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Repeated practice is fundamental to the acquisition of skills, which is typically
accompanied by increasing reliability of neural representations that manifested as more
stable activation patterns for the trained stimuli. However, large-scale neural pattern
induced by learning has been rarely studied. Here, we investigated whether global
connectivity patterns became more reliable as a result of motor learning using a novel
analysis of the multivariate pattern of functional connectivity (MVPC). Human participants
were trained with a finger-tapping motor task for five consecutive days and went through
Functional magnetic resonance imaging (fMRI) scanning before and after training. We
found that motor learning increased the whole-brain MVPC stability of the primary
motor cortex (M1) when participants performed the trained sequence, while no similar
effects were observed for the untrained sequence. Moreover, the increase of MVPC
stability correlated with participants’ improvement in behavioral performance. These
findings suggested that the acquisition of motor skills was supported by the increased
connectivity pattern stability between the M1 and the rest of the brain. In summary,
our study not only suggests global neural pattern stabilization as a neural signature for
effective learning but also advocates applying the MVPC analysis to reveal mechanisms
of distributed network reorganization supporting various types of learning.

Keywords: motor learning, fMRI, multivariate connectivity pattern analysis, stability, the primary motor cortex

INTRODUCTION

Learning requires adapting brain functions to achieve mastery. Extensive neuroimaging studies
have demonstrated learning-induced plasticity in regional activation and inter-regional
connectivity in the human brain (Schoups et al., 2001; Op de Beeck et al., 2006; Sun et al.,
2006; Lewis et al., 2009; Song et al., 2010). In particular, recent studies using multivariate pattern
analysis (MVPA) on regional activation have revealed increased activation pattern stability induced
by various types of learning tasks (Xue et al., 2010; Visser et al., 2011; Huang et al., 2013; Wiestler
and Diedrichsen, 2013; Bi et al., 2014). For example, in a study of motor-skill learning, researchers
found that trainedmotor sequences were classifiedmore reliably than untrained ones inmotor areas

Frontiers in Human Neuroscience | www.frontiersin.org 1 November 2020 | Volume 14 | Article 571733

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2020.571733
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2020.571733&domain=pdf&date_stamp=2020-11-16
https://creativecommons.org/licenses/by/4.0/
mailto:songyiying@bnu.edu.cn
mailto:liujiathu@tsinghua.edu.cn
https://doi.org/10.3389/fnhum.2020.571733
https://www.frontiersin.org/articles/10.3389/fnhum.2020.571733/full
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Yu et al. Learning Improves Connectivity Pattern Stability

(Wiestler and Diedrichsen, 2013). Moreover, it has been found
that the improvement of activation pattern stability in the
fusiform cortex contributes to perceptual learning of face views
(Bi et al., 2014). Similarly, fear conditioning of associative
learning increases activation pattern stability for the reinforced
stimuli but not the unreinforced stimuli (Visser et al., 2011).
Thus, the increased activation pattern stability after learning
possibly reflects a more reliable and refined neural representation
for trained stimuli at the regional level, suggesting neural
stabilization as a critical mechanism underlying learning.

However, learning is a complex process involving multiple
cognitive functions, and accumulating evidence suggest that
learningmay cause global brain reorganization across distributed
regions (Bassett et al., 2011, 2015; Li, 2016). For example,
it is proposed that perceptual learning results from complex
interactions between bottom-up and top-down processes and
may cause global reorganization among regions engaged in
sensory processing, cognitive control, and decision making
(Li, 2016). Similarly, motor learning involves alteration of
whole-brain modularity structure (Bassett et al., 2011) and
modulation of functional interactions among sensorimotor and
cognitive control networks (Bassett et al., 2015). Therefore,
if neural stabilization plays a fundamental role in learning,
we hypothesized that learning to be skillful would rely not
only on more reliable neural representation at the regional
level but also on the more reliable global neural pattern
in distributed brain networks. Here, we investigated whether
global neural patterns became more reliable after learning
with a novel analysis of multivariate patterns of functional
connectivity (MVPC).

