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Transcranial magnetic stimulation (TMS) is used to make inferences about relationships
between brain areas and their functions because, in contrast to neuroimaging tools,
it modulates neuronal activity. The central aim of this article is to critically evaluate
to what extent it is possible to draw causal inferences from repetitive TMS (rTMS)
data. To that end, we describe the logical limitations of inferences based on rTMS
experiments. The presented analysis suggests that rTMS alone does not provide
the sort of premises that are sufficient to warrant strong inferences about the direct
causal properties of targeted brain structures. Overcoming these limitations demands
a close look at the designs of rTMS studies, especially the methodological and
theoretical conditions which are necessary for the functional decomposition of the
relations between brain areas and cognitive functions. The main points of this article
are that TMS-based inferences are limited in that stimulation-related causal effects
are not equivalent to structure-related causal effects due to TMS side effects, the
electric field distribution, and the sensitivity of neuroimaging and behavioral methods in
detecting structure-related effects and disentangling them from confounds. Moreover,
the postulated causal effects can be based on indirect (network) effects. A few
suggestions on how to manage some of these limitations are presented. We discuss
the benefits of combining rTMS with neuroimaging in experimental reasoning and
we address the restrictions and requirements of rTMS control conditions. The use
of neuroimaging and control conditions allows stronger inferences to be gained,
but the strength of the inferences that can be drawn depends on the individual
experiment’s designs. Moreover, in some cases, TMS might not be an appropriate
method of answering causality-related questions or the hypotheses have to account
for the limitations of this technique. We hope this summary and formalization of the

Abbreviations: A1C, a change in A1 activity is present; BOLD, blood oxygen level-dependent; H, PX takes place in A1;
PX, process underlying cognitive function X; PY, process underlying cognitive function Y; I1, inference 1; I2, inference
2; I3, inference 3; I4, inference 4; I5, inference 5; rTMS, repetitive Transcranial magnetic stimulation (TMS); S0, a sham
rTMS protocol; rTMS1, an active rTMS protocol 1; S1A, rTMS1 is applied to A1; rTMS2, an active rTMS protocol 2;
TMS, transcranial magnetic stimulation; TX, task X; TXD, an observed difference in TX performance; TY, task Y.
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reasoning behind rTMS research can be of use not only for scientists and clinicians who
intend to interpret rTMS results causally but also for philosophers interested in causal
inferences based on brain stimulation research.

Keywords: causal inferences, brain plasticity, brain excitability, repetitive TMS, TMS-neuroimaging

INTRODUCTION

A fundamental issue in human neuroscience is how to
make causal inferences based on research data. Traditional
use of neuroimaging methods limits experimental conclusions
to correlational inferences (though, the methods of effective
connectivity are used to postulate causal inferences; see Valdes-
Sosa et al., 2011). Following their introduction, brain stimulation
methods, especially TMS, started to be considered as a
remedy for this limitation. TMS was developed over thirty
years ago and is based on electromagnetic induction (Barker
et al., 1985). A TMS coil induces an electric field which
might influence the activity of brain tissue. It was originally
thought that TMS would make it possible to conclude the
causal relations between brain activity, cognitive functions, and
behaviors. However, it has since become clearer that the brain
cannot simply be parceled into regions responsible for certain
functions, and the impact of brain lesions and non-invasive
brain stimulation is not necessarily limited to a single area
but extends to networks. Currently, TMS is often used to test
hypotheses about how short-term changes in the excitability of
a stimulated brain area affect cognitive functions. In online TMS
paradigms, electromagnetic pulses are applied concurrently with
the experimental measurement. The physiological consequences
of a single electromagnetic pulse can be detected for over a
dozen seconds (Furubayashi et al., 2013). In repetitive (rTMS)
paradigms, pulses with a particular frequency pattern are applied
during or before experimental measurement because they often
lead to neuroplasticity-like changes (Chung et al., 2015). The
neuromodulatory rTMS effect can be assessed with standard
experimental procedures or neuroimaging techniques (for a
review of combined TMS-EEG studies, see Thut and Pascual-
Leone, 2010); it can be observed even for up to 45 min after a
single protocol application (Huang et al., 2005), or it can last
for months after multiple protocol applications over repeated
TMS sessions in longitudinal studies (Speer et al., 2000, 2009; Li
et al., 2004; Choi et al., 2014, 2019; Kang et al., 2016). Thus, TMS
is often considered to be an extension of neuroimaging, which
(due to its influence on brain activity) allows causal relations to
be tested.

TMS is frequently used to decompose the functional
organization of the brain. Multiple scientific articles contain
statements that TMS can be used to draw both causal brain-
behavior inferences (Sack, 2006; Ś liwińska et al., 2014) and
causal relationships between brain structure and function
(Schutter et al., 2004; Bolognini and Ro, 2010; Hartwigsen,
2015; Veniero et al., 2019). In research practice, this often
leads to implicit assumptions that TMS can selectively influence
the area of interest, therefore its role can be established.
Consequently, multiple studies have presented rTMS-based

conclusions on the causal role of certain brain areas in
certain cognitive functions (e.g., Carmel et al., 2010; Philiastides
et al., 2011; Zanto et al., 2011; Bourgeois et al., 2013; Izuma
et al., 2015; Schaal et al., 2015; Siuda-Krzywicka et al.,
2016; Montefinese et al., 2017), often without describing
alternative explanations or making a distinction between
direct and indirect causal effects of an rTMS-induced change
in activity in a certain area on a certain behavior or
brain process.

