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This study decodes consumers’ preference levels using a convolutional neural network

(CNN) in neuromarketing. The classification accuracy in neuromarketing is a critical factor

in evaluating the intentions of the consumers. Functional near-infrared spectroscopy

(fNIRS) is utilized as a neuroimaging modality to measure the cerebral hemodynamic

responses. In this study, a specific decoding structure, called CNN-based fNIRS-data

analysis, was designed to achieve a high classification accuracy. Compared to other

methods, the automated characteristics, constant training of the dataset, and learning

efficiency of the proposed method are the main advantages. The experimental procedure

required eight healthy participants (four female and four male) to view commercial

advertisement videos of different durations (15, 30, and 60 s). The cerebral hemodynamic

responses of the participants were measured. To compare the preference classification

performances, CNN was utilized to extract the most common features, including the

mean, peak, variance, kurtosis, and skewness. Considering three video durations, the

average classification accuracies of 15, 30, and 60 s videos were 84.3, 87.9, and

86.4%, respectively. Among them, the classification accuracy of 87.9% for 30 s videos

was the highest. The average classification accuracies of three preferences in females

and males were 86.2 and 86.3%, respectively, showing no difference in each group.

By comparing the classification performances in three different combinations (like vs.

so-so, like vs. dislike, and so-so vs. dislike) between two groups, male participants were

observed to have targeted preferences for commercial advertising, and the classification

performance 88.4% between “like” vs. “dislike” out of three categories was the highest.

Finally, pairwise classification performance are shown as follows: For female, 86.1% (like

vs. so-so), 87.4% (like vs. dislike), 85.2% (so-so vs. dislike), and for male 85.7, 88.4,

85.1%, respectively.

Keywords: preference levels, convolutional neural network, neuromarketing, functional near-infrared

spectroscopy, commercial advertisement videos, features
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INTRODUCTION

The main limitation in the current commercial-video industry is
that all videos are evaluated subjectively by viewing them. The
objective of this paper is to develop a systematic quantitative
method for evaluating consumers’ preference levels when they
view the videos by using a non-invasive brain image modality,
functional near-infrared spectroscopy (fNIRS). In the field of
recognition and classification (Moon et al., 2018; Zhang et al.,
2018; Ansari et al., 2019; Kim and Choi, 2019; Kim et al.,
2019; Manzanera et al., 2019; Shan et al., 2019; Yang et al.,
2019; Lee et al., 2020; Leming et al., 2020; Liu et al., 2020; Lun
et al., 2020; Thomas et al., 2020; Ye et al., 2020), convolutional
neural networks (CNNs) have shown superior classification
performance in speech detection, artificial intelligence, and
multiple time-series processing compared to other conventional
methods (Bengio, 2009; Kim et al., 2018). Owing to the ability
of CNNs to extract essential features from acquired signals, it
is used as a tool to decode the fNIRS signals. A CNN scheme
suitable to extract the features from the acquired hemodynamic
response signals is developed. In particular, we determined the
performance of CNN-based fNIRS in decoding the input data
of the hemodynamic response signals and classifying consumers’
different preference levels.

A brain-computer interface (BCI), a communication bridge
between the human cerebral and an external device, is utilized
to detect and decode human cognition and behavior intention.

BCIs are also typically used to decode the neural activity of the

cerebral to restore motion function or to control machines and

robots (Zander and Kothe, 2011; LaFleur et al., 2013; Degrave
et al., 2019; Fiederer et al., 2019; Hu et al., 2019; Li and Shi, 2019;
Furlan et al., 2020; Grossberg, 2020; Kwon et al., 2020). Recently,
the application of BCI has been extended to decode consumer
motivation, emotion, and decision-making (Yun et al., 2019;
Giustiniani et al., 2020; Neo et al., 2020). The neural processes
in consumers underlying their judgment of service-to-service