The global neural pattern can be reflected in functional
connectivity (FC) across the brain, and themultivariate approach
provides an ideal tool to investigate learning-induced changes
in neural representation (Xue et al., 2010; Visser et al., 2011;
Huang et al., 2013;Wiestler and Diedrichsen, 2013; Bi et al., 2014;
Pinsard et al., 2019). Although it is increasingly acknowledged
that global network reorganization must be taken into account to
understand the neural mechanisms underlying learning (Bassett
et al., 2011, 2015; Li, 2016), learning-induced representational
changes indexed bymultivariate connectivity patterns have rarely
been investigated. In the present study, we developed a new
analysis on MVPC to examine the stability of large neural
representation through learning (see also Dresler et al., 2017;
Tambini et al., 2017).

We addressed this question in the acquisition of motor skills
by training the participants with a finger-tapping task with
their left hands (the non-dominant hand) for five consecutive
days. Functional magnetic resonance imaging (fMRI) data were
acquired while the participants performed the trained and
untrained sequences before and after training (Figure 1A). We
examined whether motor learning improved the whole-brain
MVPC stability of the primary motor cortex (M1), given that the
M1 hosts fine-tuned representations for finger movements and
shows learning-induced activation changes in motor learning
(Dechent and Frahm, 2003; Ben Hamed et al., 2007; Miller
et al., 2009). Specifically, we used the M1 as the seed region and
computed M1-based FC maps across the whole brain separately

for the trained and untrained sequences in each run. Critically,
we calculated the MVPC stability of the M1 as the spatial
correlation between the M1-based FC maps of the odd and even
runs (Haxby et al., 2001; Tambini et al., 2017; Figure 2A). If
the spatial correlation between the M1-based FC maps increased
after training, the FC pattern between the M1 and the rest of
the brain became more stable, suggesting a more reliable global
neural representation of the learned motor skill.

MATERIALS AND METHODS

Participants
Ten right-handed participants (four females) aged from 21 to 30
(SD = 2.3 years) were recruited from Beijing Normal University
(BNU), Beijing, China. None of the participants had any history
of neurological impairments or psychiatric diseases. All the study
was approved by the Institution Review Board of BNU and
was performed following relevant guidelines and regulations.
All participants provided written informed consent before the
experiment and were paid for their participation. Part of the
dataset was reported in our previous study with analyses of
regional activation (Huang et al., 2013).

Behavioral Training and Test
The behavioral training lasted for five consecutive days, with
40 sessions in each day. Each session lasted for 30 s. In each
session, participants performed a classic finger-tapping task
(Karni et al., 1995; Toni et al., 1998; Coynel et al., 2010; Torriero
et al., 2011) in which they repeatedly tapped their thumbs with
the other four fingers in a specific sequence using their left
hand. Participants were told to perform the task as accurately
and quickly as they could in a self-paced fashion. No visual
feedback was provided throughout the session. There were two
tapping sequences [sequence one: 4 (little), 1 (index), 3 (ring),
and 2 (middle); sequence two: 2 3 1 4]. Half of the participants
were trained with the first sequence, and the other half were
trained with the second sequence. Participants took a short break
between sessions and a long break after the 20th session.

A behavioral test was conducted before and after the training,
respectively. There were four experimental conditions in the
behavioral test (i.e., combination of the tapping sequence
(trained vs. untrained) and the performing hand (trained vs.
untrained). Participants completed one 30-s session for each
condition and the order of conditions was counterbalanced
across participants. The task was the same as described above.
Participants’ finger movements were videotaped during each
session and two observers who were unaware of the objective
of this study independently calculated the number of correctly
completed sequences in each session from the video recordings.
A sequence was considered correct only if all four finger taps were
made sequentially in the correct order, while those with missing,
swapped, or incorrect taps were counted as errors. Participants’
performance was measured as the number of correct sequences
completed in 30-s, i.e., speed (Walker et al., 2003; Censor et al.,
2010, 2014), and the percentage of correct sequences relative to
the total number of sequence (i.e., accuracy) for each condition.
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FIGURE 1 | Functional magnetic resonance imaging (fMRI) experimental task and data analysis. (A) In each trial of the fMRI experiment run, the finger-tapping
sequence instruction was presented, followed by four flashes of the fixation point. Participants tapped their thumbs with the other four fingers as signaled by each
flash. (B) Group-averaged BOLD response time courses during trials of each condition in the right primary motor cortex (M1). The hemodynamic responses returned
to baseline at the eighth time point. (C) Illustration for segmenting and concatenating the event-related and the baseline periods. The data points represent the raw
BOLD signal of M1 corresponding to four consecutive trials from one exemplar participant for illustration purpose. (D) The right M1 of an exemplar participant and
the seed-based whole-brain connectivity map using this region as the seed.

