to which each ROI was assigned in the Ward clustering analysis (see
also Figure 3).

ID Group Variable 1 Variable 2 Variable 3

1 1 wbFxnSim — —

2 1 wbFxnSim* — —

4 1 wbFxnSim* — —

9 1 wbFxnSim* pMSV —

11 1 wbFxnSim pMSV —

14 1 wbFxnSim — —

15 1 wbFxnSim pAS —

21 1 wbFxnSim* — —

22 1 wbFxnSim ThVal* —

3 2 pMSV — —

16 2 pMSV — —

23 2 pMSV — —

5 3 ROIneur — —

12 3 — — —

19 3 AdLike — —

6 4 Compliance pMSV —

17 4 Compliance* wbFxnSim —

18 4 Compliance* — —

7 5 wbFxnSim** ROIneur** —

13 5 wbFxnSim* SSscore —

20 5 wbFxnSim SSscore ROIneur

8 6 wbFxnSim** — —

10 6 wbFxnSim** — —

wbFxnSim, whole brain functional similarity for the MSVxAS contrast; pMSV,
perceived message sensation value; pAS, perceived argument strength; ThVal,
thought valence; ROIneur, region of interest control condition similarity and
anatomical similarity; SSscore, sensation seeking score; Compliance, self-reported
engagement with the study. *p* < 0.01, **p* < 0.001.

PSA, and neural measures. Our results thus provide initial
evidence on some of the above questions, which will need to be
confirmed with careful forward inference designed to test specific
structure/function relationships identified here.

For instance, our results suggest that the MPFC seems rather
insensitive to some of the intrinsic (e.g., MJrisk, SSscore) and
PSA-related (e.g., neg; AdLike) individual difference variables
we measured in this study, and comparably more sensitive
to neural (structural) individual differences in participants.
Although, it is worth pointing out that unmeasured subject-
specific factors (subints) still explain over 35% of the variance
in this structure, suggesting that other (unmeasured) variables
can explain MSVxAS activity pattern similarities in this structure.
As such, the individual difference variables we measured are not
suitable as candidates for optimizing message tailoring in the
MPFC, but other potential candidates remain (Tompson et al.,
2015). In contrast, other regions, including those in our clusters
2, 4, and 5, are relatively more affected by the intrinsic and
many of the PSA-related factors we measured, and would likely
be regions in brain-as-predictors designs that are more sensitive
to the individually varying traits and message perceptions of
target audiences.

We now turn briefly to a more detailed evaluation of
the results, organized by our three ROI groups (a priori,
confirmatory, exploratory) before turning to a more
general treatment of the methodological implications and
limitations of our study.

A priori ROIs
In this study, we selected four ROIs that have been commonly
implicated in persuasive message processing by a diversity of
scientific teams. The BA6 and BA46 from Ramsay et al. (2013),
the BA8/9/MPFC from Chua et al. (2009), and the BA10/vMPFC
from Falk et al. (2016). Notably, the previous two structures
have been implicated in value computations during persuasive
message processing (Falk and Scholz, 2018) and are implicated
as target structures for investigating message tailoring (Tompson
et al., 2015). Taken as a group, our results suggest that these
regions vary in ways that are in principle explainable on the basis
of individual difference factors—very weakly with respect to the
intrinsic measures we examined, moderately with the PSA-related
measures on which we focused, but fairly strongly as a function
of the non-specific participant intercepts, suggesting that some
other (as-yet unknown) variable or combination of variables may
in fact explain a substantial proportion of the overall variance in
MSVxAS activity within these regions.

With our current approach, trying to distinguish further
beyond the individual ROIs that constitute this group—which,
to be clear, are theoretically heterogeneous and come from prior
studies on a number of distinct phenomena—would be overly
speculative. We can note, however, two other broad patterns.
The first is that these ROIs are organized into two distinct
clusters, three in the large and somewhat non-specific cluster 1,
which is dominated by the explanatory power of whole-brain
MSVxAS similarity (on which we will say more shortly), and the
fourth (BA6 from Ramsay et al., 2013) into cluster 2, which is
driven by pMSV. Thus, our clustering offers some evidence of
functional fractionation amongst these four a priori ROIs; we
suggest future research in particular might explore the pMSV
influence observed in this BA6 ROI further.