brand extension are reported using different TV commercials
stimulation (Yang et al., 2015; Yang and Kim, 2019). The major
processes of an effective BCI system include: (a) acquisition
of cerebral signals using a neuroimaging technique, (b) signal
processing and analysis to obtain features representing the signal,
and (c) conversion of features into commands to control devices
and decode human cognition (Daly andWolpaw, 2008; Valeriani
and Poli, 2019). The BCI systems have been developed for
several years based on non-invasive (Birbaumer et al., 1999;
Dornhege, 2007; Pamosoaji et al., 2019) and invasive (Lal et al.,
2004; Leuthardt et al., 2004) neuroimaging modalities, such as
electroencephalography (EEG) (Cheng et al., 2002; Parra et al.,
2002; Buttfield et al., 2006; Blankertz et al., 2007; Mellinger
et al., 2007; Fazli et al., 2012; Kang et al., 2015; Park et al.,
2018), magnetoencephalography (Mellinger et al., 2007; Buch
et al., 2008), electrocorticography (ECoG) (Leuthardt et al.,
2004), functional magnetic resonance imaging (fMRI) (LaConte,
2011; Chaudhary et al., 2017), and fNIRS (Fazli et al., 2012;
Chaudhary et al., 2017; Han et al., 2018; Kang et al., 2018;
Shin et al., 2018; Hong and Pham, 2019; Pham and Hong,
2020). Among these modalities, the major advantages of fNIRS

are its noninvasiveness, portability, low cost, wearability, and
moderate temporal and spatial resolution. Because the fNIRS is
an optical modality, its acquisition types are not susceptible to
electrogenic artifacts (Moghimi et al., 2012). In this study, the
fNIRS was utilized as a neuroimaging modality to detect cerebral
hemodynamic responses.

On the contrary, the applications of BCI were developed
to improve consumer behavior cognition. The surrounding
environment, including friendship and emotion, can affect
product endorsement and willingness-to-pay (Liao et al., 2019).
Consumer behavior, financial services, evaluation stage, and
decision-making in advertising are related to neural cortex
response changes in current researches, further to verify a
feasibility application in neuromarketing (Senior et al., 2015;
Ramsøy et al., 2018; Wei et al., 2018; Ceravolo et al., 2019; Ma
et al., 2019; Hu et al., 2020). Vences et al. (2020) summarized
a theoretical review of the main neural scientific research on
neuromarketing’s effectiveness, which is a neural measure tool,
to enhance the emotional connection between consumers and
organizations in social networks. Neuroscience is utilized as new
access better to understand consumers’ behavioral cognition,
purchase decision-making, preferences feeling feedback, etc.
To be specific, neuroscience was also developed to help
marketers understand how to affect consumers’ physiological
behavior by showing some advertising and marketing strategies
(Lee et al., 2007). From the researchers’ perspective, the
neuromarketing technique has become a novel approach to
investigate commercial advertisements of different combination
elements, consumer preferences, and decision-making. The
neuroscience to marketing connects decoding the consumers’
neurocognitive principles and the products preferred in the
neuromarketing application.

The findings of Wang et al. (2016) suggest that the linear
structure videos and a single brand exposure make the cortex
region more active than other combinations. Identifying ways
to combine various resources is a crucial decision to determine
product involvement and increase preference level. The structure
of an advertisement was investigated by researchers in the
fields of psychology and marketing. They analyzed how the
plot and script structure affect consumer behavior and gradually
understood the branding product. In addition, using advertising,
they attempted to increase the attention received from the
audience in order to convince consumers in a better manner
(Stern, 1994; Mattila, 2000; Phillips and McQuarrie, 2010).
To understand the needs of consumers, marketers set goals
for the desired advertising effectiveness and communication
(Lavidge and Steiner, 1961; Foekens et al., 1997). Kotler (2000)
summarized the process in the following three stages: (i)
cognitive stage, (ii) effective stage, and (iii) behavioral stage. The
level of preference toward an advertisement is considered the
best measure of its effectiveness and communication. Thus, a
prevalent commercial advertisement video generates a positive
response toward a brand and aids it against the competition
(Edith et al., 2006).