Employing chronometry (tracking the time course of
functional relevance), online single-pulse, double-pulse, or short-
burst TMS protocols (including double-coil approaches) allow
investigation of the causal relations between the activity of certain
brain areas and behaviors or cognitive functions especially
when effective connectivity measures are also employed (e.g.,
de Graaf et al., 2009). These protocol types might be used
to influence cognitive functions or perturb brain activity to
track the signal propagation and analyze the topographic
pattern of TMS-evoked changes in brain activity. This allows
researchers to: (1) identify the brain areas involved in certain
behavior; (2) assess the impact of the stimulated brain area
upon interconnected areas via direct connections or intermediate
areas, including inter-hemispheric interactions (Blankenburg
et al., 2008); (3) reveal bottom-up and top-down influences
between brain areas; and (4) dissect the specific functional
contributions of different cortical areas of an investigated
network. Crucially, the propagation of TMS-evoked activity
can depend on the degree of wakefulness (Massimini et al.,
2005), which in some studies may act as a confound but in
others may allow the state-dependence of interactions among
remote and interconnected brain regions to be investigated.
However, this use of TMS is limited to specific experimental
designs, and some TMS effects (as in the case of all
active TMS protocols) may be side effects of the stimulation
procedure (Holmes and Meteyard, 2018; for a review, see
Bestmann et al., 2008a).

The rTMS approach is more limited than single-pulse,
double-pulse, and burst-pulse TMS in terms of helping to
understand the causal relationships between brain areas and
cognitive functions (however, in certain designs rTMS can be
used for chronometry, see Rossi et al., 2011). Online rTMS
does not allow concurrent brain activity registration using
neuroimaging techniques, while offline rTMS effects depend
on neuroplasticity-like changes which might occur at various
time points after the start or the end of rTMS. Thus, rTMS
does not allow tracking of the direct influence of perturbation
to determine the time point at which an area makes a
critical contribution to a given behavior or to investigate
effective connectivity between brain areas. Although most
non-invasive stimulation methods share the same limitations
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as rTMS, for purposes of clarity we narrow the scope of
the discussion below to rTMS. Most of the issues, that are
mentioned below, related to the pitfalls of TMS have already
been selectively discussed (e.g., Siebner and Rothwell, 2003;
Robertson et al., 2003; Thickbroom, 2007; Bestmann et al.,
2008a; Siebner et al., 2009). The current article aims to
combine, organize, and analyze these insights at the theoretical
level and indicate their possible consequences for inferences
based on rTMS evidence. Below, we first analyze several
known methodological issues that can invalidate inferences
about direct causal relations between brain areas, brain
processes, and cognitive functions investigated with TMS.
Second, we discuss the special role that neuroimaging plays
in rTMS-based inferences and approaches to creating TMS
control conditions.

INFERENCES BASED ON CONDITIONAL
STATEMENTS

Causal inference, and specifically inference based on
interventions in the operation of a complex system such as
the brain, fall within the theoretical framework of the general
theory of causality that was developed by Pearl (2000). We use
a small part of Pearl’s Structural Causal Model. This is because
unlike causal frameworks such as Bradford Hill’s criteria (Hill,
1965), Pearl’s framework is resistant to counterexamples and
makes sense of probabilistic causal inferences about specific
mechanisms that are parts of complex systems. In this view, to
characterize a relationship between event A and event B as causal
is to say that a selective intervention on A might lead to a change
in the distribution of B. We assume a causal influence of one
event on another is direct if none of the variables included in a
given causal model mediates this effect; otherwise, it is indirect.
In a setting such as a TMS experiment, where intervention is
randomized, we compare the intervention-related distribution
of variables with a control distribution and expect to find
suitable neuronal candidates that cause the response. For clarity
purposes, we address TMS-related inferences with the use of
conditional logic.

To consider a simple type of TMS-based inference, assume
that a researcher is interested in cognitive function X. To
investigate the process (PX) that underlies this function, the
researcher aims to determine whether brain area 1 (A1), which
is typically associated with PX, is engaged during a task that is
assumed to engage cognitive function X (TX). For example, one
may investigate the involvement of the dorsolateral prefrontal
cortex in decision confidence by measuring the effect of rTMS
on confidence ratings. In such a case, the hypothesis (H) often
states that PX takes place in A1 and is tested with the application
of an active rTMS protocol 1 (rTMS1) to A1. We can formally
represent this pattern of reasoning in the following way (the
logic symbol ∧ represents the logical conjunction, i.e., ‘‘and,’’
and the → represents implication, i.e., ‘‘if <antecedent>
then <consequent>’’):

H – PX takes place in A1
S1A—rTMS1 is applied to A1

TXD—a difference in TX performance is observed (as compared to
a control condition)

I1(((H ∧ S1A) → TXD) ∧ (S1A ∧ TXD)) → H

Inference 1 (I1) states that the statement that PX takes place in
A1 is true if the following two premises are true: (1) if PX takes
place in A1 and rTMS1 is applied to A1 then a difference in TX
performance is observed; and (2) rTMS1 is applied to A1 and a
difference in TX performance is observed.