The second broad pattern in this group of ROIs, and in
particular the three aside from BA6, is the strong influence of
whole-brain MSVxAS similarity. On average within these three
ROIs, this variable uniquely accounted for 17.1% of the overall
variance, compared with an average of 10.2% for all of the other
ROIs. This result lends itself to three plausible (though not
necessarily equally so) interpretations: either these ROIs are non-
specific and so densely interconnected with the rest of the brain
that activity changes across the whole brain drive downstream
changes in these regions; or, these ROIs act as hub/control
regions, such that activity in these regions drives whole-brain
patterns of activity. A third way of viewing these results, which
is compatible with either of the first two, is that the whole-
brain MSVxAS activity pattern can be seen as a sort of “neural
fingerprint” reflecting holistically how a specific individual is
affected by these two variables. In this view, these ROIs can be
seen as a lower-dimensional biomarker of a whole-brain pattern.

However one interprets the nature of this relationship between
whole-brain and within-ROI patterns of MSVxAS similarity, the
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FIGURE 3 | MAP-estimated mean variance accounted for by each variable in each of the six ROI groups identified by Ward clustering. Note that the bars do not sum
to 1 because the MAP estimation procedure shrinks estimates toward 0 proportional to the strength of evidence (see also, Table 3). wbFxnSim, whole brain
functional similarity for the MSVxAS contrast; pMSV, perceived message sensation value; pAS, perceived argument strength; ThVal, thought valence; ROIneur, region
of interest control condition similarity and anatomical similarity; SSscore, sensation seeking score; Compliance, self-reported engagement with the study. Note that
this figure is based on clustering of (z-transformed) p*-values, but shows group profiles in terms of percent variance accounted for by each variable.

key point is that scholars who investigate these regions should be
aware of this linkage—in other words, it appears that each region
is integrated into a broader (possibly brain-wide) network and
may therefore reflect myriad inputs and outputs. Future research
may be able to elucidate whether these regions exhibit predictive
utility because of this correspondence to whole-brain activity,
or in spite of it.

Confirmatory ROIS
In this study, we also selected a number of ROIs based on our
previous group-level analysis on the same dataset (Weber et al.,
2015a). These were ROIs that were implicated in persuasive
message processing, for the MSVxAS contrast (the interaction of
two objective, and theoretically relevant message characteristics),
among high drug-risk participants (as indicator of high message
involvement). In this previous research, we identified these
structures as the neural correlates of counterarguing. Including
these structures in this individual differences analysis allows us
to examine questions related to structure/function selectivity.
Beginning first with the aggregate pattern of results for the
full set of ROIs, we see a result that is broadly similar to

that seen for the a priori ROIs, but with two key differences:
first, these ROIs show a slightly stronger role for intrinsic
variables in driving within-ROI MSVxAS similarity (a still-small
2.5%, but much more than the 0.7% average in the a priori
ROIs); and second, they show a substantially lower influence
of other neural sources (9.5% variance uniquely explained by
neural similarity measures versus 18.9% on average across
a priori ROIs).

It might be surprising that the intrinsic and PSA-related
variables do not emerge as even stronger sources of explained
variance, given that these measures are theoretically relevant
either in understanding what motivations and reactions a viewer
might have in general in this task (i.e., as a function of intrinsic
variables) or in measuring how they perceived the two objective
message characteristics that constitute the MSVxAS contrast
(i.e., pMSV and pAS). However, further consideration suggests
that this result should not, in fact, be surprising. First, because
these regions were selected, at least in part, on the basis of
having low inter-individual variability (that is, the denominator
of our group-level voxelwise test statistic), which is inherently at
odds with an analysis designed to capitalize upon relatively high
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FIGURE 4 | Average unique variance explained for each group of ROIs for each individual difference measure.

FIGURE 5 | Unique variance explained by each individual difference measure for the MPFC, Insula, and iLOC.

levels of inter-individual variability (see also, Hedge et al., 2018).
Second, because pMSV and pAS are theoretically distinct from
the (independently derived) MSV and AS measures that defined
our MSVxAS contrast, such that similarity in the perceptions of
the former may relate only weakly to similarity in the impact
of the latter. And third, because pMSV and pAS are considered
separately in this analysis, whereas the contrast map was derived

from the interaction between the two—in essence, leaving main
effect terms on the perceptual level to try to explain an interaction
on the objective message characteristics level. In light of these
considerations, it is perhaps surprising that these regions saw
over 1/8th of the variance in MSVxAS similarity uniquely
explained on the basis of similarity on these individually varying
perception variables.
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In terms of fractionating these ROIs further and attempting
to ascribe function to any of them on the basis of these results,
the picture is relatively more complicated than for the a priori
results. Regions from this group are distributed across five of
the six clusters, and make up the majority in two of these
(clusters 2 and 4). This does suggest that although previous
research (Weber et al., 2015a) demonstrates that these regions all
showed an interaction between MSVxAS among high drug-risk
participants, our results suggest that these ROIs are functionally
heterogeneous. With the caveat that the exact magnitude of any
particular variable–ROI relationship should be interpreted with
caution in our analysis, we highlight four results below that
demonstrate this diversity.

