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Introduction: The ability to stop the execution of a movement in response to an external
cue requires intact executive function. The effect of psychotropic drugs on movement
inhibition is largely unknown. Movement stopping can be estimated by the Stop Signal
Reaction Time (SSRT). In a recent publication, we validated an improved measure of
SSRT (optimum combination SSRT, ocSSRT). Here we explored how diazepam, which
enhances transmission at GABAA receptors, affects ocSSRT.

Methods: Nine healthy individuals were randomized to receive placebo, 5 mg or 10 mg
doses of diazepam. Each participant received both the dosage of drug and placebo
orally on separate days with adequate washout. The ocSSRT and simple reaction time
(RT) were estimated through a stop-signal task delivered via a battery-operated box
incorporating green (Go) and red (Stop) light-emitting diodes. The task was performed
just before and 1 h after dosing.

Result: The mean change in ocSSRT after 10 mg diazepam was significantly higher
(+27 ms) than for placebo (−1 ms; p = 0.012). By contrast, the mean change in simple
response time remained comparable in all three dosing groups (p = 0.419).

Conclusion: Our results confirm that a single therapeutic adult dose of diazepam can
alter motor inhibition in drug naïve healthy individuals. The selective effect of diazepam
on ocSSRT but not simple RT suggests that GABAergic neurons may play a critical role
in movement-stopping.

Keywords: benzodiazepine, Diazepam, SSRT, motor stopping, GABA

INTRODUCTION

Real-life environments require us to build or adapt different movement control strategies
to accomplish a task goal or to respond rapidly to a fast-moving visual and/or auditory
stimulus. During our engagement in these complex scenarios, we must be able to prioritize
different actions (Mückschel et al., 2014). Response inhibition (or movement stopping)
is a key component of executive control, providing the ability to suppress an action
that has already been initiated but which is no longer required (Logan et al., 1984).
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Day-to-day life has numerous examples where such response
control is needed, for example avoiding touching a hot pan,
or stopping before crossing a road when a car is approaching
at speed. A range of psychopathological and impulse control
disorders severely impair response inhibition, for example,
attention-deficit/hyperactivity disorder, obsessive-compulsive
disorder, substance abuse, pathological gambling, and eating
disorders (Bechara et al., 2006). Experimental studies in patients
have helped to define the contribution of subcortical structures
to response inhibition, specifically fronto-basal interactions
(Whelan et al., 2012). Evidence from these studies suggest
that the connection between supplementary motor area/inferior
frontal gyrus and sub-thalamic nucleus (Inase et al., 1999; Aron
et al., 2007) is crucial in controlling response inhibition (Aron
and Poldrack, 2006; Frank, 2006; Li et al., 2008; Hikosaka and
Isoda, 2010; Munakata et al., 2011; Forstmann et al., 2012)

The stop-signal paradigm is well-suited for laboratory
investigation of response inhibition. Participants perform a
reaction time (RT) task in response to a Go cue. Occasionally,
the Go signal is followed by a stop signal after a variable delay
(the stop signal delay). Using the probability of an inappropriate
response after the stop signal, and the distribution of RTs
on Go trials, this paradigm allows estimation of the covert
latency of the stopping process, or stop signal reaction time
(SSRT). This has been used extensively to explore the cognitive
and neural mechanisms of response inhibition (Hanes and
Schall, 1996; Aron and Poldrack, 2006; Verbruggen et al., 2014;
Debey et al., 2015). Studies with SSRT have found correlations
between individual differences in stopping and behavior such
as risk-taking, substance abuse, and control of impulses/urges
(Schachar and Logan, 1990; Ersche et al., 2012; Whelan et al.,
2012). Moreover, movement stopping can be enhanced or
impaired by a variety of factors. The drug methylphenidate
enhances stopping (Tannock et al., 1995), whereas by contrast, in
long-term users, cocaine impairs response inhibition (Fillmore
et al., 2002). Increased motivational incentives can enhance
stopping (Boehler et al., 2014).

Recently we have developed an improved index by applying
Bayesian statistics to SSRT estimation. This index, which appears
to have significantly higher reproducibility (Choudhury et al.,
2019), is known as optimum combination SSRT (ocSSRT).