I1 depicts the basic form of reasoning used in rTMS
research. However, like any inductive inference, this form
of reasoning does not always lead to true conclusions. For
example, the occurrence of the difference in TX performance
may be unrelated to rTMS1, in which case, two independent
factors contribute to falsely interpreting the consequent of the
condition as true. Thus, causal reasoning based on misuse
of I1 may lead to false conclusions. Possible overconfidence
in I1-based inferences might also stem from overlooking
both how TMS and brains work. First, the assumption that
TMS selectively influences a targeted area is not always true.
The strength of the induced electric field decreases together
with the distance from the coil, so the brain areas above
or adjacent to the targeted area are likely to be stimulated
more than the intended one (Heller and van Hulsteyn, 1992).
Second, applying TMS to one area can indirectly influence
multiple brain areas that are structurally connected to it and
lead to an alteration of the functional state of the targeted
network, as pointed out in several reviews (Ruff et al., 2009;
Bolognini and Ro, 2010; Ziemann, 2010; Beynel et al., 2020).
In sum, TMS applied to a specific brain region can influence
other regions directly (e.g., due to stimulation of an area
above or adjacent to the area investigated) or indirectly via
neural connections (e.g., indirect stimulation of an area that
is connected to the investigated area or activity alteration in
another area due to excitability alteration in the investigated
area). These factors limit the strength of causal conclusions based
on I1.

Accordingly, rTMS1 may be responsible for a difference
in TX performance via unintended stimulation of an area
other than A1. For example, assume that A1 is structurally
connected to brain area 2 (A2). Then, there is a possibility
that A2 activity is influenced: (1) directly by rTMS1 when A1
is targeted (Figure 1A); or (2) indirectly by rTMS1 via an
alteration of A1 activity. At the same time, A2 is responsible
or more important than A1 for executing PX (Figure 1B).
Unintentional direct stimulation of A2 may occur in several ways.
First, the physical spread of an electrical field may reach areas
adjacent to the targeted one. Second, since electrical current
follows the path of least resistance, the electric field distribution
is highly dependent on cerebrospinal fluid distribution and
brain folding, thus the peak of the electric field can occur in
gray matter regions located some distance from the electric
field’s expected peak, which is judged based on the location
of the center of the (figure-of-eight) coil. This might result
in greater stimulation of area/s other than the targeted one
(Bijsterbosch et al., 2012). Third, it is challenging to distinguish
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FIGURE 1 | Panel (A) depicts a possible direct influence of transcranial magnetic stimulation [TMS; an excitability alteration in the brain tissue surrounding the
targeted area A1, i.e., area 2 (A2)]. Panel (B) depicts a possible indirect TMS influence: an excitability alteration in A2 or area 3 (A3) resulting from an excitability
alteration in A1. A1 represents the targeted area; A2 and A3 represent the areas directly and indirectly connected to A1, respectively, which together constitute a
functional network. The green color indicates an increase in neuronal excitation while the orange color indicates a decrease in neuronal excitation.

whether the rTMS effect stems from excitability alteration in
the targeted area or an area above it that possibly has a distinct
specialization. These concerns may be raised especially when
deeper structures such as the anterior cingulate cortex (Hayward
et al., 2007) or insula (Pollatos et al., 2016) are investigated.
The vast majority of TMS studies target superficial structures;
however, the rule that the strongest electrical field is generated
within the outermost areas applies even if the distances (which
might be the consequences of brain folding) are small. Because
a large part of the cortex lies within sulci, targeted brain
coordinates in numerous TMS studies have to be placed within
sulci (Busan et al., 2009; Cappelletti et al., 2009; Salillas et al.,
2009). Additionally, stimulation of deeper brain structures is
obtained at the expense of inducing wider electrical field spread
in the brain (Roth et al., 2007; Deng et al., 2013; Downar et al.,
2016). For example, metabolic and physiological effects on the
primary motor cortex and the primary somatosensory cortex
can be observed after rTMS to premotor areas (Siebner et al.,
2003). This may compound the difficulty in distinguishing the
contribution of direct vs. indirect rTMS effects. The network
effects may produce remote activity alteration in cortical areas via
cortico-cortical routes and in subcortical structures via cortico-
subcortical projections (Strafella et al., 2003; Lefaucheur et al.,
2020). The extent of the network effects depends on rTMS
protocol parameters (Bestmann et al., 2003). Additionally, the
assumption that a difference in TX performance is caused by an
rTMS1-induced change in A1 activity may be misleading due
to the occurrence of placebo and sensory side effects (Abler
et al., 2005). Moreover, rTMS may influence areas related to
general cognitive resources (e.g., regions engaged in attentional
or working memory processing) or the observed effect may be
specific to the TX design (e.g., resulting from rTMS1 influence
on brain regions involved in response generation during TX),
which is not related to the influence on the investigated cognitive
function. In sum, overconfidence in I1 has multiple ways to lead
researchers to overinterpret their data as evidence that PX takes
place in A1.