First, the only region of the 23 we examined to show an
influence with a notably high strength of evidence of pAS
similarity (see Table 3) was amongst this set: in cerebellum,
the inter-individual similarity in video-by-video ratings of pAS
explained 5.7% of the variance in the MSVxAS activity pattern.
Although cerebellum has long been thought of as relegated
to simple motor coordination and online error-correction,
it has emerged more recently as centrally implicated in a
wide range of cognitive functions (e.g., Keren-Happuch et al.,
2014; King et al., 2019). According to the recent functional
parcelation of King et al. (2019), our specific cerebellar ROI
is in a functional cluster dominated by divided attention and
active maintenance.

Second, considering all of the relationships between
theoretically relevant variables and MSVxAS similarity
identified as having a high strength of evidence by our
bootstrap-based thresholding approach, two of the three
strongest relationships involved members of this group. In
both cases, the proportion of variance in MSVxAS similarity
explained by similarity on the compliance variable had a
high strength of evidence. Although the unique variance
explained is small (2.4 and 2.6%, respectively), both inferior
and superior lateral occipital cortical ROIs evinced an influence
of compliance. Given lateral occipital cortex’s role in visual
processing, this may suggest that participants’ subjective
motivation during the experimental task modulated perceptual
processing in such a way that it impacted the evaluative
processing reflected in the MSVxAS contrast. Behavioral
evidence using eye-tracking corroborates this interpretation
(Stevens et al., 2020).

Lastly, of the three strongest variable-similarity relationships
mentioned above, the third also involved a member of this
group, namely between thought valence (a common behavioral
predictor of message persuasiveness) and MSVxAS similarity
within the confirmatory MFG ROI, where thought valence
similarity uniquely explained 7.7% of the MSVxAS similarity.
This ROI is in the posterolateral aspect of BA9, and has been
implicated with language comprehension, semantic processing,
and related high-order cognitive functions (Wilson et al., 2008).
This ROI is also frequently isolated as a target region in
persuasion neuroscience studies with a focus on health-related
behaviors and message tailoring. For instance, Ramsay et al.
(2013) found this region to be more strongly activated by
strong (i.e., persuasive) health messages compared to weak

ones, Chen et al. (2018) show MFG activation is greater when
viewing e-cigarette advertisements compared to non e-cigarette
advertisements, and Chua et al. (2009) found this region to
be more active in high-tailored health messages compared to
low-tailored ones.

Exploratory ROIs
These ROIs were selected on the basis of evincing high inter-
individual variability, but without reference to whether that
variability was explainable. Therefore, the fact that several of
the relationships between MSVxAS similarity and similarity
on our other variables of interest emerge as having a high
strength of evidence is validation of this general approach to
identifying potential ROIs. By definition, due to the variability
between individuals, these are areas that are relatively less
likely to be observed in a typical group-based GLM analysis.
Nonetheless, these results are in line with the claim made
by previous scholars (Van Horn et al., 2008; Gabrieli et al.,
2015) that such variability does not necessarily reflect only
noise, but may reflect meaningful signal. In fact, taking a
simple average of the sum of 1R2-values associated with the
variables that most plausibly relate to the contrast of interest—
that is, marijuana risk, sensation seeking, compliance, pAS,
and pMSV, all of which might be expected to contribute to
the unique activation in the high-risk MSVxAS map from
which we took our confirmatory ROIs—the mean for this
group of exploratory ROIs narrowly edges out the confirmatory
ROIs (7.1–6.7%) and convincingly surpasses the a priori ROI
average (4.3%). Although this is far from proof that these
regions are involved in persuasive processing, either causally
or downstream of other regions, it does support the premise
that these regions may differ reliably between individuals along
theoretically interesting vectors.

