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Cervical spinal cord injuries (SCIs) often lead to loss of motor function in
both hands and legs, limiting autonomy and quality of life. While it was
shown that unilateral hand function can be restored after SCI using a hybrid
electroencephalography/electrooculography (EEG/EOG) brain/neural hand exoskeleton
(B/NHE), it remained unclear whether such hybrid paradigm also could be used for
operating two hand exoskeletons, e.g., in the context of bimanual tasks such as eating
with fork and knife. To test whether EEG/EOG signals allow for fluent and reliable as well
as safe and user-friendly bilateral B/NHE control, eight healthy participants (six females,
mean age 24.1 ± 3.2 years) as well as four chronic tetraplegics (four males, mean
age 51.8 ± 15.2 years) performed a complex sequence of EEG-controlled bilateral
grasping and EOG-controlled releasing motions of two exoskeletons visually presented
on a screen. A novel EOG command performed by prolonged horizontal eye movements
(>1 s) to the left or right was introduced as a reliable switch to activate either the left
or right exoskeleton. Fluent EEG control was defined as average “time to initialize” (TTI)
grasping motions below 3 s. Reliable EEG control was assumed when classification
accuracy exceeded 80%. Safety was defined as “time to stop” (TTS) all unintended
grasping motions within 2 s. After the experiment, tetraplegics were asked to rate
the user-friendliness of bilateral B/NHE control using Likert scales. Average TTI and
accuracy of EEG-controlled operations ranged at 2.14 ± 0.66 s and 85.89 ± 15.81%
across healthy participants and at 1.90 ± 0.97 s and 81.25 ± 16.99% across
tetraplegics. Except for one tetraplegic, all participants met the safety requirements.
With 88 ± 11% of the maximum achievable score, tetraplegics rated the control
paradigm as user-friendly and reliable. These results suggest that hybrid EEG/EOG
B/NHE control of two assistive devices is feasible and safe, paving the way to test this
paradigm in larger clinical trials performing bimanual tasks in everyday life environments.

Keywords: bilateral exoskeleton control, bimanual tasks, EEG, EOG, brain-computer interface, BCI, brain-
machine (computer) interface

INTRODUCTION

Cervical spinal cord injuries (SCIs) often result in loss of motor function in all four extremities.
According to the National Spinal Cord Injury Statistical Center (NSCISC), 41.1% of all SCIs lead
to complete or incomplete tetraplegia (National Spinal Cord Injury Statistical Center, 2019). While
the inability to walk is usually sufficiently compensated by use of a wheelchair (Rushton et al., 2010),
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restoration of hand and arm function is still insufficiently solved.
Therefore, restoration of hand and arm function is of highest
priority in this patient population (Anderson, 2004; Snoek et al.,
2004; Lo et al., 2016). Depending on the SCI’s location, the
degree of impairment and related motor inabilities can vary
substantially. In particular, injuries between the spinal motion
sections C5 and C7 are characterized by some remaining motor
function in the shoulder and arm but absence of movements
in the wrist and fingers (Ahuja et al., 2017). For these cases,
restoration of hand function would be an important goal to regain
autonomy and to improve quality of life (Campbell et al., 1999).

To date, the most common methods for restoration of upper
limb motor function are surgical interventions (Bunketorp-Käll
et al., 2017). To a certain degree, upper limb reconstructive
surgeries, such as tendon transfers or tenodesis (Bednar and
Woodside, 2018), can restore arm and hand function in SCI.
However, besides the risks associated with surgery, tendon
transfer strongly depends on the availability and quality of
tendons and muscles suitable for transfer. While tenodesis
enables tetraplegics to passively grasp objects through extension
of the wrist (termed tenodesis grasp), the resulting grasping force
is often insufficient to perform basal activities of daily living
(ADLs), e.g., lifting up a water bottle, zipping a jacket, or reliably
holding cutlery for eating (Dunn et al., 2016).

As an alternative to surgical interventions, recent
advancements in neurotechnology and robotics opened up
new possibilities to restore hand and arm function after cervical
SCI (Soekadar et al., 2016) or stroke (Soekadar et al., 2008,
2015a; Nann et al., 2020). It was shown that exoskeletons or
functional electrical stimulation (FES) of paralyzed muscles
can enhance grasping force and improve hand function in
tetraplegics (Ragnarsson, 2008; Ho et al., 2014; Yun et al., 2017;
Cappello et al., 2018). A very intuitive way to control such
assistive devices can be achieved by using a brain–computer
interface (BCI; Wolpaw et al., 2002; Collinger et al., 2013a).
BCIs translate electric, magnetic, or metabolic brain activity,
e.g., associated with motor imagery (MI) or the attempt to move
the paralyzed fingers, into control signals of digital devices, e.g.,
a robotic arm (Hochberg et al., 2012; Collinger et al., 2013b),
exoskeleton (Soekadar et al., 2016; Tang et al., 2016; Frolov
et al., 2017; Benabid et al., 2019), or FES device (Osuagwu
et al., 2016; Vidaurre et al., 2016). Besides providing assistance,
it was shown that repeated BCI use following SCI can also
trigger neural recovery (Donati et al., 2016). Several studies
showed that BCI-controlled FES can restore hand movement
(Bouton et al., 2016; Vidaurre et al., 2016; Ajiboye et al., 2017).
However, it is noteworthy that persons with SCI can develop
upper extremity spasticity (Holtz et al., 2017; Gohritz and Fridén,
2018). In such cases, effective restoration of hand function
via FES may not be successful due to increased muscle tone
and tendon contractures. In contrast, a BCI-controlled hand
exoskeleton, which actively opens and closes the affected hand,
can overcome such limitations and may, thus, be superior
to BCI-controlled FES. Within the last years, several robotic
devices have entered the commercial market including three
exoskeletons that were specifically designed for SCI patients
(Mekki et al., 2018). Although still rather cost-intensive, new