Those who abuse drugs often develop impairments in
performance and attention, and increases in impulsive behavior
(Heishman et al., 1997; De Wit and Richards, 2004). Evidence
from animal studies has shown that D2 receptors are essential
both for psychostimulant activity and motor response inhibition
(Dalley et al., 2007). Methylphenidate is a dopamine and
noradrenaline reuptake inhibitor; it has varied effects on
movement stopping, not all of which are reversed by blocking
dopaminergic receptors (Eagle et al., 2007). This suggests
that other monoaminergic transmitters may also play a role
in motor response inhibition. In the cerebral cortex, around
10–15% of neurons in the cerebral cortex are GABAergic
inhibitory interneurons, which can be sub-divided into multiple
cell types (Ascoli et al., 2008). In the STN, around 7.5%
of cells are GABAergic (Lévesque and Parent, 2005). The
major components of the known neural circuitry for response

inhibition (Aron et al., 2014) should therefore be susceptible
to GABAergic modulation. Diazepam is a widely prescribed
anxiolytic, muscle relaxant, and anticonvulsant that is commonly
abused (Woods et al., 1987; Gelkopf et al., 1999). Diazepam
administered at standard therapeutic doses (5–10 mg) reportedly
did not affect measures of behavioral inhibition including delay
discounting, a Go/No-Go task, or the stop signal reaction task,
despite the drug-producing prototypical sedative-like effects
(Reynolds et al., 2004). At higher doses (20 mg) it did impair
performance on both Go/No-Go and stop-signal tasks but did
not affect measures of delay discounting (Acheson et al., 2006).
Here, we aimed to assess the impact of a benzodiazepine on
movement stops. We conducted a randomized, placebo-control,
cross-sectional, double-blinded trial, which compared the effect
of two therapeutic doses of diazepam (5 and 10 mg) on the
improved novel measure ocSSRT.

MATERIALS AND METHODS

Population and Trial Protocol
Twelve potential participants were initially screened for this
pilot study. We did not perform a prior power calculation to
determine the number of participants, as we had no information
on the expected effect size. Three were excluded as one had a
drug allergy, one was taking a benzodiazepine as a medication
already, and one discontinued because of personal reasons. The
nine remaining subjects came from our research laboratory (five
male and four female, including two authors of this report;
age 27 ± 4 years, mean ± SD), all educated to post-graduate
degree level or higher with no known underlying neurological
disorder, and were randomly assigned to three groups. The order
in which the three conditions (placebo; 5 mg diazepam; or 10 mg
diazepam) were recorded was counterbalanced across groups.
Study participants received no financial compensation. Each
participant received both the dosage of drug and placebo orally
on separate days with an adequate washout interval (1 week).
The estimation of ocSSRT was performed through a stop-signal
task (see below), immediately before and 1 h after dosing (peak
plasma concentration of diazepam is achieved approximately
1 h after ingestion, Mandelli et al., 1978). The trial protocol is
summarized schematically in Figure 1. We measured ocSSRT
and RT, where ocSSRT represents movement stopping and RT
is the simple response time.

Experiments were conducted in a tertiary care neurology
center in Eastern India. Written informed consent was
obtained from each participant before the study following the
Declaration of Helsinki. Protocols and procedures were approved
by the Institutional Ethics Committee (reference number
I-NK/IEC/99/2019 ver.1. dated 29 April 2019) and the trial
was registered prospectively with the Clinical Trials Registry-
India (CTRI), registration number CTRI/2020/02/023530 on 24
February 2020.

Device
We used a custom-built battery-powered device housed in
a plastic case, which the subject held comfortably in two
hands (Choudhury et al., 2019). One red and one green
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FIGURE 1 | Consort diagram for the study, depicting randomization, group allocation, washout periods, and data analysis.

light-emitting diode (LED, 5 mm diameter) mounted on the
front of this box indicated Stop and Go respectively; a press
button (2 cm diameter) positioned beneath the LEDs was
depressed and held or released by the subject depending on
the instructions encoded by the sequence of LED flashes.
A four-line liquid crystal display (LCD) screen providing a
textual status display during the test was positioned above
the LEDs. A microcontroller (dsPIC30F6012A, Microchip Inc.)

programmed with custom firmware written in C using the
MPLAB development environment within the device determined
the task sequence, measured RTs (1 ms precision) and response
probabilities, and computed the SSRT. The Task outcome as
a numerical value of the estimated ocSSRT and RT was then
displayed on the LCD screen and copied to a laboratory
notebook, and thence to a spreadsheet, by the experimenter. The
device did not keep a permanent record of single-trial responses.