FIGURE 2 | Learning-induced changes in connectivity pattern stability. (A) Illustration of the calculation of connectivity pattern stability. Within-sequence stability
was calculated as the Pearson correlation coefficient of the functional connectivity (FC) maps between the even and odd runs for the trained (red) and the untrained
(blue) sequence, respectively. Between-sequence stability was calculated identically but between the trained and untrained sequences (gray). Images show the FC
maps after the baseline period FC maps were subtracted for an exemplar participant in the post-training scanning session. The z-values are the result of Fisher’s
transform of the correlation coefficients. (B–D) Changes in connectivity pattern stability (after vs. before training) for trained and untrained sequences when
connectivity was calculated using the right M1 as the seed (B), using the left M1 as the seed (C), and when participants performed the finger-tapping with the
untrained hand (D). Error bars denote SEM. ∗p < 0.05, ∗∗p < 0.01.

fMRI Scanning
For each participant, MRI data were acquired in two
scanning sessions, which were performed before and
after motor training. Each scanning session consisted

of a T1-weighted structure scan, a blocked-design
localizer run, and 14 slow event-related experimental
runs (i.e., seven runs for each hand). The maximum head
displacement among all subjects was <2 mm in translation
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and <1 degree in rotation in both the pre- and post-training
scanning sessions.

The localizer run was designed to localize the M1, which
contained eight blocks of finger tapping (i.e., four for each hand)
interleaved with nine fixation blocks (i.e., no tapping). Each block
lasted for 15 s. In each finger tapping block, the instruction
of ‘‘left hand’’ or ‘‘right hand’’ was displayed on the screen for
15 s. Participants randomly tapped their left-hand or right-hand
fingers according to the instruction until it disappeared. The
order of the blocks for the left- and right-hand tapping was
counterbalanced. The localizer run lasted for 4 min 15 s.

In the experimental runs, participants were instructed
to perform a sequential finger-tapping task in the trained
or untrained sequence with either hand. In the pre- and
post-training scanning sessions, there were seven runs for
the left-hand tapping and the right-hand tapping, respectively.
The order of the tapping hand was counterbalanced among
participants. In each run, there were nine trials for each sequence
(i.e., each condition) and the condition order was randomized.
In each trial, the tapping sequence instruction (e.g., 4 1 3 2)
was presented on the center of the screen for 750 ms, which
was followed by four flashes of central fixation point that
occurred every 500 ms (250 ms on, 250 ms off; Figure 1A).
Participants tapped their thumbs with the other four fingers
sequentially as signaled by each flash. In other words, the
speed of tapping and the number of motor movements were
matched between the trained and the untrained sequences by
design. Note that the tapping rate (2 s per sequence) was
set below the participants’ speed of motor movements in the
pre-training behavioral test (i.e., 1.07–1.87 s per sequence).
Therefore, the differences observed between the two sequences
during the scanning sessions were unlikely to be accounted for by
the difference in either the speed of tapping or the accuracy. After
the flashes, a blank screen with a fixation point was presented
until the end of the trial. The duration of each trial was jittered
between 16.5 and 19.5 s to allow the hemodynamic response to
return to baseline. Each run lasted for 5 min 36 s. Participants’
finger movements in the scanner were not recorded due to
technical limitations.