In the existing research, fNIRS has been utilized as a
superior neuroimaging modality to monitor brain hemodynamic
responses using neurovascular coupling compared to other
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techniques. Furthermore, the neurovascular coupling that
captures a decrease in deoxygenated hemoglobin (HbR) and
an increase in oxygenated hemoglobin (HbO) during brain
activity occurs in the cerebral cortex. To conduct the experiment,
multiple light emitters and detectors were employed on the
fNIRS system; the wavelength of light ranged from 650 to
950 nm. The variations in the concentrations of HbO and HbR
were calculated using the modified Beer-Lambert law (MBLL)
(Villringer et al., 1993). Many machine learning algorithms
(Naseer and Hong, 2015), such as deep learning, deep neural
network, and convolutional neural network, have been applied
previously in neuroscience to focus on feature extraction and
improve classification accuracy. For feature extraction, the time-
domain signals (Naseer and Hong, 2015) and filter coefficients
from continuous and discrete wavelet transforms (DWTs) (Khoa
and Nakagawa, 2008; Abibullaev and An, 2012) were shown to
identify statistical properties, such as mean, skewness, kurtosis,
and slope, and the measurements were based on the combined
common information. In addition, for machine learning-based
neuroimaging modalities, the resting-state fMRI functional
connectivity-based classification has been presented using a CNN
architecture (Meszlenyi et al., 2017). It also demonstrated that the
application of deep learning to this research subject is suitable,
given the nature of the fNIRS recordings (Rosas-Romero et al.,
2019; Janani et al., 2020). Hiwa et al. (2016) analyzed brain
functions by carrying out the subject classification of fNIRS
data using CNN’s analysis. To process signal features obtained
from neuroimaging techniques, the statistical values of the time-
domain signals were extracted inmost previous studies. However,
the size of the time window (Hong et al., 2015) and the best set
of combined features (Naseer et al., 2016) are critical factors in
achieving a high classification accuracy.

Overall, neuromarketing is an innovative research area
to interpret consumers’ competitive behaviors and decode
consumers’ cognition. With the development of neuroimaging
tools, the fNIRS technique gradually approaches the researcher’s
insight to detect a brain cortex directly. Among those
techniques, some basic and conventional methods, such
as support vector machine, linear discriminant analysis,
multiparametric linear programming, etc., are utilized to
extract and classify the collected cerebral data. From previous
studies in processing massive data, the conventional methods
presented low intelligence, slower extraction performance, and
lower classification accuracy in understanding the consumers’
intention. Due to CNN’s successful application, it is used in
our work by demonstrating its specific structure for neuro-
marketing. In a nutshell, a CNN-based fNIRS method results in
a novel processing framework, which is a superior technique for
feature extraction and classification.

The objectives of this paper are (i) to find out whether
there exist suitable video durations for product types from the
viewer’s perspective (probably, there might exist an optimal
duration, but only three durations were compared in this
paper), (ii) to demonstrate the usage of fNIRS in accessing
the consumers’ intention in terms of product types and video
durations, (iii) to illustrate a specific CNN structure suitable
for decoding hemodynamic responses for neuro-marketing, and

TABLE 1 | Statistical information of participants.

No. Gender Age Education background

1 Female 27 Nanomaterial Engineering

2 Female 25 Economics

3 Female 24 Mechanical Engineering

4 Female 29 Chemical Engineering

5 Male 28 Mechanical Engineering

6 Male 26 Chemical Engineering

7 Male 24 Mechanical Engineering

8 Male 25 Chemical Engineering

(iv) to develop a CNN-based decoding method for consumers’
preference levels. A link between fNIRS and neuromarketing is
that fNIRS is a wearable device that canmeasure the brain activity
without asking the person’ unrevealed intention: Particularly in
video evaluation, an examiner with fNIRS can evaluate multiple
videos at a time because fNIRS is un-harmful, noiseless, low cost,
usable in an ordinary environment, etc.

The remainder of this paper is organized as follows. In section
Methods and Materials, the experimental procedure, signal
preprocessing and conversion, and the proposed CNN–fNIRS
structures are briefly described. Sections Results, Discussion,
Limitation and Future Prospects, and Conclusion present the
results, discussion, limitations, and conclusions of the study.