3D-printed designs may yield low-cost hand exoskeletons in the
near future (Yoo et al., 2019).

The most common approach for non-invasive brain/neural
control of an exoskeleton uses modulation of sensorimotor
rhythms (SMRs, 8–12 Hz) quantified as event-related
desynchronization (ERD; SMR-ERD; Pfurtscheller and da
Silva, 1999; Soekadar et al., 2011). SMR-ERD modulations related
to MI or attempted finger movements are most prominent over
the hand knob area of the contralateral primary motor cortex.
Using electroencephalography (EEG), the optimal position to
record SMR-ERD is typically at electrode positions C3 or C4
(according to the international 10/20 system; Neuper et al., 2006).
Recently, it was demonstrated that a SMR-based brain/neural
hand exoskeleton (B/NHE) can fully restore unilateral hand
function in tetraplegics in an everyday life environment, e.g.,
to eat and drink in an outside restaurant (Soekadar et al.,
2016). To deal with the inherent low signal-to-noise ratio
of EEG recordings in everyday life environments, a hybrid
EEG/electrooculography (EEG/EOG) brain/neural–machine
interaction (B/NMI) system has been successfully introduced
(Soekadar et al., 2015b, 2016; Crea et al., 2018; Nann et al.,
2020). To enhance BCI control in everyday life environments,
maximal horizontal oculoversions (HOVs) assessed by EOG
were integrated as an additional control signal to reduce false
classifications (Witkowski et al., 2014; Soekadar et al., 2015b).
While exoskeleton closing motions were controlled by SMR-ERD
related to intended grasping movements, HOVs were translated
into opening motions or veto commands to interrupt unintended
closing motions.

To date, the majority of studies in clinical settings have mainly
focused on the restoration of unilateral motor function (Alam
et al., 2016; Carvalho et al., 2019; Coscia et al., 2019). Most
ADLs, however, involve bilateral motor function, e.g., eating with
fork and knife, opening a water bottle, or a bag of potato chips.
While, for example, a unilateral B/NHE might be sufficient to
restore bimanual ADLs in hemiplegic stroke patients, patients
suffering from tetraplegia depend on mobilization of both hands
and arms to execute bimanual tasks. Therefore, a reliable and safe
control paradigm allowing intuitive operation of bilateral hand
exoskeletons would be very desirable.

The goal of such a bilateral control paradigm is to reliably
detect the user’s attempt to operate either the left or right
exoskeleton, both exoskeletons simultaneously, or none of them.
This results in a four-class classification problem. The simplest
approach to deal with such a multiclass problem is to implement
a single classifier that differentiates between left and right
hemispheric SMR-ERD (Meng et al., 2016; León, 2017; Lotte et al.,
2018). Although Meng et al. (2016) demonstrated that this kind of
classification method is feasible in principle, it requires sufficient
lateralization of SMR-ERD to C3 and C4. Given that chronic
tetraplegics often do not show such lateralization (Osuagwu et al.,
2016; Dahlberg et al., 2018), such approach may not be suitable
for reliable exoskeleton control in SCI. A possible solution to
overcome the lack of lateralization in SCI patients is to introduce
a reliable switch to activate either the left or right exoskeleton.

Here, we introduce a novel EOG command performed by
prolonged HOV (>1 s; Figure 3) to the left or right and
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tested whether use of such new command allows for reliable
control of two hand exoskeletons. The prolonged HOV is not in
conflict with the already established hybrid EEG/EOG paradigm
according to Soekadar et al. (2016), where a short HOV (<1 s;
Figure 3) is used to veto an ongoing exoskeleton opening or
closing. To test the feasibility and safety of such novel bilateral
EEG/EOG-based B/NMI control, eight healthy participants as
well as four chronic tetraplegics performed a neurofeedback
paradigm consisting of a complex sequence of bilateral grasping
and releasing motions of two exoskeletons visually presented on
a screen. In the following work, feasibility was defined as fluency
and accuracy of bilateral EEG/EOG B/NHE control. While
fluent control was defined as “time to initialize” (TTI) EEG-
controlled operations in average below 3 s (i.e., valid SMR-ERDs
were detected in average within 3 s; Crea et al., 2018), reliable
control was defined as average classification accuracy above 80%,
following the recommendation of Vidaurre and Blankertz (2010)
and Ortner et al. (2015), e.g., when benchmarking common
spatial patterns (CSPs). Safety requirements were met when all
unintended closing motions were interrupted by using short
HOV before the exoskeleton was fully closed. This means the
“time to stop” (TTS) all unintended closing motions ranged
within 2 s, the time of a full exoskeleton closing motion.
Moreover, user-friendliness of bilateral control was assessed
among tetraplegics by using a Likert scale.