Since statements that follow I1 cannot fully support the
conclusion that PX takes place in A1, can some other inference
be used to show that PX is not executed in A1? This would
provide independent evidence for excluding that region from
the area of research interest. This way of reasoning is indeed
found in TMS literature: based on the lack of an observed effect,
some authors postulate a lack of rTMS influence on investigated
cognitive functions (e.g., Ghabra et al., 1999; Poulet et al., 2004;
Jung et al., 2010; Bor et al., 2017), which might suggest that an
investigated area is not involved in the process underlying the
investigated cognitive function. Consider then the inference of
the following structure (the logic symbol ¬ represents negation,
i.e., ‘‘not’’):

H – PX takes place in A1
S1A—rTMS1 is applied to A1

TXD—a difference in TX performance is observed (as compared to
a control condition)

I2(((H ∧ S1A) → TXD) ∧ (S1A ∧ ¬TXD)) → ¬H

Inference 2 (I2) states that the statement that PX is not executed
in A1 is true if the following two premises are also true: (1) a
difference in TX performance is observed if PX takes place in A1
and rTMS1 is applied to A1; (2) rTMS1 is applied to A1 and a
difference in TX performance is not observed.

In research practice, rTMS1 does not always lead to a change
in A1 activity and/or a difference in TX performance. rTMS1 may
have no factual effect because: (1) the rTMS1 frequency pattern
is inadequate for investigating PX (e.g., theta burst stimulation
is applied but PX is independent of theta-gamma coupling; De
Ridder et al., 2007); (2) rTMS1 parameters are set too low (e.g.,
intensity or current direction) to influence PX (Valero-Cabré
et al., 2017); (3) brain-intrinsic factors such as neurochemical
and neurophysiological properties of A1 prevent an alteration in
its excitability (e.g., it is impossible to facilitate or inhibit A1 to
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a greater extent than it is before rTMS1 application; Karabanov
et al., 2015); and (4) to influence A1, rTMS1 should be applied
with greater precision (e.g., based on individual functional
brain images; Hannula and Ilmoniemi, 2017). Altogether, this
is enough evidence to assume that I2 is not a stronger form of
reasoning than I1. I1 and I2 include a hidden assumption that
rTMS1 leads to an alteration in A1 activity but not all active
rTMS applications have neural effects. To claim that A1 has
changed, the assertion based on the inference presented below
has to be true:

S1A—rTMS1 is applied to A1
A1C—a change in A1 activity is present

I3((S1A → A1C) ∧ S1A) → A1C

I3 states that the statement that A1 activity is changed if the
following two premises are true: (1) a change in A1 activity is
present if rTMS1 is applied to A1; and (2) rTMS1 is applied
to A1.

The issue of the impact of rTMS1 on the activity of A1 might
be addressed with the use of neuroimaging.

TMS AND NEUROIMAGING

A way of strengthening TMS-based inferences is to combine
TMS with neuroimaging, the advantages of which have already
been exhaustively described (e.g., Sack, 2006; Bestmann et al.,
2008b; Bergmann et al., 2016). Multiple studies have already
successfully employed neuroimaging to determine whether a
particular rTMS protocol leads to a change in A1 activity (e.g.,
Bestmann et al., 2008c; Ruff et al., 2008; Capotosto et al., 2012).
Despite the advantage of neuroimaging methods in allowing
detection of a change in A1 activity, confirmation that the
change in A1 activity accompanies TMS1 cannot fully confirm H.
Importantly, even if the change in A1 activity can be confirmed
with neuroimaging, it does not always lead to a difference
in TX performance (Reithler et al., 2011). TMS1 may have
no observable effect because: (1) TMS1 could have additional
consequences that hinder the original stimulation effect, such
as the occurrence of compensatory effects that diminish the
TMS-induced alteration in A1 activity or that fulfill the function
of A1 (Andoh and Martinot, 2008); and (2) TX may not provide
an adequate measure of PX because TX or its performance level
is not demanding enough to be influenced by TMS1, or TX is not
sensitive enough to capture the impact of TMS1. Nevertheless,
this does not imply that null TMS results are not meaningful
because they are crucial to proving the functional irrelevance of
a brain region to performing a particular function (de Graaf and
Sack, 2011).

Next, assume that the influence of TMS1 on A1 can be
effectively measured by neuroimaging methods and TX, and both
a change in A1 activity and a difference in TX performance is
observed. This leads to stronger reasoning than I1 (inference
4; I4):

H – PX takes place in A1
S1A—rTMS1 is applied to A1

TXD—a difference in TX performance is observed (as compared to
a control condition)
A1C—a change in A1 activity is present

I4((((H ∧ S1A) → TXD) ∧ (S1A ∧ TXD)) ∧

(((S1A → A1C) ∧ S1A) → TXD)) → H

I4 states that the statement that PX takes place in A1 is true if the
following two premises are true: (1) the antecedent of I1; and (2) a
difference in TX performance is observed if the antecedent of I3
is true (analogous reasoning including ¬TXD instead of TXD can
be used to infer about the lack of A1 involvement in PX).