METHODS AND MATERIALS

Ethics Statement
The experiment was conducted upon the approval of the Pusan
National University Institutional Review Board (IRB no. PNU
IRB/2016_101_HR). Written consent was obtained from all
subjects prior to starting, and the experimental procedure was
conducted in accordance with the ethical standards stipulated in
the latest Declaration of Helsinki (Santosa et al., 2013; Nguyen
et al., 2016).

Participants
In this study, eight healthy adults, comprising four females
(participants 1, 2, 3, 4) and four males (participants 5, 6, 7,
8), were recruited from the Pusan National University. Table 1
shows the summarized information for eight participants (Mage

= 26, SDage = 1.85; Agemin = 24, Agemax = 29), including
age, gender, and education background. In this experiment,
all participants are right-hand to reduce the hemispheric-
dominance difference in visual stimuli. They did not have any
visual, psychiatric, or neurological disorders. Before the start of
the experiment, the participants were asked to avoid drinking
coffee and smoking before visual stimuli, and comprehensive
instruction of the whole experimental contents was performed
to all the participants. During the visual stimuli, the participants
were asked to focus on each video in a relaxed position.
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FIGURE 1 | Experimental paradigm: (A) Coca-Cola videos, (B) Pepsi Cola videos.

Experimental Paradigm
An online survey for the brand involvement for different
products was conducted to reduce the influence of a product
brand during experiments and obtain appropriate commercial
advertising. The videos consisted of three different brand types,
including cola, chocolate, and perform advertising. Participants
were asked to write a ranking score from 1 to 100 based on
brand knowledge and buying behavior. According to brand
involvement results, the comprehensive scores (F1: 84 ± 0.61;
F2: 79 ± 0.39; F3: 80 ± 0.56) were obtained. Among those
performances, the cola showed the highest score to complete the
search for stimulation materials further. The commercial videos
(i.e., advertising videos from Coca-Cola and Pepsi Cola) were
utilized to perform the stimulation experiment: Two different
types and three different durations (i.e., 15, 30, and 60 s). They
were attained from the professional advertising video website
using Google search. The videos with excellent resolution were
shown for the first time to the participants. In a nutshell,
six commercial advertising videos were divided into two types
(Coca-Cola and Pepsi Cola): Each type consists of videos with
three different durations (15, 30, and 60 s). In this study, a
stimulation trial was followed by a rest period of 35 s (rating:
5 s, rest: 30 s). Each video was presented separately in sequence,
forming three different combinations (see Figure 1).

The participants were asked to sit on a comfortable chair in
front of a computer screen (Samsung LED Model: LS24A300)

that displayed the experimental tasks. The viewing distance from
the screen was∼45–55 cm, and the video resolution was 1,080×
720 pixels. All commercial advertising was played on the screen
in the order of duration 15, 30, 60 s. One trial consists of 2 s
visual notifications, video stimulus followed by 5 s rating and 30 s
rest, and the duration of video stimulus includes 15, 30, 60 s,
separately. One section contains an initial 120 s rest and a 216 s
task process (three trials of 15, 30, and 60 s videos were shown
in sequence). The task was performed twice, resulting in a total
of 12 trials. The duration of the whole experiment was 1,104 s
(see Figure 1). All the participants were divided into two groups,
including male group and female group. Two groups were asked
to complete the experiment stimuli on the weekend, respectively.

Behavioral Data Analysis
For the behavioral data analysis, the scores for individual trials
were concluded. A statistical method called one-way analysis of
variance (ANOVA) was utilized to analyze the comprehensive
scores, including the video playing duration preference (Do
you like this video playing duration?) and the product brand
preference (Do you like this product?). The six groups of
advertising in stimulating differences were statistically analyzed.
Pairwise comparisons of the behavioral data were performed
using Scheffe post-hoc tests. On the other hand, the six different
commercial videos were composed of two types, including two
independent variables: product branding and playing duration.
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FIGURE 2 | Channel configuration in the prefrontal cortex.