MATERIALS AND METHODS

Participants
Eight BCI-naive healthy participants (six females, mean age
24.1 ± 3.2 years) and four BCI-naive chronic tetraplegics (four
males, mean age 51.8 ± 15.2 years, time since injury > 2 years)
with complete [n = 2; American Spinal Injury Association
(ASIA), grade A] and incomplete (n = 2, ASIA grades B and
C) SCI (injury location between C5 and C7) were invited to a
single-session experiment at the University Hospital of Tübingen,
Germany. Before entering the study, all participants provided
written informed consent. The study protocol complied with
the Declaration of Helsinki and was approved by University of
Tübingen’s local ethics committee (registration code of ethical
approval: 201/2018BO1).

Experimental Setup and Biosignal Online
Processing
Electroencephalography was recorded from nine conventional
recording sites (F3, T3, C3, P3, F4, T4, C4, P4, and Cz according
to the international 10/20 system; Figure 1). Two additional EOG
electrodes were placed laterally to the outer canthi of the left
and right eye to assess HOVs (Figures 1, 2; Heide et al., 1999).
A reference electrode was symmetrically placed over the sagittal
midline at FCz to avoid biased electrical potentials toward one
hemisphere (Figure 1). The ground electrode was located at Fpz
(Figure 1). All biosignals were sampled at 1 kHz and amplified
by a wireless active-electrode EEG system (actiCAP R©, LiveAmp R©,
Brain Products GmbH, Gilching, Germany; Figure 1). To ensure
high signal quality, all impedances were kept below 25 k�.

For online processing and classification, the BCI2000 software
platform was used (Schalk et al., 2004). In order to attenuate eye
blinks and other bihemispheric artifacts, bipolar EOG signal was
calculated by subtracting left from right EOG. To remove low-
frequency drifts as well as high-frequency noise, the bipolar EOG
signal was then band-pass filtered with a first-order Butterworth
filter at 0.02–3 Hz. To reduce the relatively long settling time
that the low high-pass corner frequency at 0.02 Hz would have
caused (>50 s), the band-pass filter was initialized with the mean
value of the first processed sample block of the bipolar EOG
signal. Such filter initialization drastically reduced the settling
time to be applicable in online settings. The very low frequency
content in the EOG signal allows to extract the quasi-rectangular
curve shapes resulting from HOVs and thus ensures reliable
detection of prolonged HOVs (i.e., threshold was exceeded for
>1 s; Figure 3). EEG signals were first band-pass filtered with
a first-order Butterworth filter at 1–30 Hz to remove baseline
drifts and high-frequency noise. Afterward, surface Laplacian
filters were applied to increase signal-to-noise ratio of the
target electrodes at C3 and C4, respectively, (McFarland, 2015).
A surface Laplacian filter was shown to be effective in detecting
motor-specific SMR-ERD especially in online settings while
suppressing distant sources (e.g., eye blinks) without the need
for complex models, e.g., accounting for volume conduction.
Subsequently, the power spectra of Laplace-filtered C3 and
C4 EEG signals were estimated online from 500 ms moving

FIGURE 1 | Electroencephalography/electrooculography (EEG/EOG)
electrode setup. EEG setup: Nine conventional EEG recording sites were used
in accordance to the international 10/20 system. Five electrodes on each
hemisphere were applied that were centered around C3 (green color coding)
and C4 (orange color coding). Signals from Cz were used for both
hemispheres. EOG setup: Two EOG electrodes (light blue color coding) were
placed laterally of the outer canthi of the left and right eye to assess horizontal
oculoversions (HOVs) based on the bipolar EOG signal (i.e., difference
between EOG1 and EOG2). Ground and reference electrodes were placed at
Fpz (black color coding) and FCz (dark blue color coding), respectively.
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FIGURE 2 | Experimental setup. Participants were equipped with a wireless
active-electrode electroencephalography/electrooculography (EEG/EOG)
recording system (actiCAP R©, LiveAmp R©, Brain Products GmbH, Gilching,
Germany) and comfortably seated in front of a screen receiving visual
feedback. Feedback included information about the task to be executed (in
the middle of the screen) and the representation of the left (partly opened
yellow circle indicates active exoskeleton) and right exoskeleton (partly
opened gray circle indicates inactive exoskeleton) visualizing opening or
closing motions. The figure shows an EOG electrode laterally placed to left
outer cantus and five EEG electrodes arranged over the left hemisphere to
assess Laplace-filtered brain activity at C3.