MRI Acquisition
Images were acquired on a 3T Siemens Trio scanner with
a 12-channel phased-array head coil using T2∗-weighted
gradient-echo echo-planar-imaging (EPI) sequence at BNU
Imaging Center for Brain Research, Beijing, China. Twenty-five
axial slices were acquired in an interleaved order (TR = 1,500 ms,
TE = 30 ms, flip angle = 90◦, FOV = 200 × 200 mm,
matrix = 64 × 64, slice thickness = 4 mm, inter-slice
gap = 0.8 mm). In addition, T1-weighted structural images
were acquired a magnetization-prepared rapid gradient-echo
(MPRAGE) sequence (TR/TE/TI = 2,530/3.45/1,100 ms, flip
angle = 7◦, voxel size = 1× 1× 1 mm3).

Localizer Data Analysis
Data Pre-processing
The localizer images were preprocessed with the fMRI Expert
Analysis Tool (FEAT) of the Oxford Centre for Functional

Magnetic Resonance Imaging of the Brain (FMRIB) Software
Library (FSL1). Preprocessing was conducted separately on pre-
and post-training localizer runs for each participant, which
included motion correction, brain extraction, spatial smoothing
with a 5-mm FWHM Gaussian kernel, and high-pass temporal
filtering (100 s cut off).

M1 Definition
Data from the localizer runs were modeled by a boxcar
convolved with a canonical hemodynamic response function
and its temporal derivative. The right M1 was localized with
the contrast of left-hand tapping vs. right-hand tapping; the
reverse contrast was used to define the left M1 for right-hand
finger tapping. The parameter image from the first-level analysis
was then aligned to the corresponding structural image in the
same session (i.e., the pre-training functional images to the
pre-training structural images) through FMRIB’s linear image
registration tool (FLIRT) and was normalized to the MNI
standard template (2 × 2 × 2 mm3) through FMRIB’s nonlinear
image registration tool (FNIRT). A second-level analysis was
performed to combine the pre- and post-training runs for each
participant. The bilateral M1 was defined for each participant by
intersecting the functional activation (p < 10−12, uncorrected)
and the anatomic M1 label derived from maximum probabilistic
maps (thresholded at 25%) of the Juelich Histological Atlas
implemented in FSL.

Experimental Run Data Analysis
Data Pre-processing
The experimental images were preprocessed separately in each
run for each participant and included the following steps:
motion correction, brain extraction, spatial smoothing with
a 5-mm FWHM Gaussian kernel, intensity normalization.
Nuisance signals from cerebrospinal fluid, white matter, motion
correction parameters, and first derivatives of these signals
were regressed out (Fox et al., 2005; Biswal et al., 2010). Then
data were high-pass filtered (0.01 Hz) to remove low-frequency
noise. Each participant’s functional volumes were aligned to
the corresponding T1 images collected in the same scanning
session using FLIRT and then normalized to the MNI space
(2× 2× 2 mm3) through FNIRT.

Time-Course Preparation and Seed-Based FC
Calculation
To measure seed-based FC for each condition
(i.e., trained/untrained sequence in pre- and post-training
scan session), we first segmented the time course of each trial
into an event-related epoch and a baseline epoch. The averaged
BOLD response in the rightM1 across all trials for each condition
showed that the hemodynamic responses returned to baseline
at approximately the eighth TR (Figure 1B, Supplementary
Figure 1). Therefore, the first eight time-points in each trial
(i.e., from 0 to 12 s after trial onset) were defined as the event-
related epoch, while the remaining time points were defined as
baseline epoch. In each run, 72 time-points were included in the
event-related epoch per condition (8 ∗ 9 trials), and the baseline

1http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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epoch also included 72 time-points (3–5 time-points in each of
total 18 trials). Subsequently, for odd and even runs respectively,
the time courses of event-related epochs were concatenated
together for each experimental condition, while the remaining
time points in both trained- and untrained-sequence trials were
concatenated together as the baseline period (Figure 1C). The
time-series were normalized (i.e., z-scored) before concatenation
across runs. Pearson’s correlation coefficients were calculated
between the mean time courses of an individual’s right M1
(seed) and the concatenated time course of each voxel across the
whole-brain gray matter, generating a seed-based FC map for
each experimental condition and baseline (Figure 1D). Pearson’s
correlation coefficients were transformed to Z-score maps
using Fisher’s r-to-z transformation. The FC maps of baseline
in the pre- and post-training scan sessions were subtracted
from the respective FC maps of the trained and the untrained
conditions to control for the potential differences in intrinsic
FC patterns between the two scanning sessions (Supplementary
Figure 2).