An independent sample t-test was used to analyze the effect of the
two independent variables on the preferences in the video playing
duration and the product brand.

fNIRS Data Acquisition
For the channel configuration of the cerebral prefrontal, 12
measurement channels, including three detectors and eight
emitters, were placed over the prefrontal area (Figure 2). On
the left and right of the prefrontal cortex, channel 1 to channel
6 and channel 7 to channel 12 were defined separately. The
light has the ability to pass cortex tissue non-invasively to
form the “banana” shape. Fp1 and Fp2 were utilized as the
standard references for the international 10–20 system. For
data acquisition, a multi-channel continuous fNIRS system (ISS
Imagent, ISS Inc., USA) was utilized to measure hemodynamic
responses. The system measures the optical intensities of two
wavelengths (690 and 830 nm), thereby allowing the estimation
of hemoglobin concentration. To acquire the signals, a sampling
rate of 15.625Hz was used, and the distance between the source
and detector was 2.828 cm.

fNIRS Data Pre-processing
The raw optical intensity data of 1HbO and 1HbR were
obtained for all the measurement channels using the ISS Imagent
data acquisition system. Next, the raw data were converted into
1HbO and 1HbR using the analysis software, ISS-Boxy, with
the differential path factor (DPF), emitter–detector distance, and
extinction coefficients of εHbO = 2.135 µM−1cm−1 and εHbO
=1.791 µM−1cm−1 for the 830 nm wavelength, and εHbO =

0.95 µM−1cm−1 and εHbO = 4.93 µM−1cm−1 for the 690 nm
wavelength, calculated using the modified Beer-Lambert law
(MBLL) (Delpy et al., 1988).

Various physiological noises were present in the acquired
hemodynamic signal, and these noises were characterized by
respiration at 0.2Hz, heart rate at 0.8Hz, and very low-frequency
oscillations at 0.03Hz (Cui et al., 2010; Naseer and Hong, 2015).

Thus, a 4th order Butterworth low-pass filter with a cutoff
frequency of 0.15Hz was utilized (Ye et al., 2009; Hong and
Santosa, 2016; Zafar andHong, 2017) to remove the physiological
noises related to cardiac signals and respiration. In addition,
the detrending condition was carried out inside the NIRS-SPM
software to eliminate drift in the hemodynamic signal (Ye et al.,
2009).

Feature Extraction and Classification
Structure of CNN-Based Neuromarketing
The cognition-based evaluation of commercial advertising videos
is the first step in the investigation of neuromarketing to
decode consumer behavior. It is critical for neuromarketing
researchers further to decode consumer behavior and preference
levels in detail. Therefore, in this study, an artificial intelligence
algorithm, which is a deep neural network called CNN, is
presented to classify and decode different preference levels such
as “dislike,” “so–so,” and “like.” In this study, according to the
cerebral hemodynamic responses and the concentration of HbR,
HbO changed when subjects were stimulated by commercial
advertising videos, and hence, a CNN was proposed to decode
these stimulation results. The structure and decoding process of
CNN are presented in Figures 3, 4, respectively.

From the viewpoint of extraction and classification, a CNN
that consists of several layers, including the input, convolutional,
fully connected, and output layers (see Figure 3), is utilized as
an automatic algorithm to train and test datasets. The width of a
convolutional layer is equal to the kernel size (height) of h, and
the dimension of the input is convolved with the input data. The
output of the i-th filter is expressed as follows:

zi = w · x[i : i+ h− 1] (1)

where w is the weight matrix, x[i: j] is the submatrix of
input from rows i to j, and z is the result value. The output
layer includes three different output levels: the low- response
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FIGURE 3 | Structure of convolutional neural network for decoding consumers’ preferences.

represented by “dislike,” the mid-response denoted by “so-
so,” and the high-response is “like.” With the completion of
each convolutional processing, some subsampling operations,
including max-pooling and dropout, are used to enhance the
performance of the CNN structure. Among these operations,
max-pooling is utilized as a general method to reduce data size.
To avoid data overfitting, dropout is used as a regularization
step to ignore one or more hidden nodes during the training
process. Furthermore, the hyperparameters, such as the learning
rate, batch size, and the number of epochs, are utilized to improve
the classification accuracy.