windows based on an autoregressive model of order 100 (Burg
algorithm; Soekadar et al., 2011). Dependent on the optimal SMR
frequency showing the largest modulation between 8 and 13 Hz
during motor imagination/attempted finger movements vs. rest,
the accumulated power of a 3-Hz bin around that modulation
frequency [frequency of interest (FOI) ± 1.5 Hz] was extracted.
Lastly, SMR-ERD related to imagined or attempted right- or left-
hand movements was computed according to the power method
described by Pfurtscheller and Aranibar (1979):

RV =
1
|Tref |

∑
t∈Tref

Pt (1)

ERD (t) =
Pt − RV

RV
× 100 % (2)

where Pt is the estimated power of the 3-Hz-wide bin at
every sample block t. RV is the reference value to normalize
power Pt to receive the instantaneous ERD(t) at every sample
block t. Notably, to receive ERD related to Laplace-filtered C3
(C3-ERD) and C4 (C4-ERD) EEG signals, two identical SMR-
ERD processing pipelines were implemented in parallel for
online calculation.

Brain–Computer Interface Calibration
and Familiarization
To calibrate HOV detection thresholds for each side, participants
were instructed to perform 5 short as well as 3 prolonged
HOVs to each side, respectively. HOV detection thresholds
were set at ±70% of median single-trial EOG maxima and
minima (median was selected to receive a more robust

FIGURE 3 | Short horizontal oculoversions (HOVs) vs. prolonged HOVs (figure
shows only curve shape in positive direction resulting from left eye
movements; curve shapes in negative direction from right eye movements are
not visualized). Gray curve shapes show single trials; bold blue lines show
average HOVs. Comparisons reveal distinct time difference between short
HOV (<1 s) and prolonged HOV (>1 s, with its characteristic rectangular
curve shape). The thin blue line indicates the 70% detection threshold.

estimation; Figure 3). To determine the C3- as well as C4-
ERD detection thresholds, two calibration runs were conducted.
During the first run, participants were instructed to either
imagine (healthy participants)/attempt (tetraplegics) left or right
finger movements (active phases) or to relax (rest phases)
according to 20 externally paced randomized visual cues lasting
5 s each. After each active or rest phase, an intertrial interval (ITI)
with a randomized length of 4–6 s followed. After the first run,
FOI was set to the optimal SMR frequency, and RVs for C3 and
C4 were determined as average power of the entire run including
all active and rest phases as well as all ITIs. During the second run,
which consisted the same 20 visual cues, participants received
online visual feedback based on their elicited SMR-ERD at C3 and
C4. Finally, individual SMR-ERD detection thresholds were set
to the average C3- and C4-ERD elicited within all active phases,
respectively. After successful calibration, several familiarization
runs were performed until the participant felt comfortable with
all control commands.

Electroencephalography/
Electrooculography-Based Bilateral
Control Paradigm
The EEG/EOG-based bilateral control paradigm was
implemented as a hierarchical classifier with two sequential
binary classification stages. This is a common approach to
decompose the multiclass classification problem into several
binary classification problems (Lotte et al., 2018). At the first
stage, a linear classifier detected prolonged HOVs either to
the left or to the right to activate the respective exoskeleton.
As soon as the HOV detection threshold was exceeded for
longer than 1 s, the classifier recognized this as a volitional
laterality switch and enabled the specific classifier at the second
stage. Dependent on the selected exoskeleton, either C3-
or C4-ERD was then continuously analyzed and translated
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into closing motions as long as the laterality-specific ERD
detection threshold was exceeded. The principle of this two-
stage EEG/EOG-based hierarchical classifier is illustrated in
Figure 4A. To open the closed exoskeleton or to interrupt
(veto) an unintended closing motion, a short HOV to any
direction reset the exoskeleton again. A short HOV was classified
when HOV detection threshold was exceeded less than 1 s
(see Figure 3 for differences in HOV type). Such hybrid short
EOG/EEG-based paradigm was already successfully applied
in tetraplegics during unilateral hand exoskeleton control

(Soekadar et al., 2016). To ensure safety, short HOV commands
had the highest priority to veto any ongoing action in case two
EEG/EOG-based features were detected at the same time (see
priority order in Table 1).

Study Protocol and Audiovisual Online
Feedback
To test for feasibility and safety of the novel EEG/EOG-
based bilateral control paradigm, healthy participants as well

FIGURE 4 | Hierarchical structure of bilateral electroencephalography/electrooculography (EEG/EOG) brain/neural exoskeleton control (A, gray shaded area) vs.
standard EEG-based hierarchical classifier (B). While the user could select the left vs. right side at the first stage, closing vs. rest was classified at the second stage.
Comparison of first stage classifiers: By using prolonged horizontal oculoversions (HOVs) to the left or right based on bipolar EOG (blue electrodes laterally
placed to outer canthi), the subsequent classifiers at the second stage were activated. The solid blue line shows prolonged HOV signals exceeding the detection
threshold for >1 s (blue shaded area). In contrast, a standard EEG-based hierarchical classifier requires distinct lateralization of event-related desynchronization
(ERD) to C3 and C4. A common approach evaluates Laplace-filtered C3-ERD (green electrodes) and C4-ERD (orange electrodes) to classify the left vs. right side. To
activate the left side (left branch), contralateral sensorimotor rhythm (SMR)-ERD at C4 (solid orange line) exceeding the C4-ERD detection threshold (orange shaded
area) is needed. To select the right side, SMR-ERD at C3 (C3-ERD) needs to be detected accordingly (right branch). Second stage classifiers: At this stage,
left/right vs. relax is distinguished. Depending on the classification at the first stage, electrodes of only one hemisphere are activated (green or orange electrode
sites). Solid orange/green line shows valid C4-/C3-ERD (orange/green shaded areas). In case C4/C3-ERD detection thresholds were not exceeded, a relax state
was detected. This classifier stage is identical for both approaches.
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TABLE 1 | Overview of brain/neural-machine interface (B/NMI) control commands.