Frontiers in Human Neuroscience | www.frontiersin.org 3 October 2020 | Volume 14 | Article 567177

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Sarkar et al. Diazepam Effects on Stop and Go Reaction Times

Mathematical details of the calculation of ocSSRT are
provided in Choudhury et al. (2019), which should be consulted
for a full description. Briefly, for a given stop-signal delay (SSD),
the number of inappropriate responses M and the total number
of trials tested with that delay N was determined. Instead of
simply estimating response probability p as M/N, a Bayesian
approach was used to estimate the likelihood of a particular
response probability p, assuming that the response number
M followed a binomial distribution. To calculate SSRT for a
particular response probability p, we found the point in the
distribution of RTs to a Go cue alone where a fraction p of RTs
were smaller (RT) and subtracted the stop signal delay SSD, so
SSRT = RT − SSD. This allowed calculation of the likelihood of a
range of SSRT values. SSRT likelihood curves were found for each
of the four SSD values, and then a combined SSRT likelihood
curve computed from the product of the individual curves. The
mean of this distribution gave the ocSSRT. This approach is
an improvement over simpler approaches that average single
estimates of SSRT for each SSD, as it naturally takes account of
the reliability of each estimate.

Detailed Test Procedure
Study participants were randomized to each interventional group
by a computer-generated random sequence generator (Random
Allocation, Ver. 2.0 software). Investigators and participants
were blinded to the group allocation during the entire study
period. The study drugs were dispensed by an unblinded study
coordinator who was not involved in any of the assessment
procedures or analyses. The placebo (ascorbic acid 500 mg) and
the active compound (Valium 5 diazepam tablets, Abbott) had
the same external appearance. To mask any differences in taste,
participants were requested to swallow the tablets with a strongly
flavored lemon drink.

All participants sat comfortably in a semi-illuminated, quiet
room holding the task device. Participants were asked to respond
to a Go cue as fast as they could, but to inhibit their responses
on the trials when a Stop cue appeared. A trial was initiated by
pressing and holding the response button with the index finger
or thumb of the dominant hand (dominant side as subjectively
reported by the participants). The LCD screen then showed
the instruction ‘‘release on the green, hold on red.’’ The green
LED illuminated after a delay (chosen from a uniform random
distribution between 1 and 2.638 s). No other LED illuminated
on 75% of trials, and the subject was required to release the
button to respond (a Go trial). In 25% of trials, the green LED
extinguished and the red LED illuminated (a Stop trial). For
correct performance, the subject was required not to release
the button. Four different SSDs (between the illumination of
green and red LED) were used: 5 ms; 65 ms; 130 ms; and
195 ms. Trials were presented in blocks of 32, with 24 Go trials
and eight Stop trials (two for each delay) within a block. The
order was adjusted so that a Stop trial was always preceded
and followed by a Go trial. There was a 1.3 s delay after each
button release and before the next trial started. A Stop trial was
considered successful if the button was not released for 0.7 s
after the green LED illuminated; the next trial started after a
2 s delay. The task was paused for 60 s to allow the subject

to rest after two blocks of 32 trials. Subjects could also pause
the test at any point by releasing the button, as the next trial
did not start until the button was depressed. Subjects sometimes
did this for a few seconds, for example, to adjust their posture
to be more comfortable, but did not choose to take longer
rests other than at the scheduled times at the end of a set of
64 trials. One complete measurement typically lasted around
15 min. To aid with familiarization on the task, naïve subjects
were allowed to complete 64 trials as practice; results from these
were discarded.

The total duration of the study protocol was 2 weeks.
During this time and 1 week before day one, the participants
were not allowed to take any prescription or over the
counter medications with potential neurotropic actions (e.g.,
anti-depressants, anxiolytics, sedatives, anti-tussives, common
cold remedies).

Statistical Analysis
Summary statistics of numerical variables were presented as
mean and standard deviation (SD) for categorical variables. The
normality of the data was tested using the Shapiro–Wilk test.
Mean changes in RT, ocSSRT for placebo, 5 mg diazepam,
and 10 mg diazepam were compared using repeated-measures
ANOVA. Pairwise comparisons were completed by applying post
hoc t-tests, with significance levels adjusted by a Bonferroni
correction to account for the three comparisons (placebo vs.
5 mg diazepam, placebo vs. 10 mg diazepam, 5 mg vs. 10 mg
diazepam). A corrected p-value of less than 0.05 was considered
significant. All statistical analysis was performed using the SPSS
20 statistical package (SPSS, Chicago, IL, USA). As a pilot study,
formal statistical calculation of sample size was not performed
and convenience sampling was instead adopted.