Again, since the inference is inductive, I4 is not immune
to error and H might be false. Even if it is not, I4 merely
adds to I1 that whenever rTMS1 is applied to A1, its activity is
changed, and if this occurs then a difference in TX performance
is observed. However, this reasoning pattern does not guarantee
the correctness of the conclusion that the change in A1 activity
is a cause of the difference in TX performance, and therefore
that PX takes place in A1. It may be the case that TMS1 is a
cause of both the change in A1 activity and the difference in TX
performance, but the change in A1 activity is not a cause of the
difference in TX performance. Thus, the causal inference between
rTMS1 to A1 and the difference in TX performance is stronger
when the purported cause is brain stimulation but not when the
purported cause is the change in brain activity, i.e., TMS causes
are not analogs of neural causes. To strengthen I4 inference one
might additionally provide evidence that whenever the difference
in TX performance is observed the change in A1 activity is present
(inference 5; I5):

H – PX takes place in A1
S1A—rTMS1 is applied to A1
TXD—a difference in TX performance is observed (as compared to
a control condition)
A1C—a change in A1 activity is present

I5(((((H ∧ S1A) → TXD) ∧ (S1A → TXD))

∧ (((S1A → A1C) ∧ S1A) → TXD)) ∧ (TXD → A1C)) → H

I5 states that the statement that PX takes place in A1 is true if the
following two premises are true: (1) the antecedent of I4; and (2) a
change in A1 activity is present if a difference in TX performance
is observed.

I4 and I5 are improvements over I1, and I2 and provide more
confidence in TMS results. However, the limits of TMS-based
conclusions also strongly depend on the complexity of the
brain processes/cognitive functions investigated. The assumption
that PX takes place in A1 may be simply inadequate because
the complexity of PX may require it to be executed by a
network rather than a single area (Pessoa, 2014), i.e., a brain
area determined with TMS to be ‘‘responsible’’ for a certain
cognitive function may be necessary but not sufficient for the
realization of this cognitive function. Thus, instead of focusing
on the functional properties of a single brain area, often it
is necessary to investigate the functional interactions between
remote but interconnected brain regions (for a review of different

Frontiers in Human Neuroscience | www.frontiersin.org 5 January 2021 | Volume 14 | Article 586448

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Hobot et al. Inferences in rTMS Research

paradigms, see Romei et al., 2016). However, even though H
might alternatively state that A1 is partly (not fully) responsible
for PX, all the above issues related to the described inferences
still hold.

In essence, the employment of neuroimaging may allow the
following questions to be answered: (1) Does rTMS1 applied
to A1 lead to a detectable change in A1 activity (Siebner
et al., 2000)?; (2) How big is the influence of rTMS1 on areas
adjacent to A1?; (3) Which areas are functionally connected
to A1, and are they involved in PX and/or TX (Bestmann
et al., 2005)?; (4) How does rTMS1 affect connectivity between
certain brain areas or networks (Gratton et al., 2013)?; (5) What
is the relation between the effects of rTMS1 and the other
brain activations that occur during TX?; (6) What is the
relation between the effects of rTMS1 and the difference in
TX performance?; and (7) Which kind of neuroplastic changes
arise, and when (Poeppl et al., 2018)? These investigations might
be supported by the use of effective connectivity measures
(Iwabuchi et al., 2019) based on the application of causal dynamic
modeling, Granger causality (Friston et al., 2013), or graph theory
(Farahani et al., 2019). Additionally, novel modeling approaches
that can localize cortical TMS effects might be employed to
determine whether the cortical area is effectively stimulated
by TMS (Weise et al., 2020). At the same time, neuroimaging
evidence can include confounding activations rather than clearly
represent the network responsible for the cognitive function
X because: (1) TMS1 may serve as a common cause that has
several transcranial and non-transcranial consequences (Conde
et al., 2019), thus some of the brain activations (including
compensatory mechanisms) may be unrelated to PX; and
(2) engagement in TX may activate processes unrelated to PX
(which can be addressed with appropriate control conditions).
Therefore, determining whether observed changes in brain
activity are associated more with activity change in A1 or its
adjacent areas and differentiating between network effects related
to PX and compensatory effects is both challenging. In sum, the
above patterns of reasoning may still lead to false conclusions,
especially if no adequate control condition is employed.

rTMS CONTROL CONDITIONS

TMS might result in various psychological, auditory, and
somatosensory side effects that might trigger shifts of attention,
influence alertness, or interact with elements of the experimental
task. Factors like the placement of the TMS coil or the
occurrence of a clicking sound can influence task performance.
For example, Duecker et al. (2013) showed that lateralized
sham TMS pulses caused automatic shifts of spatial attention
towards the location of the TMS coil. The use of sham TMS
is intended to account for the impact of active TMS’s placebo
and sensory side effects. The former is related to behavioral
and cognitive changes (including certain expectations) that result
from a person’s belief that their brain is being stimulated,
while the latter is related to somatosensory effects (e.g., muscle
twitches), peripheral nerve stimulation, and auditory effects
(perception of a clicking sound). The sham approach might
induce placebo effects of different magnitude (Burke et al., 2019).