B/NMI control command EEG/EOG-based feature Respective task instruction with visual feedback

Interrupt closing motion Short HOV toward any side Example: Short HOV to any
side to interrupt (veto) the left ongoing exoskeleton motion

Open exoskeleton Short HOV toward the direction of activated exoskeleton
Example: Short HOV to the left to open left closed
exoskeleton

Switch active exoskeleton Prolonged HOV (>1 s) toward desired hand exoskeleton
Example: Before execute task instruction “Close left!,”
prolonged HOV to the left is required to activate left
exoskeleton

Close exoskeleton SMR-ERD of contralateral motor cortex (C3- or C4-ERD)
Example: C3-ERD required to close right exoskeleton

Rest No action required.

The first column lists all possible commands for controlling each side. Importantly, the order of control commands listed in the table defines priority in case that two
electroencephalography/electrooculography (EEG/EOG)-based features are detected at the same time starting with the highest priority at the top. The second column
shows EEG/EOG-based features including examples for specific task instructions depicted in the third column. In the last column, visual feedback including exoskeleton
motions for specific task instructions is illustrated. Yellow color coding indicates the active exoskeleton; gray color coding, the inactive exoskeleton. Only one possible
instruction is illustrated for each control command. ERD, event-related desynchronization; HOV, horizontal oculoversion; SMR, sensorimotor rhythm.

as tetraplegics performed a pseudo-randomized sequence of
2 × approximately 40 subtasks consisting of all B/NMI control
commands required for bimanual operation of the two visual
exoskeletons (Table 1). The sequence included subtasks to close
one of the exoskeletons (requiring C4- or C3-ERD), to open
them again, or to stop (veto) an ongoing closing motion as
fast as possible to simulate for unintended hand exoskeleton
motions or unexpected incidents (the latter two required both

short HOVs). In case a subtask required to close an exoskeleton,
which had not been activated yet, participants first had to perform
a prolonged HOV to the respective side before closing of the
exoskeleton could be performed. To test for false positives,
intervals to rest were randomly built in, in which the participants
were instructed to avoid any action. A detailed overview on
the bilateral B/NMI control commands, their corresponding
EEG/EOG-based features, and their respective visual feedback
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are summarized in Table 1. To enhance reliable distinction of
short vs. prolonged HOV, an auditory feedback with two different
sounds was provided to confirm successful HOV execution. The
time between subtasks varied randomly between 5 and 7 s. Each
sequence lasted approximately 5 min. In case no SMR-ERD was
elicited, subtasks were aborted after 10 s. The total number of
HOV-based subtasks being executed slightly varied depending
on the users’ previous SMR-ERD performance. For example,
in case the user was not able to elicit ERD during a closing
task, there was no need to reopen the exoskeleton again and
was thus not requested. At the end of the session, tetraplegics
rated user-friendliness of B/NMI control by using a five-level
Likert-scale questionnaire. To account for the special needs of
the tetraplegics, study protocols slightly differed between healthy
participants and the patients. To reduce the overall session length,
only six instead of eight rest phases were included. Moreover,
the veto instructions were not randomly interspersed within the
main study protocol but evaluated in a preceding pure EOG-
based sequence. This was done to not overstrain the capabilities
of the tetraplegic participants, since it was just a one-session study
without any additional training day.

Outcome Measures and Offline Data
Analysis
Feasibility and safety of the novel EEG/EOG-based control
paradigm were assessed according to the following outcome
measures. Feasibility was defined as fluency and accuracy of
EEG-controlled operations. Fluency of control was evaluated as
time from appearance of task instruction until exceedance of
the SMR-ERD detection threshold. In case a laterality switch
was required, timer count started just after successful activation
of the exoskeleton (by performing a prolonged HOV). Fluent
control was assumed when the average TTI such EEG-controlled
operations ranged below 3 s (Crea et al., 2018). To assess the
accuracy of bilateral control, the two-stage classifier performance
was evaluated. At the first stage, exoskeleton selection was
considered valid when successful prolonged HOV was performed.
At the second stage, a trial was counted as successful when a
full exoskeleton closing motion was conducted requiring the
side-specific SMR-ERD detection threshold to be exceeded by
a minimum of 2 s in total. Accurate bilateral control was
assumed when the accuracy of all classifiers exceeded 80%
in average. Due to the fact that the sequence can contain
different numbers of subtasks, the balanced accuracy was
applied to account for a potential bias toward the more
frequent class (Brodersen et al., 2010). The balanced accuracy
is given by 1