RESULTS

Nine healthy individuals were randomly assigned to three
groups, in which the order of testing the three conditions was
counterbalanced. The baseline ocSSRT and RT (measured before
ingestion of drug or placebo) were comparable between the
three groups (Table 1). Subjects made inappropriate responses
on between 0 and 73% of Stop trials, depending on the SSD.
Changes in ocSSRT and RT from before to after placebo or
drug ingestion were not distributed significantly differently
from normal across the population (Shapiro–Wilk test statistic;
p < 0.8 in all cases). Repeated measures ANOVA showed a
significantly different effect of placebo and two doses of the drug
on ocSSRT (Figure 2A; F = 6.790; p = 0.007). The further pairwise
analysis revealed that the mean ocSSRT change (from baseline)

TABLE 1 | Comparison of baseline optimum combination Stop Signal Reaction
Time (ocSSRT) and reaction time (RT) in three experimental sessions.

Baseline Placebo 5 mg diazepam 10 mg diazepam p-value

ocSSRT (ms) 190 ± 39 207 ± 44 204 ± 26 0.288
RT (ms) 408 ± 48 405 ± 27 412 ± 45 0.928

Values are given as means ± standard deviation. p-values determined from repeated
measure ANOVA.
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FIGURE 2 | Change in ocSSRT and simple reaction time (RT) with placebo, 5 mg, and 10 mg diazepam. (A) Mean change in ocSSRT and (B) mean change in RT,
in nine individuals. Significant differences from placebo are indicated by * (p < 0.05, t-tests).

was significantly higher with the 10 mg dose of diazepam
compared to placebo (+27 ms vs. −1 ms, p = 0.012). ocSSRT
also increased after 5 mg diazepam (mean change 15 ms), but
this failed to reach statistical significance relative to placebo
(p = 0.288).

The change in RT from baseline (Figure 2B) was comparable
after placebo, 5 mg and 10 mg of diazepam (mean changes −9,
+10 and 15 ms, repeated measures ANOVA F = 1.399, p = 0.276;
t-test between placebo and 5mg, p = 0.867; t-test between placebo
and 10 mg, p = 0.603).

It is important to consider the statistical power of our study,
given the failure to detect a change in RT. We performed a
post hoc power calculation for both ocSSRT and RT, using the
measured standard deviation of the change in the experimental
measure from before to after placebo (22 and 36 ms for
ocSSRT and RT respectively), for a power level of 90%. With
nine subjects, this indicated that we should detect a 27 ms
change in ocSSRT, and a 45 ms change in RT, equivalent
to 14% and 11% change respectively. We can therefore have
confidence that any change in RT is likely to be smaller than
this value.

Our results clearly show that even therapeutic doses of
diazepam can affect stopping ability. Whilst we could not detect
changes in a measure of simple motor response (RT), the ocSSRT
was increased at the highest dose tested of 10 mg.

DISCUSSION

There are several ways to measure SSRT, and each may
have advantages and disadvantages (Verbruggen et al., 2013;
Leunissen et al., 2017). In this study, we used our recently-
developed method exploiting portable equipment and an
analytical approach which incorporates knowledge of the likely
reliability of the response probability estimates. We have
shown that this provides rapid SSRT measurements with high
reproducibility (Choudhury et al., 2019). Regardless of any
methodological differences, we can have high confidence in our

results since this was a double-blind placebo-controlled trial, in
which we demonstrated a significant difference between placebo
and 10 mg diazepam.

Benzodiazepines are widely used psychotropic drugs. Medical
indications for benzodiazepines are broad and include anxiety,
insomnia, muscle relaxation, management of spasticity, and
epilepsy. These drugs bind exclusively to and allosterically
modulate GABAA receptors (the major inhibitory receptor of
the CNS), acting as partial agonists (Downing et al., 2005;
Gielen et al., 2012; Möhler, 2015). Diazepam is a long-acting,
medium potency benzodiazepine and is thus generally used
for its anti-convulsive and anxiolytic effects. Long term use
of diazepam has been associated with cognitive impairment,
presumably as a side effect of the non-selective binding
to all synaptic GABAA subtypes (Rudolph and Knoflach,
2011). In the present study, we found that a single dose
of diazepam impairs inhibitory control without significantly
affecting RT.