The mismatch between active TMS and the sensory effects of
control TMS can form participants’ beliefs about the effectiveness
of brain stimulation. The sham approaches can to a certain
degree reproduce the sensory effects of active TMS without
meaningfully influencing brain activity. They are based on the
employment of either regular but tilted TMS coils, in which
case, the electric field can still be sufficiently strong to result
in somatosensory effects and peripheral nerve stimulation (Loo
et al., 2000; Lisanby et al., 2001) or purpose-built sham TMS coils
which have a magnetic shield that attenuates the electromagnetic
field and prevents stimulation of the brain concurrently limiting
somatosensory and peripheral nerve stimulation effects (for a
review, see Duecker and Sack, 2015). To mitigate the trade-off
between invoking somatosensory effects and not stimulating the
brain, Duecker and Sack (2015) recommend the use of surface
electrodes for skin stimulation in combination with a sham
TMS coil.

However, sham TMS approaches do not demonstrate area
specificity. Thus, Duecker and Sack (2015) recommend it might
be beneficial to use sham TMS over each brain area where
active TMS is applied to ensure that all stimulation sites have
a control condition for the sensory side effects of TMS. Proper
choice of control condition/s involves taking into account the
difference between clinical and experimental research as well as
whether and how the investigated process can be influenced by
participants’ beliefs. While single-blinding seems to be feasible in
between-subject designs, due to distinctive TMS effects, double-
blinding is difficult to perform (Broadbent et al., 2011). However,
it is practiced to use the sham and active TMS coils that are
indistinguishable to the researcher carrying out the stimulation,
and/or this researcher is not informed about the hypothesis of the
study (Basil et al., 2005). One might also minimize the placebo
effect-related issues by the employment of between-subject
designs (on the cost of increasing interindividual variability).
Despite the chosen design, the researcher might gather from
participants information on blinding success or how the TMS
was experienced in a form of a short questionnaire which can
further inform the study results (Flanagan et al., 2019). An
alternative to the control stimulations (including active and
sham TMS control strategies) might be an investigation of
interindividual differences in the response to TMS measured
with neuroimaging techniques and correlating them with the
chosen behavioral measure.

The probabilistic strength of inferences based on
experimental studies largely depends on the type of control
condition used. Below, we discuss how considerations regarding
control condition/s apply to TMS research designs. In general,
when investigating whether PX underlies cognitive function X,
the simplest study designs consist of investigating a difference
in TX performance between pre-and post-TMS conditions or
between the application of TMS1 and a sham rTMS protocol
(rTMS0) to the same area (Duecker and Sack, 2015).

Suppose that TMS1 ab rTMS0 protocols were applied to A1.
If a difference in TX performance is observed between rTMS1
and rTMS0 conditions, besides explanations based on sensory
and placebo TMS effects (Duecker and Sack, 2015) there are
alternative explanations that should be taken into consideration
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that is related to the direct and indirect influence of TMS on:
(1) the areas surrounding A1; (2) excitability of A2, which could
be more important for executing PX; (3) processes responsible
for general cognitive functions; and (4) processes not specific to
cognitive function X but to TX execution. Given this, eliminating
these possible alternative explanations should guide the designs
of TMS studies.

Protocol Control
Ideally, rTMS0 should account for sensory and placebo effects of
rTMS1 but does not cause a change in A1 activity (Duecker and
Sack, 2015). Typically used rTMS0 that attempts not to influence
brain activity fail to control for all the effects that are not specific
to the change in A1 activity because we might assume the ideal
control should influence areas which are stimulated when A1 is
targeted with TMS to separate the consequence of the change
in A1 activity from the consequences of influencing other brain
areas. For example, if an area is embedded in brain folds or
lies relatively deep in the brain, then distal cortical areas which
are situated above that area are affected by the electrical field,
most likely more strongly (Heller and van Hulsteyn, 1992). This
issue (a direct stimulation influence on the areas surrounding A1)
can be partly addressed with a control condition by diminishing
the intensity of the used protocol to account for the stimulation
of the areas lying above A1, i.e., influencing cerebrospinal
fluid distribution or superior areas while not reaching A1 in a
significant manner. However, it has to be taken into account that
the relationship between TMS protocol intensity and its outcome
might not be linear (e.g., Chung et al., 2018). Additionally, active
protocols with certain frequency patterns are often classified in
TMS literature as ‘‘inhibitory’’ or ‘‘excitatory’’. Thus, sometimes
the protocol patterns of rTMS1 and another active rTMS protocol
2 (rTMS2) differ and might be commonly conceived as being
inhibitory and excitatory, respectively; thus, they are used to
obtain a difference in TX performance directly (e.g., Gann et al.,
2020) or to prime cortex excitability before the application of
other protocols (e.g., Todd et al., 2009). It is important to note
that inhibitory and excitatory rTMS properties are extrinsic to
the protocol pattern and may vary depending on, e.g., protocol
length, current direction, intensity, genome, and the targeted area
characteristics, including its tissue excitability history and tissue
excitability before protocol application (Polanía et al., 2018).
Therefore, applying TMS1 and TMS2 separately to A1 cannot
inform what change or difference in A1 activity is represented by
a difference in TX performance unless it is previously known how
the activity of A1 is related to the difference in TX performance,
or the change in A1 activity was recorded with neuroimaging
methods that can differentiate between an increase or a decrease
of A1 activity.

Area Control
The following, previously mentioned, issues can be addressed
with a control condition that includes a control area:
(1) stimulation of areas next to A1; (2) an indirect network
effect on A2 activity that is more important for executing PX; and
(3) influence on processes responsible for more general cognitive
functions than cognitive function X issue that undermine

the strength of TMS-based inferences. In TMS studies, it is
often assumed that an adequate control condition employs a
stimulation protocol that affects an area that has the lowest
possibility of playing a role in PX or does not influence the brain
at all.