Pattern Similarity Analysis
FC pattern similarity was measured as Pearson’s correlation
coefficient between the odd and the even runs for the
trained and the untrained sequences (i.e., within-sequence
correlation). To control for the possible confounds related
to the different number of the even (three) and the odd
runs (four), the between-sequence correlation was measured
and subtracted from the within-sequence correlation (Haxby
et al., 2001; Figure 2A). Specifically, we calculated the
correlation of FC maps between the even runs of the trained
sequence and the odd runs of the untrained sequence and
that between the even runs of the untrained sequence and
the odd runs of the trained sequence. The two FC map
correlation coefficients were then averaged, which we referred
to as the between-sequence correlation. The influence of
run number difference should be commonly present when
calculating both the within- and between-sequence correlations.
According to this logic, the between-sequence correlation
served as a ‘‘baseline’’ and subtracting it from within-
sequence correlation would remove the possible confounding
effects related to run number difference. Pearson’s correlation
coefficients were transformed to Z-score maps using Fisher’s
r-to-z transformation. The learning effect was measured as
the changes in FC pattern similarity between the post- and
the pre-training scans. One-tailed one-sample t-tests were
performed to test whether the changes were significantly higher
than zero. Also, two-tailed paired-sample t-tests were performed
to examine the difference in changes between trained and
untrained conditions.

RESULTS

Motor Learning Improved the Stability of
Whole-Brain Connectivity Pattern
We examined whether motor learning improved the whole-brain
MVPC stability of the M1. The right M1 (corresponding to
the trained hand) identified for each participant consisted of

133–267 voxels (M = 226, SD = 43). Seed-based whole-brain
FC maps were computed with the right M1 as the seed. We
compared the stability of the whole-brain MVPC before and
after training and used changes in MVPC stability as an index
for learning. We found a significant increase of MVPC stability
when participants performed the trained sequence (one-tailed
one-sample t-test: t(9) = 3.031, p = 0.007), while there was
no changes in MVPC stability when performing the untrained
sequence (one-tailed one-sample t-test: t(9) =−1.117, p = 0.147).
Moreover, the stability change for the trained sequence was
significantly larger than that for the untrained sequence (two-
tailed paired-sample t-test: t(9) = 2.51, p = 0.033; Figure 2B).
These results were not driven by pre-training differences because
there was no significant stability difference between the trained
and the untrained sequences in the pre-training session (two-
tailed paired-sample t-test: t(9) = 0.152, p = 0.883). Notably, the
speed of tapping and the number of motor movements were
matched for the trained and untrained sequences. Therefore,
the difference observed between the two sequences could not be
accounted for by the difference in either the speed of tapping or
the number of motor movements. Together, the results indicated
that motor learning modulated global connectivity patterns by
increasing the stability of the FC pattern between M1 and
other brain regions, and the improvement was specific to the
trained sequence. Note that our results were not influenced
by segmentation of the event-related epochs for finger-tapping
(i.e., the first eight TRs in each trial, see ‘‘Materials and
Methods’’ section for details), as the learning effect persisted
when the time window of event-related epochs was narrowed
(i.e., seven TRs; trained: t(9) = 3.319, p = 0.005; untrained:
t(9) = −1.397, p = 0.098; trained vs. untrained: t(9) = 2.979,
p = 0.015; Supplementary Figure 3A) or widened (i.e., nine TRs;
trained: t(9) = 1.965, p = 0.041; untrained: t(9) =−0.363, p = 0.363;
trained vs. untrained: t(9) = 1.292, p = 0.229; Supplementary
Figure 3B).