2

(
TP
P +

TN
N

)
weighting the true-positive and true-

negative rate equally. Since classification stages were built up
as binary classifiers, chance level ranged at 50%. To compare
the presented hybrid EEG/EOG-based classifier accuracy with
an implementation, which was built up with EEG-based binary
classifiers only, an offline data analysis was performed. The
different implementation methods at the first stage are illustrated
in Figure 4. Unlike the online implementation, in which
prolonged HOV (first stage) and side-specific ERD (second stage)
were used, offline classification was only based on the recorded

side-specific ERD (second stage of online paradigm) for both
stages, since this was the classification while imagined/attempted
finger movements were performed. This allowed comparison
of the two approaches without the need to conduct two
separate online sessions. Consequently, side-specific C3- and C4-
ERDs were both classified depending on the instructed task.
In case a left side closing was instructed, closing motions
>2 s of the right or both exoskeletons or no movement
were classified as false-negative events, whereas closing motion
>2 s of the left exoskeleton was classified as a true-positive
event. For the instruction to close the right side, the opposite
events were classified: Movement of the right exoskeleton was
classified as a true-negative event, while all other events were
considered as false positives. To test for differences in average
classification accuracy, a mixed-design analysis with “group”
(healthy participants, tetraplegics) as between-group variable and
“classification approach” (hybrid EEG/EOG brain/neural control,
standard EEG-based hierarchical classifier) as repeated-measures
variable was performed. To account for the limited number
of data samples, bootstrapping was applied (Wilcox, 2011).
Significance level was defined at p < 0.05. Safety was assumed
when the TTS an unintended closing motion was interrupted
within 2 s, meaning that closing motions were aborted before the
exoskeleton was fully closed. Moreover, user-friendliness was met
when the majority of tetraplegics rated EEG/EOG-based bilateral
control as comfortable and easy to apply.

RESULTS

Feasibility
Average TTI [mean TTI ± standard deviation (SD)] all EEG-
controlled visual closing motions ranged at 2.14 ± 0.66 s across
healthy participants and at 1.90 ± 0.97 s across tetraplegics,
documenting fluent bilateral B/NMI control. Figures 5A, 6A
show the individual TTI distribution for each participant. Only
one healthy participant exceeded the fluency criterion (P04:
3.25± 2.65 s).

Average accuracy (mean ± SD) for bilateral EEG/EOG
brain/neural exoskeleton control ranged across all classifiers
(i.e., including 1. stage classifier: prolonged HOV, and 2.
stage classifier: C3-/C4-ERD) at 85.89 ± 9.47% across healthy
participants and at 81.25± 5.84% across tetraplegics (Figure 4A).
For the standard EEG-based hierarchical classifier, average
accuracy declined across all classifiers to 71.33 ± 17.21% among
healthy participants and to 58.68 ± 10.62% among tetraplegics
(Figure 4B). There was a significant main effect of “classification
approach” (9 =−17.23, p < 0.001), confirming superiority of the
novel bilateral EEG/EOG brain/neural control for both healthy
participants as well as tetraplegics. There was no main effect
of “group” (9 = 6.04, p = 0.419) and no interaction between
“classification approach” and “group” (9 = 4.88, p = 0.449).
Tables 2, 3 list individual accuracy rates for each healthy
participant and tetraplegic as well as present accuracy results
of all classifiers at every hierarchical classification stage. Chance
level of binary classifiers ranged at 50%. Importantly, due to the
novel implementation (compare Figure 4A), prolonged HOVs to
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FIGURE 5 | Healthy participants: (A) “Time to initialize” (TTI) electroencephalography (EEG)-controlled closing motions of the left- or right-hand exoskeleton for each
participant. Horizontal dashed line indicates the threshold for fluency criterion set at 3 s. Average TTI across all subjects ranged below 3 s, documenting fluent
control. (B) “Time to stop” (TTS) an ongoing closing motion by using short horizontal oculoversions (HOVs). Horizontal dashed line indicates the threshold for safety
criterion set at 2 s. Centerlines of boxplot show the median, while crosses show the mean. Box limits indicate the 25th and 75th percentiles.

FIGURE 6 | Tetraplegics: (A) “Time to initialize” (TTI) electroencephalography (EEG)-controlled closing motions of the left- or right-hand exoskeleton for each
participant. Horizontal dashed line indicates the threshold for the fluency criterion set at 3 s. Average TTI across all subjects ranged below 3 s, documenting fluent
control. (B) “Time to stop” (TTS) an ongoing closing motion by using short horizontal oculoversions (HOVs). Horizontal dashed line indicates the threshold for the
safety criterion set at 2 s. Only tetraplegic T04 exceeded the threshold of safety criterion. Centerlines of boxplot show the median, while crosses show the mean.
Box limits indicate the 25th and 75th percentiles.

activate either the right or left exoskeleton at the first stage were
classified in 100% of the cases.