For a long time, the vertex was conceived to be such a site
because it was presumed that its stimulation does not affect the
brain at all. Nonetheless, several years ago it was shown that the
blood oxygen level-dependent (BOLD) signal decreases in the
default mode network after applying 1 Hz rTMS to the vertex,
and this is not accompanied by any significant BOLD increases
throughout the brain (Jung et al., 2016). The authors concluded
that this supports the use of vertex simulation as a control
condition. However, such a conclusion is problematic for several
reasons. First, it presumes that an increase in the BOLD signal,
which determines which parts of the brain are most active, will be
observed after the application of a protocol that predominantly
acts in an inhibitory manner (Fitzgerald et al., 2002). Second,
there is an assumption that a decrease in the BOLD signal cannot
indicate a change in neuronal activity (which could represent an
increase in the activity of inhibitory neurons). Also, distinctly
increasing and decreasing neuronal activity in an area is not
equivalent to improving and impairing a cognitive function that
depends on this area. Some brain processes require a decrease in
local brain activity, e.g., deactivation has often been observed in
the hippocampus during encoding and retrieval tasks believed to
recruit this brain structure (Axmacher et al., 2009). Third, there is
an assumption that the adequate control area is the one with the
lowest possibility of affecting PX. Targeting A2 (an area which is
not anticipated to carry out PX) does not confirm the specificity
of A1 for carrying out PX, i.e., that PX is carried out exclusively in
A1. Since the evidence in favor of the specificity of A1 is based on
inductive reasoning, in theory, it would be required to effectively
stimulate all brain areas to conclude that A1 and only A1 is
responsible for PX. Conceivably, an opposite approach should
be adopted: adequate control for the site requires the selection
of a control site that has a high probability of influencing
PX. However, this approach is challenged by consideration of
possible indirect network influences on A1 due to the possibility
of the control site’s involvement in processes interacting with PX.
Furthermore, assume that PX requires activation in areas A1 and
A2. When a difference in TX performance between the conditions
with rTMS1 to A1 and rTMS1 to A2 is analyzed and rTMS1 in
the first condition resulted in impairment of TX performance
but in the second condition resulted in improvement of TX
performance, one might erroneously conclude that only one area
is crucial for X. Similarly, if rTMS1 in both conditions influenced
TX performance in the same manner, one might erroneously
conclude that rTMS1 was ineffective. Thus, limiting control
conditions to area control might be not sufficient to adequately
explain the TMS effect.

Task Control
The issues of influencing processes responsible for more general
cognitive functions rather than cognitive function X and
influencing processes specific to TX but not to cognitive function
X, both of which weaken the strength of TMS-based inferences,
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can be addressed with task control. Dissociations may help
reduce the probability of drawing erroneous conclusions on
the neural bases of cognitive functions (Machery, 2012). To
solve complex issues regarding certain cognitive functions or to
include a task control condition in a study, e.g., to demonstrate
that a certain brain area is selectively engaged in the execution
of PX but not in the execution of the neuronal process that
underlies a different cognitive function Y (PY), rTMS can be
employed to determine whether the neural underpinnings of
cognitive functions X and Y differ. In this case, inferences can
be based on a single dissociation that is observed whenever TMS
influences TX and influences TY to a lesser extent. This may lead
to the conclusion that A1 plays a role in PX but not PY.

However, the results of studies employing task control
may still be confounded by the confounds already mentioned.
Additionally, the following confounds might be present: (1) a
task that taps into one of two processes (TX into PX) might be
less sensitive than a task that taps into another one (TY into
PY); (2) due to its characteristics, PX might be more difficult
to measure than PY; (3) the relative difficulties of TX and TY
are likely to require a different amount of available cognitive
resources (e.g., memory, attention); (4) when cognitive resources
are limited, different brain networks may be engaged in TX or
TY execution than when they are available; and (5) a discrepancy
between how TX and TY engage A1 and A2 can be observed, even
when they recruit the same area or network, e.g., carrying out TX
may require a decrease in A1 activity, while carrying out TY may
require an increase in A1 activity. In all the above circumstances,
it would be erroneous to conclude with certainty that cognitive
functions X and Y are based on two distinct brain substrates. The
solution may consist of designs that combine different control
approaches and allow double dissociation (Dunn and Kirsner,
2003), e.g., TX but not TY performance is impaired when rTMS0
application and rTMS1 application outcomes are compared
after stimulation to A1, while TY but not TX performance is
impaired when the rTMS0 and rTMS1 outcomes are compared
after stimulation to A2. In the case of an uncrossed double
dissociation, a difference in TX performance and a difference in
TY performance is observed when A1 condition and A2 condition
are compared (when pre-and post- rTMS1 or rTMS1 and rTMS0
are compared) but one condition is associated with higher
performance in both tasks. A cross-over double dissociation is
observed when rTMS1 to A1 influences TX performance more
than rTMS1 to A2, and rTMS1 to A2 influences TY performance
more than rTMS1 to A1 (for a summary of the solutions that aim
to control for TMS confounds, see Figure 2).