Our early study has shown that motor learning increased the
stability of activation patterns in the right M1 for the trained
sequence (Huang et al., 2013). This raises an important question
of whether changes in FC pattern stability we found were related
to or distinct from changes in activation pattern stability. To
answer this question, we first calculated the activation pattern
stability in the right M1 in the same manner as the FC pattern
stability and verified that there was a significant increase of
activation pattern stability when participants performed the
trained sequence (one-tailed one-sample t-test: t(9) = 2.971,
p = 0.008), and the stability change for the trained sequence
was significantly larger than that for the untrained sequence
(one-tailed paired-sample t-test: t(9) = 2.225, p = 0.026).
We then calculated a learning index (LI) for both the
M1 activation pattern stability and the FC pattern stability
as follows: (trained_post − trained_pre) − (untrained_post
− untrained_pre) (Bi et al., 2014). We found no significant
correlation between the LI for FC pattern stability and that for
activation pattern stability (Spearman’s r = −0.46, p = 0.17).
This suggests that learning-induced changes in the stability of FC
patterns were, at least to a certain degree, distinct from that of the
activation pattern.
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The Specificity of Learning-Improved
Stability of Connectivity Pattern
Next, we performed two analyses to examine the specificity
of stability improvement in connectivity patterns. First, we
examined whether the learning-induced change in MVPC
stability was specific to the right M1 that corresponded to the
trained hand, or it also occurred in its left counterpart. We
calculated the seed-based connectivity map with the left M1 as
the seed region. We found no MVPC stability changes for either
the trained or the untrained sequence (trained: t(9) = −0.346,
p = 0.369; untrained: t(9) = −0.550, p = 0.298), and there was no
significant difference between the two conditions (t(9) = 0.030,
p = 0.977; Figure 2C). Furthermore, we found larger stability
changes in the connectivity map with the right M1 as the seed
region than the left M1 for the trained sequence (t(9) = 2.444,
p = 0.037). This suggested that learning-improved stability was
specific to the connectivity concerning the region corresponding
to the trained hand.

Second, we examined whether the improvement of
connectivity pattern stability could transfer to finger-tapping
with an untrained (i.e., the right) hand. To this end, we collected
fMRI data when participants performed the trained and the
untrained sequences with their untrained hands and calculated
the whole-brain connectivity map with the left M1 as the seed.
We found no significant learning effect in terms of MVPC
stability changes (trained: t(9) = −0.860, p = 0.206; untrained:
t(9) = 0.075, p = 0.471; trained vs. untrained: t(9) = 0.604,
p = 0.561; Figure 2D). Furthermore, we found significant
stability improvement for the connectivity map when using the
trained hand than the untrained hand (t(9) = 2.686, p = 0.025).
These results implied that the learning effect in terms of stability
improvement with the trained hand may not transfer to the
untrained hand.

Behavioral Relevance of Connectivity
Pattern Stability Improvement
Finally, we investigated whether stability improvement in global
connectivity patterns was related to an individual’s improvement
in behavioral performance. Behavioral performance was
measured as the percentage of correct sequences (i.e., accuracy)
or the number of correct sequences in 30 s (i.e., speed)
in the pre- and post-training behavioral tests. Before the
training, participants’ mean accuracy for the to-be-trained
and untrained sequences with the trained hand was 92.25%
(SD = 5.74%) and 89.47% (SD = 5.93%), respectively. After
the training, the accuracy for the trained sequence was 99.74%
(SD = 0.83%), whereas that for the untrained sequence was
90.55% (SD = 5.51%). There was a significant increase of
accuracy after training for the trained sequence (t(9) = 4.208,
p = 0.001), but not for the untrained sequence (t(9) = 0.619,
p = 0.276), and the accuracy improvement (i.e., post—pre) for
the trained sequence was significantly higher than that for the
untrained sequence (t(9) = 3.296, p = 0.009; Figure 3A). In
addition, there was no significant changes in the accuracy for
either sequence with the untrained hand (pre-training to-be-
trained: 91.27 ± 8.86%; pre-training untrained: 91.35 ± 8.19%;

post-training trained: 95.50 ± 3.33%; post-training untrained:
94.39± 4.33%; trained vs. untrained: t(9) = 0.49, p = 0.64).