Otherwise, as a group, these ROIs show a similar pattern as
the other two groups: the neural similarity variables explain an
amount of variance in between a priori and confirmatory ROIs
on average (16.1%), with slightly more of the variance shared
amongst the other predictors explaining MSVxAS similarity
(9.7% for this group compared to 6.8 and 6.1% for a priori
and confirmatory, respectively), and a similar amount of
explanatory power from unmeasured participant-specific sources
(32.4% compared to 34.4 and 32.2%, respectively). As with
the confirmatory group of ROIs, the exploratory ROIs are
distributed across five of six clusters, and are the majority
in three (3, 5, and 6). Thus, as might be expected for a
group of ROIs chosen only on the basis of varying widely in
terms of MSVxAS activity across participants, these regions
appear to be quite heterogeneous, with the most consistent
relationship being the strong influence of the whole-brain
MSVxAS pattern similarity—although even here, there is a
split between those regions where the relationship had a high
strength of evidence (7 regions, average 1R2 of 16.9%) and
those where it did not (3 regions, average 1R2 of 4.3%).
Finally, although these exploratory ROIs should be seen only
as targets for future investigation, we highlight a pair of
ROIs that may warrant such attention. In each of the two,
MSVxAS similarity relates moderately with pMSV similarity:
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5.8% unique variance explained in striatum, and 5.7% unique
variance explained in medial BA9.

Implications for Prevention
Neuroscience and Message Tailoring
To return to an issue we touched upon above, the last 10 years of
research in persuasion neuroscience have seen the development
of an exciting new methodology, namely the brain-as-predictor
approach (Falk et al., 2012; Berkman and Falk, 2013). The seminal
application of this approach included two compelling results:
the first—that neural activity from a small group can be used
to predict outcomes in large independent samples (see Figure 1;
Falk et al., 2012)—has been written about extensively, and gives
the approach its name. No less interesting, however, is the
finding that individual-specific brain activity matched the group
consensus, and therefore the population prediction, in only 1
out of 3 individuals (see Figure 2; Falk et al., 2012)—in other
words, although the modal/plurality response is indeed useful in
predicting modal/plurality responses at the population level, this
to some degree masks the fact that this rank-ordering of activity
reflects a minority within the scanned sample. We suggest, on
the basis of a decade of research in cognitive neuroscience, that
such variability between individuals represents an opportunity,
not a nuisance (Van Horn et al., 2008). By better understanding
which factors unique to each individual drive the relationship
between messages and brain activity, we may be able to improve
out-of-sample prediction as well as message tailoring.

We propose that a hybrid approach, inspired by the
analyses conducted here, offers a way forward. In particular,
when translating our results into their utility in identifying
potential targets for tailoring, one would look for regions
with a comparatively high proportion of variance explained by
variables of theoretical interest—in this case, intrinsic variables
such as marijuana risk and sensation seeking traits or PSA-
related variables such as pMSV or pAS, although of course
these will differ depending on the theoretical question under
investigation—and a correspondingly low proportion of variance
explained by factors such as whole-brain pattern similarity for
the relevant contrast, or the similarity within the region along
non-specific dimensions such as anatomical structure or activity
during a control task. In the case of the current analysis, the
region that most fits this description is the striatal region from
the exploratory group of ROIs, which has modest effects of
pMSV and compliance that have a high strength of evidence,
with quite low values for neural variables, whether whole-brain
or ROI-specific. This suggests that this region is task-relevant
in a way that is specific to this region and contrast. We would
expect that, were an analysis conducted in order to identify
prospective candidate regions that fit this profile of high/low
variance explained for theoretical/nuisance variables (e.g., using
canonical correlation analysis, see below), the resulting regions
would be even more specific, with stronger relationships, and
more potential for use as biomarkers in future investigations of
tailoring and persuasion.

One last way in which our approach reveals targets that may
be ripe for future investigation, and possibly eventually targeting,

is through the inclusion of the non-specific subject intercept
variables. As we stated above, the variance explained by these
variables represents variance that is in-principle explainable, by
variables other than those included in our analyses. Thus, an ROI
with a high degree of variance accounted for by these intercepts,
particularly if the ROI is of interest on theoretical or meta-
analytic grounds, deserves extra attention; although it seems
unlikely, it may be that a single variable could explain the bulk of
this variance, which for the ROIs we examined here ranged from
20% to a staggering 54% of unique variance.

Methodological Implications
The first implication of our results, which aligns with
recommendations that have been growing increasingly strident
in the past several years (Turner et al., 2018; Finn et al., 2020),
is that when it comes to group-average results in the context of
tasks that allow for a wide diversity of responses, researchers
should be aware that any activation that is shared across all
subjects may be dwarfed by activity that is present only amongst
some subset of individuals (see also, Hawco et al., 2020). In
this vein, we encourage researchers working in this area to
follow the example set by Falk et al. (2012) of reporting not
only average results, but something that reveals the underlying
variability within the sample. This can also include publication
(in Supplementary Materials or public databases, if not in the
main text) of unthresholded group SPMs as well as maps showing
the correspondence (or lack thereof) across individuals (e.g.,
using overlap maps, Seghier and Price, 2016).