Can it then be concluded that PX takes place in A1 while
PY takes place in A2? Unfortunately, most of the mentioned
confounds also apply to double dissociations (e.g., rTMS1 to
A1 reduces the available cognitive resources to TX, while S2
to A2 reduces them to TY). In the case of uncrossed double
dissociations, the additional confound may be that the task
demand function for A1 increases monotonically, while the
task demand function for A2 is U-shaped: A2 is more active
when a task requires fewer or more cognitive resources. In such
circumstances, if TX and TY recruit a single process whose neural
correlate includes A1 and A2, for A1 the greater task demands

may correspond to the increase in its activity, while for A2 the
greater task demands can correspond to its inactivation. Such
an issue can be avoided when a cross-over double dissociation
is observed, but the following confounds may still be present:
(1) neuroplasticity-like effects occur at a different rate in A1
and A2 (e.g., depending on the type of brain cells affected by
the stimulation); (2) rTMS1 and rTMS2 protocols applied to
different areas may differently influence excitability in these
areas; (3) an increase in A1 excitability results in a decrease in
A2 activity, which is necessary to perform TY, while an increase
in A2 excitability results in inactivation of A1, which is the area
necessary to perform TX; (4) the execution of PX may correspond
to A1 activity increase while the execution of PY may correspond
to A1 inactivation; and (5) both A1 and A2 are recruited
depending on the available cognitive resources, and the processes
recruited when the amount of available resources is greater differ
from the processes recruited when fewer resources are available.
In all the above circumstances, it would be premature to conclude
with certainty that cognitive functions X and Y are based on two
distinct brain substrates.

In certain types of research (mostly preclinical and clinical
studies), rTMS effects might be studied using longitudinal
designs. The effect of longitudinal rTMS studies can be long-
lasting, thus they can be used to investigate stable neuroplastic
changes and determine whether the observed rTMS effect
consistently arises over the time course of a study (Auriat et al.,
2015). They also reduce the erroneous identification of side
effect-associated changes as the brain stimulation effect, and they
enable the employment of multiple testing measures. Similar
to single-session rTMS effects, the rTMS effects in longitudinal
studies might be related to individual excitability of brain areas,
but they are less prone to the influence of day-to-day fluctuations
in cortex excitability (Huber et al., 2013). However, there is
still a possibility that the long-term effects of neuroplasticity
in longitudinal studies might be related to placebo effects or
be influenced by confounding factors that occur over the time
course of the study.

CONCLUSIONS

TMS has traditionally been used to provide evidence for
functional brain specialization. Nevertheless—as has been
getting clearer over the past two decades—the application
of rTMS alone does not allow causal inferences to be
drawn on neural causes without additional assumptions. A
change in the execution of an experimental task might
be a consequence of rTMS but at the same time not a
consequence of a change in the excitability of a targeted
area. However, this might be avoided when: (1) the research
question is grounded in previous research and accounts
for the complexity of the investigated cognitive function;
(2) neuroimaging/neurophysiological techniques are employed
to monitor the direct and indirect influence of rTMS; and
(3) more than one control condition is employed in a single
experiment to reduce the number of possible interpretations. On
one hand, functional neuroimaging could make it possible to
determine whether the process responsible for the investigated
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FIGURE 2 | A theoretical representation of the solutions that aim to control for confounds in TMS research and improve the logical strength of the premises behind
the conclusions. On the horizontal axis, progress in TMS-based conclusion strength is depicted when only TMS is employed; the vertical axis represents conclusion
strength when neuroimaging is involved.

cognitive function has local or network characteristics and can
be used to study the spread of TMS effects throughout the
brain networks. On the other hand, confounding factors of
neuronal correlates of investigated cognitive processes need to
be addressed within each TMS-neuroimaging study. Although
TMS has been proven to be a very effective brain stimulation
method, its characteristic features have to be considered in
reasoning based on its employment. In this article, we have
clarified the difference between the causal effects of TMS and
structure-related causal effects, and we have pointed out that
the latter can be divided into direct and network effects. We
have also outlined issues related to TMS-based inferences.
Taking them into account requires limiting the extent of
TMS-based reasoning but at the same time may support
analysis of possible confounds and improve research designs to
alleviate these confounds. Although the aforementioned issues
are often addressed by experts in the field of non-invasive
brain stimulation, we hope that the presented summary and
theoretical analysis will help researchers who are developing the
field of human-neuroscience based on TMS-based inferences.
Even though rTMS without neuroimaging cannot unequivocally
prove structure-related causal claims concerning direct relations
between brain processes carried out in certain areas and certain
behaviors/cognitive functions, it might be used for probabilistic
statements about causal influences if its limitations are kept
in mind. The fact that combining rTMS with neuroimaging
techniques allows stronger inferences to be made does not
imply that one should use rTMS only in combination with
neuroimaging or/and multiple control conditions. The need for
neuroimaging or/and multiple control conditions depends on
the research question guiding the study and how its results

are intended to be interpreted. There is a trade-off between
the inferential limit and experimental feasibility; therefore,
when feasible, combining rTMS with neuroimaging, multiple
control conditions, and/or perturbational TMS is recommended
and might provide further support for conclusions regarding
experimental outcomes.
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