Moreover, the learning effect was also reflected in changes
in performance speed (i.e., the number of correctly completed
sequences in 30 s). Specifically, the mean speed with the trained
hand also showed significant improvement for both the trained
sequence (pre-training: 20.3 ± 4, post-training: 32.7 ± 4.2;
t(9) = 12.23, p< 0.001) and the untrained sequence (pre-training:
19 ± 3.7, post-training: 21.6 ± 2.3; t(9) = 2.82, p = 0.02), but
the speed improvement (i.e., post—pre) for the trained sequence
was significantly higher than that for the untrained sequence
(t(9) = 10.29, p < 0.001). Also, there was no significant difference
in the speed improvement between the trained and untrained
sequences for the untrained hand (pre-training to-be-trained:
19.8± 3, pre-training untrained: 20.6± 4, post-training trained:
25.2 ± 1.5, post-training untrained: 24.8 ± 2.2; trained vs.
untrained: t(9) = 1.37, p = 0.21).

We then computed a learning index (LI) for both the
behavioral accuracy and speed as follows: (trained_post −
trained_pre) − (untrained_post − untrained_pre) (Bi et al.,
2014). We found a positive correlation between the LI for
behavioral accuracy and that for MVPC stability (Pearson’s
r = 0.72, p = 0.02; Spearman’s r = 0.54, p = 0.05 one-
tailed; Figure 3B). Similar result was found in correlation with
performance speed (Pearson’s r = 0.67, p= 0.034; Supplementary
Figure 4). This result indicated that individuals with higher
improvement in connectivity pattern stability tended to achieve
greater improvement in motor learning. In addition, we found
no significant correlation between the LI for behavioral accuracy
and that for activation pattern stability (Pearson’s r = −0.49,
p = 0.14; Spearman’s r =−0.27, p = 0.45). The lack of correlation
suggests that the observed relation between the improvement
of behavioral performance and the increased stability of the FC
pattern was unlikely mediated by activation pattern.

DISCUSSION

In the present study, we investigated global neural pattern
changes associated with motor skill learning using a novel
analysis approach based on MVPC. We found that motor skill
learning increased the stability of the global connectivity pattern
of the M1 that corresponded to the trained hand. Moreover,
the increase in connectivity pattern stability was correlated with
an individual’s behavioral improvement after learning. To our
knowledge, our study provides the first evidence for learning-
induced stabilization of large-scale neural representation.

The critical finding of our study is the pivotal role of neural
stability in learning. Previous studies have shown more stable
activation patterns for the trained than untrained stimuli in
perceptual learning (Bi et al., 2014), associative learning (Visser
et al., 2011), and motor learning (Huang et al., 2013; Wiestler
and Diedrichsen, 2013). Our study extended these findings by
showing that learning is supported not only by more reliable
neural representation reflected in activation patterns but also
by more reliable large-scale neural representation reflected in
connectivity patterns. Notably, the absence of a significant
correlation between the stability changes in connectivity pattern
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FIGURE 3 | The behavioral relevance of learning effect in connectivity pattern stability. (A) Changes in accuracy between the post- and pre-training behavioral tests
for trained and untrained sequences. Error bars denote SEM. ∗∗p < 0.01. (B) Correlation between the learning index (LI) of behavioral accuracy and that of
connectivity pattern stability across participants. LI for both behavioral accuracy and FC pattern stability was calculated as follows: (trained_post − trained_pre) −
(untrained_post − untrained_pre).

and those in the activation pattern further suggests that FC and
cortical activation might be differently modulated by learning.
Importantly, we found that only stability changes in the FC
pattern, but not the activation pattern, were predictive of
behavioral improvement, suggesting that global FC pattern is
another distinct and informative neural marker for learning-
induced cortical changes. Also, the pivotal role of neural
stability was further reflected in the sequence- and effector-
specific nature of the increased FC pattern stability, which was
highly consistent between the behavioral and the neural levels.
Together, these findings imply that the reliability of neural
patterns may be a general neural marker of effective learning.
Also, our finding that the connectivity patterns for the trained
sequence became less variable after training is consistent with an
influential model of perceptual learning (Dosher and Lu, 1998)
that learning occurs because of noise reduction, which involves
reweighting and modification of inter-regional connections. It is
interesting for future studies to investigate whether global neural
stabilization also supports perceptual learning and other types
of learning.