Safety
Average TTS (mean TTS ± SD) ongoing closing motions using
short HOVs ranged at 0.92 ± 0.26 s across healthy participants
and at 0.78 ± 0.46 s across tetraplegics. Figures 5B, 6B show
the individual TTS distribution for each participant. Only one
tetraplegic did not meet safety requirements while requiring more
than 2 s to stop ongoing closing motions in some of the trials
(T04: average TTS± SD ranged at 1.47± 1.24 s; Figure 6B).

User-Friendliness
With 88 ± 11% (mean ± SD) of the maximum achievable score,
tetraplegics rated the novel bilateral EEG/EOG-based control
paradigm as user-friendly and reliable. More specifically, all
tetraplegics answered that they did not experience any side
effects or discomfort, that the calibration/control instructions

were easy to follow, and that the overall control was reliable and
practical. Notably, all tetraplegics stated that the novel HOV-
based control was easy to learn and that HOV control was
comfortable. Importantly, three out of four tetraplegics would
use the presented control to operate real hand exoskeletons
bilaterally (Figure 7).

DISCUSSION

The presented study demonstrates feasibility and safety of a
novel EEG/EOG-based B/NMI control paradigm for operating
two hand exoskeletons. While feasibility was defined as fluency
and accuracy of operation, safety was assumed when unintended
closing motions could be aborted. We showed that eight
healthy participants as well as four chronic tetraplegics were
able to perform a complex sequence of subtasks mimicking
bimanual tasks in daily life using four EEG/EOG-based control
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TABLE 2 | Accuracy of bilateral electroencephalography/electrooculography (EEG/EOG) brain/neural exoskeleton control.

Healthy participants Tetraplegics

1. stage 2. stage Total 1. stage 2. stage Total

Left/Right Left/Rest Right/Rest Left/Right Left/Rest Right/Rest

No.

1 100.00 65.60 67.90 77.83 100.00 58.30 66.70 75.00

2 100.00 78.40 74.00 84.13 100.00 70.80 75.00 81.93

3 100.00 65.20 80.00 81.73 100.00 83.30 54.20 79.17

4 100.00 42.00 68.30 70.10 100.00 91.70 75.00 88.90

5 100.00 89.70 91.90 93.87

6 100.00 94.40 100.00 98.13

7 100.00 96.90 87.50 94.80

8 100.00 78.40 81.20 86.53

Mean 100.00 76.33 81.35 85.89 100.00 76.03 67.73 81.25

SD 0.00 18.34 11.36 9.47 0.00 14.61 9.83 5.84

Mean values with standard deviation (SD) are provided in bold.

TABLE 3 | Accuracy of standard electroencephalography (EEG)-based hierarchical classifier.

Healthy participants Tetraplegics

1. stage 2. stage Total 1. stage 2. stage Total

Left/Right Left/Rest Right/Rest Left/Right Left/Rest Right/Rest

No.

1 59.80 53.10 55.40 56.10 33.30 50.00 45.80 43.03

2 73.20 69.00 74.00 72.07 54.20 66.70 66.70 62.53

3 75.70 65.20 80.00 73.63 54.20 83.30 50.00 62.50

4 42.20 38.90 68.30 49.80 62.50 75.00 62.50 66.67

5 92.90 89.70 91.90 91.50

6 83.30 94.40 100.00 92.57

7 77.30 96.90 75.00 83.07

8 27.30 59.70 68.80 51.93

Mean 66.46 70.86 76.68 71.33 51.05 68.75 56.25 58.68

SD 22.03 20.99 14.05 17.21 12.46 14.22 9.94 10.62

Mean values with standard deviation (SD) are provided in bold.

commands [i.e., side-specific SMR-ERD at C3 or C4, as well as
prolonged (>1 s) and short HOVs; Table 1]. Fluent control was
documented by an average TTI EEG-controlled operations below
3 s (2.14 ± 0.66 s across healthy participants and 1.90 ± 0.97 s
across tetraplegics). These results are comparable to those of
previous studies, in which a unilateral whole-arm exoskeleton
was controlled by healthy participants (Crea et al., 2018) or
stroke survivors (Nann et al., 2020). Accurate control was
confirmed by an average classification accuracy exceeding 80%
(85.89 ± 15.81% across healthy participants and 81.25 ± 16.99%
across tetraplegics). Except for one tetraplegic, the TTS all
ongoing motions were below 2 s (in average 0.92 ± 0.26 s
across healthy participants and 0.78 ± 0.46 s across tetraplegics)
underlining the system’s safety. Finally, user-friendliness among
tetraplegics was proven by stating no discomfort and ease of
use in controlling the B/NMI system for bilateral operation with
88± 11% of the maximal achievable scores.

These results demonstrate for the first time that the presented
hybrid EEG/EOG-based B/NMI control paradigm can be used
for reliable and safe operation of two hand exoskeletons, e.g., to
perform bimanual tasks.