Previously human studies showed that neural circuitry within
the dorsolateral prefrontal cortex (Baker et al., 1996; Manes
et al., 2002) and orbitofrontal cortex (Rogers et al., 1999)
are involved in tests requiring planning and decision-making.
Deakin et al. (2004) hypothesized that high doses of diazepam
cause disinhibitory cognitive effects by impeding inhibitory
networks within these cortical regions. They also speculated
that diazepam can influence frontal lobe functions associated
with decision making either by direct effects on GABAA
receptors within the frontal cortex or by modulating activity
in the ascending reticular system (Deakin et al., 2004). In
a rodent study involving the punished behavior model, Ford
et al. (1979) showed that diazepam and d-amphetamine when
administered in combination increased punished responding in
all the rats. Ljungberg et al. (1987) evaluated the dose-dependent
effects of diazepam on decision making in rats, in a rewarding
behavior rodent model with water restriction paradigm. They
observed that lever-pressing behavior in rats was not affected
at a diazepam dose of 2 mg/kg but reduced significantly
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at doses of 5 mg/kg and 10 mg/kg. In a follow-up study,
they found a selectively reduced tolerance of reward delay by
diazepam (Ljungberg, 1990).

The phenomenon of response inhibition is not exclusively
GABAergically mediated. Several rodent studies have shown
that D2 receptor antagonism improves response inhibition
when antagonists are infused into the prefrontal cortex, while
a global reduction in 5HT impairs inhibition, suggesting an
interaction between dopaminergic and serotonergic systems in
response inhibition (Harrison et al., 1997; Granon et al., 2000;
Winstanley et al., 2004; van Gaalen et al., 2006; Bari et al.,
2011). Robbins (2000) noted that in marmosets manipulations
of dopamine and noradrenaline tend to produce effects on
tasks predominantly engaging the dorsolateral prefrontal cortex,
but manipulations of the serotonergic system tend to alter
performance in tests sensitive to orbitofrontal dysfunction.
Interestingly, a recent study from our group (Choudhury et al.,
2019) showed a significant reduction in SSRT after treatment
with the dopamine precursor levodopa in Parkinson’s patients,
potentially supporting the contention that movement stopping is
mediated by circuits involving the dorsolateral prefrontal cortex.

Previous work (Deakin et al., 2004; Acheson et al., 2006)
found that behavioral inhibition in a decision-making task was
only impaired at higher doses of diazepam (20 mg) and not at
typical therapeutic doses of 5–10 mg. However, in our study even
therapeutic doses of diazepam could impair response inhibition
in healthy individuals, without compromising RT. This was
presumably by modulating GABAA receptors in the frontal
cortex or the basal ganglia.

Rather than manipulating GABAA efficacy as in this study,
Hermans et al. (2018) measured endogenous GABA levels
in the brain using magnetic resonance spectroscopy. Older
adults had lower levels of GABA, and also slower SSRT than
younger participants. The association between lower GABA
and slower SSRT was also seen just within the older subject
group. Chowdhury et al. (2019) used transcranial magnetic brain
stimulation to measure short-interval intracortical inhibition
(SICI) and also concluded that lower inhibition was associated
with slower SSRT. The direction of this association is opposite
to that which we observed: enhancing GABAA efficacy in our
study led to slower SSRT. However, it should be remembered that
GABAergic networks are far from simple. For example, in the
cerebral cortex, GABAergic cells expressing vasoactive intestinal
polypeptide (VIP) inhibit those expressing somatostatin, which
in turn inhibit excitatory pyramidal neurons (Karnani et al.,
2016). Both inhibition and disinhibition will be potentiated by
diazepam. The level of GABA measured by magnetic resonance
spectroscopy is a composite of the contributions from all
inhibitory circuits in a given region; SICI measures inhibition of
corticospinal pyramidal neurons. Differences in the sensitivity of
circuits to each approach likely underlie the different direction of
effects seen.

There are some reports of non-GABAA receptor occupancy
(5HT, D2) by diazepam (Saner and Pletscher, 1979; Gomez et al.,
2017; van der Kooij et al., 2018) raising the possibility that
the effects we observed could be mediated via non-GABAergic
mechanisms. However, this is unlikely to explain our results

given that we observed effects at therapeutic doses of diazepam
and that GABAergic networks are a crucial substrate of response
inhibition (Nicholson et al., 2018).

CONCLUSION

Our results suggest that therapeutic doses of diazepam can
significantly alter response inhibition. Inappropriate responses
in a stop signal task are presumably mediated by inhibition of
the prefrontal cortex, through GABAergic mechanisms. These
changes occurred at doses that had no effect on the simple RT.
This indicates that even a therapeutic dose of diazepam should be
taken with adequate precaution, especially in cases where motor
compromise is already a feature.
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