In contrast to previous studies on the neural basis of
motor learning, our study applied a multivariate analysis
approach to connectivity patterns. Previous studies of FC
changes in motor learning have reported cases of either increases
or decreases in specific connections with motor areas (Sun
et al., 2006; McNamara et al., 2007; Coynel et al., 2010).
However, even simple learning tasks may induce large-scale
distributed changes and consolidation of cortical connections,
which could not be examined using conventional univariate
approaches that commonly involve signal averaging across

voxels and sometimes, brain regions. Using the multivariate
approach (Dresler et al., 2017; Tambini et al., 2017), the
effect of motor learning was first measured in single voxel
connectivity changes and then scrutinized on the whole-brain
scale (i.e., stability of FC pattern). Our findings thus provided
further insights into the learning-induced changes that were
hindered by the loss of fine-grained, multi-variate information
in previous studies.

Notably, we examined changes in connectivity patterns on
the whole-brain scale, rather than in a small number of regions.
In line with a previous study showing changes in whole-brain
FC patterns in motor learning (Bassett et al., 2011) and other
types of learning (e.g., neurofeedback learning, Harmelech et al.,
2013), the stabilization of large-scale FC pattern observed here
provides direct evidence for a recent view in motor learning,
and in perceptual learning as well, that learning involves a
global functional reorganization across the brain (Bassett et al.,
2011, 2015; Li, 2016). That is, the stabilization of global
connectivity patterns may be one possible mechanism of global
brain reorganization. Future studies are invited to adopt the
multivariate connectivity pattern analysis to further investigate
the mechanisms of global brain reorganization underlying
various types of learning.

In summary, the present study found that motor learning
increased the stability of the global connectivity pattern of
the M1. However, there are several limitations and undressed
issues that are important for future studies. First, a major
limitation of our study is the small sample size. Recent studies
of motor learning typically recruited 20 or more participants
(Bassett et al., 2011, 2015; Berlot et al., 2020) to examine neural
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changes underlying motor sequence learning (but see also the
studies by Coynel et al., 2010 and Wiestler and Diedrichsen,
2013), which employed a sample of 12 and 16 participants,
respectively). Compared with these studies, the small sample size,
as in our study, might substantially reduce the power of the
statistical tests and the robustness against possible outliers in
the data. Hence, extra caution should be taken when discussing
the generalizability of our findings. It is therefore highly
recommended that future studies should employ a larger sample
(e.g., more than 20) to further examine the pattern stability
changes in motor learning. Second, another major limitation is
that the effects of event-related evoked activity might constitute a
potential confounding factor, as it might inflate the FC between
two regions that are both strongly driven by the task. The
result that there was no correlation between the learning-induced
stability changes in the activation and connectivity patterns
suggested that learning-induced changes in connectivity patterns
were distinct from that of activation patterns. However, we could
not rule out the possibility that our findings were, at least in part,
driven by the activations in different cortical regions commonly
elicited by the task. One possible way to address this issue in
future studies is to investigate the effect of motor learning during
task-free resting state or on background connectivity during
task state. Finally, the behavioral data was not recorded in the
scanner due to the task we used and technical limitations. As
a result, we were not able to examine the possible confounds
related to the difference in in-scanner behavioral performance
(i.e., tapping speed and tapping accuracy) between different
conditions. A possible solution for future studies is to employ a
key pressing task, which enables behavioral response recording
in the scanner.
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result of the Fisher’s transform of the Pearson’s correlation coefficients that
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SUPPLEMENTARY FIGURE 3 | Changes in connectivity pattern stability (after
vs. before training) for trained and untrained sequences corresponding to
event-related epochs of 7 (a) and 9 TRs (b). Error bars denote S.E.M. *p < 0.05,
**p < <0.01.

SUPPLEMENTARY FIGURE 4 | Correlation between the learning index (LI) of
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Performance speed was calculated as the number of correctly completed
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stability was calculated as follows: (trained_post – trained_pre) – (untrained_post –
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