Control of two exoskeletons requires classification of more
than two classes (multiclass classification). This problem can be
solved either by directly applying multiclass methods, such as
naive Bayesian classifiers (Suk and Lee, 2012; Zhang et al., 2015)
or multilayer perceptrons (Balakrishnan and Puthusserypady,
2005), or, as more commonly used, by decomposing the
problem into several binary classifications (Lotte et al., 2018).
There are different possible decomposition methods, e.g.,
pairwise classification (Vuckovic et al., 2018) or by hierarchical
classification (Dong et al., 2017; Gundelakh et al., 2018).
However, all studies have relatively low binary classification
accuracies in common ranging from 50 to 70%. To achieve a
higher control accuracy, fusion of EOG- and EEG-based features
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FIGURE 7 | Five-level Likert scale questionnaire. After the experiment, all tetraplegics rated the user-friendliness of the overall process and especially the novel
electrooculography (EOG) control commands. Likert scale ranged from 1 to 5 with “1 = strongly agree” and “5 = strongly disagree.”

was suggested and implemented in the presented bilateral control
paradigm. A decisive step was to use a highly reliable EOG-based
feature at safety-critical positions in the hierarchical classifier
structure (Figure 4).

Fusing EEG with other biosignals like EOG is a well-
established approach in the BCI field (Pfurtscheller et al., 2010).
Soekadar et al. (2016) showed that such a hybrid EEG/EOG-
based B/NHE fully restored hand function after SCI. Tetraplegics
could eat and drink in a noisy outside restaurant by opening
up the exoskeleton with short HOVs. This principle was now
extended toward bilateral hand exoskeleton control introducing
prolonged HOV. The advantage of this implementation was
shown in the comparative offline analysis, where classification
accuracy declined by 14.6% in healthy participants and by 22.6%
in tetraplegics. The substantial decline in classification accuracy
in tetraplegics compared to healthy participants underlines the
need to compensate for the lack of lateralization in SCI by a
reliable EOG-based switch between the two actuators.

One healthy participant (P04) did not meet the fluency
criterion by 0.25 s in average, and one tetraplegic (T04) exceeded
the safety criterion in some of the trials. However, in both cases,
the unusually large SDs of 2.65 s for P04 and 1.24 s of T04
indicate that either the calibration threshold was not optimal or
the participant did not attend to the task. Moreover, T04 was the
only participant who stated that he would not want to use this
paradigm in real life underpinning the previous assumptions.

Since EEG-based B/NMI control is generally more effortful
than using other biosignals, e.g., electromyography (EMG) or
HOV, one could argue that all exoskeleton movements could

be controlled by HOV. However, contrary to eye movements,
EEG-based control was shown to be more intuitive since
exoskeleton closing motions are directly linked to imagining or
attempting to move the paralyzed fingers (Soekadar et al., 2016).

Moreover, there is increasing evidence that repeated
brain/neural control of exoskeletons can trigger neural
recovery (Donati et al., 2016; Wagner et al., 2018). Therefore,
a combination of both operational purposes, i.e., assistive and
restorative use, was suggested (Soekadar et al., 2019; Soekadar
and Nann, 2020). Here, the assistive neural exoskeleton is used
as a technical aid for the physiotherapist to train the patient in
performing ADLs. This hybrid approach promises to facilitate
generalization of learned skills to real-life environments and may
increase the impact of the rehabilitation treatment. The proposed
B/NMI control paradigm paves the way toward implementation
of such hybrid approach for restoration of bimanual ADLs.

Besides extending the existing EEG/EOG B/NMI control
paradigm toward bilateral hand exoskeleton control, minimizing
electrode biosignal recording sites constitutes another important
step for everyday life applicability (Cavallo et al., 2020). Moreover,
considering that the high classification accuracy (>80%) was
achieved with a minimalistic setup of only nine EEG recording
sites, this opens up new opportunities for an easy applicable
EEG headset system without the need for time-consuming whole-
head EEG recordings, which is usually needed for advanced CSP
algorithms, achieving comparable classification results.

To reliably detect prolonged HOVs (>1 s), bipolar EOG
signals have to contain low-frequency information. Therefore, a
high-pass filter (lower cutoff frequency at 0.02 Hz) has to be used.
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As low-frequency bands are prone to be susceptible to movement
artifacts, e.g., related to head movements, it needs to be
tested whether the proposed approach for bilateral brain/neural
exoskeleton control can be applied under less controlled and very
noisy conditions (e.g., in an outside restaurant). Here, using other
EOG signal features that are less dependent on information in the
lower frequency bands could overcome this issue.

Larger clinical studies are needed to investigate whether
these results can be generalized toward a broader spectrum
of SCI patients. While all participants rated the brain/neural
control paradigm as fluent, further increasing fluency would be
desirable. In this context, taking advantage of lateralized brain
activity [e.g., in the form of lateralized potential shifts preceding
voluntary movements, the so-called Bereitschaftspotential or BP
(Nann et al., 2019), or movement-related cortical potentials
(MRCPs; Schwarz et al., 2020)] may contribute toward such
aim. Since it was shown that SMR-ERDs are more pronounced
over the contralateral hemisphere (Nikulin et al., 2008), it
might be possible using advanced signal-processing tools to
determine the side of the intended movement by assessing such
lateralized activity only.
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