It is worth pointing out as well that there are untapped
dimensions of variance that we did not examine in the present
study, but which research using complementary approaches
has suggested bear further study. For instance, we reduced
the set of 32 30-s PSAs to a single MSVxAS interaction map,
by characterizing every video along those two dimensions and
averaging across all videos. However, considerable work has
demonstrated the power of considering the full temporal extent
of the sort of spatiotemporal stimuli we use here (e.g., Hasson
et al., 2004), and this concept has previously been extended
to consider individual differences (Nguyen et al., 2019; Chen
et al., 2020; Finn et al., 2020), and even to jointly consider
spatiotemporal patterns (Hyon et al., 2019). As some of these
investigations point out, this approach also lends itself naturally
to a combination with representational similarity analysis, which
can accommodate data from a broad range of sources (Finn
et al., 2020). Lastly, approaches based on canonical correlation
analysis have also begun to be adapted to the study of individual
differences (Biessmann et al., 2014; Wang et al., 2020).

One final consideration, the extent to which structures
implicated in our analysis truly belong to the persuasion network
is, as of yet, unknown. At a fundamental level, demonstrating
this would require different methods that explicitly test the
networked functional connections between two or more ROIs.
A variety of analytical tools already exist for doing exactly this,
including: psychophysiological interaction analysis (Friston et al.,
1997), dynamic causal modeling (Friston et al., 2003), and graph-
theoretic techniques (Fornito et al., 2016; Bassett and Sporns,
2017; Turner et al., 2019). These techniques have the benefit of
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explicitly examining a structure’s involvement within a broader
constellation of structures. In addition, there is good reason
to believe that this approach can further illuminate individual
differences (see e.g., Yeo et al., 2015), especially when more classic
ROI-based approaches fail (see e.g., Fox et al., 2014). Issues of
circularity make it inappropriate to perform a network analysis
on this dataset with the structures identified in our similarity
analysis (Vul et al., 2009; Weber et al., 2015b). Nevertheless, our
study certainly points out candidate ROIs for future confirmatory
analysis on new datasets.

Limitations
As we alluded to, these analyses represent post hoc reuse of
data originally designed and collected to address a related, but
distinct, hypothesis. This practice is commonplace in cognitive
neuroscience, and is not inherently problematic, so long as
researchers are transparent about the fact, and aware of the
consequences this practice has. In this case, we see this work as
filling an inductive role—we largely eschew inferential statistics,
and where we do consider p∗-values, we do so in a way that is as
conservative as possible, and that recognizes the tentative nature
of our findings. We would also reiterate that our results focus
on activity patterns associated with one specific theoretically
motivated contrast, namely the MSVxAS interaction. It is clear
that other contrasts or studies that focused on other contributors
to the persuasion process would implicate roles for region-
variable combinations that did not appear for this particular
contrast.

Future work that is designed to continue in the vein identified
here has several strategies available to operate more in the
standard tradition of deduction and falsification (e.g., Popper,
1985). For instance, any promising relationships observed
here can be operationalized and built into the design of
future experiments, most critically, with careful measurement
and perhaps even stratified sampling of participants on the
basis of individual difference measures of interest. The issue
of non-independence which was addressed here by a novel
constrained bootstrap technique will also need to be solved more
satisfactorily; the approach advocated by Chen et al. (2016, 2017,
2019) is promising, but must be validated in its application in this
context. Likewise, the Mantel test (Mantel, 1967) has been applied
previously in a similar context (Chen et al., 2020), but has not
been thoroughly validated.

CONCLUSION

This work demonstrates the importance of considering the
correct level of specificity when studying health message
processing—in terms of message characteristics as well as
audience characteristics—and points the way toward possible

updates to the persuasion network. Moreover, these results
have the power to positively influence the field of prevention
neuroscience. Prediction of health campaign success using a
combination of self-report and neural measures has made
tremendous progress and shown intriguing results, but is
still nowhere near perfect. We argue that variability between
individuals represents an opportunity, not a nuisance. By better
understanding which message and audience characteristics drive
which neural responses to health communication campaigns,
we may be able to improve our ability to tailor audience-
specific health messages and predict which messages are most
likely to result in health attitude and behavior change even
more accurately.
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