The decoding process of the CNNs is shown in Figure 4.
The decoding filtered features of commercial advertising
consist of three subprocedures that are entered into the
decoding structures of the CNN. The features of the 15,
30, and 60 s videos are utilized as input layers to build the
decoding data matrix set (Figure 5). In the extraction and
classification processes, the convolutional layers are processed
thrice, max-pooling and dropout occur, and the fully connected
operations are processed twice; all of these are critical
decoding operations.

In the case of extraction and classification of each individual
participant, the classifier was trained and tested using the
extracted features after signal processing. Following the training
step, we computed the classification accuracy using the proposed
approach of the CNN-based fNIRS. In the subsequent section,
the details of the proposed CNN structure and hemodynamic
conversion are discussed.

Proposed Structures of Convolutional Neural

Networks
This paper presents a novel investigation to identify behavior
cognition. The proposed CNN structure was used to decode
the different preference levels of consumers. As an automatic

extractor and classifier, the structure can achieve a high
classification performance. For the processing of input data,
Figure 5 shows a conversion method to present the changes in
the concentrations of HbO and HbR in all prefrontal channels,
and the overall process was presented using the dataset matrix
to replace the common image processing of the CNN structure.
The M by N matrix represents the input data of the CNN, where
M denotes the number of points during a period based on the
sampling rate (M = time × sampling rate), and the period a
is set according to the duration of videos (15, 30, and 60 s).
The numbers of channels for HbO and HbR (12 channels each)
are represented by N. In addition, three structures of the CNN
are considered: CNN with one convolutional layer (CNN21),
two convolutional layers (CNN2), and three convolutional layers
(CNN3). Furthermore, Table 2 presents the numbers of filters for
each CNN structure.

The processing of input data along the vertical axis involved
a one-dimensional convolution (Figure 5). The crucial elements
of the convolution consisted of convolutional filters in the
convolutional layers and the input dataset matrix of cerebral
hemodynamic conversion. To conduct data training during the
convolution process, a typical algorithm (He, 2016) was used
to automatically update the weight values of filters of each
convolutional layer, and the kernel size of the filters was 3. After
each convolutional layer, max-pooling with a kernel size of 2
was utilized to search for more useful data, followed by the
dropout step with a dropout rate of 50%. The first and second
connected layers based on the output layer contained 52 and
26 hidden nodes, respectively. The output layer had three nodes
corresponding to three cases, which presented high-activation,
mid-activation, and low-activation. They were classified using the
softmax function. To better understand the CNN structure used
in this study, Table 3 presents the input and output sizes of each
layer in our proposed CNN3-a.
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FIGURE 4 | CNN decoding process.
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FIGURE 5 | Input data: HbO (green) and HbR (light blue) of all channels. A convolutional filter was used to filter input data along the vertical axis.

TABLE 2 | Number of filters for each CNN structure.

Structure types Convolutional layer Filters in each convolutional layer

CNN 1-a 1 8

CNN 1-b 1 16

CNN 2-a 2 8, 8

CNN 2-b 2 16, 16

CNN 3-a 3 8, 8, 8

CNN 3-b 3 16, 16, 16

The bold values indicate the proposed method in this paper.

For the proposed structure, a rectified linear unit (ReLU),
which is a nonlinear function, was utilized to activate all layers
in the CNN structures, as shown in Nair and Hinton (2010).
Compared to other

α (x) =

{

0, x < 0
x, x ≥ 0

(2)

activation functions, the ReLU function can improve the training
process of deep neural network architectures for complex and
large-scale data sets, avoid a vanishing gradient, and in practice,
achieve a much faster convergence to the optimum point.
Furthermore, the hyperparameters of the CNN, such as learning
rate, number of epochs, and batch size, were utilized to train
all the CNN structures. These parameters were selected for each
individual participant using the grid search method (Table 4).
Adam was applied as a gradient descent optimization algorithm,
whose parameters β1, β2, and ε were set as 0.9, 0.1, and 10−8,
respectively (Kingma and Ba, 2015).

Convolutional Filters of Decoding Framework
One insight of CNN can distinguish three different preferences
for each duration video by updating its filters’ weight values
in this work. Thus, to ensure the performance of CNN’s
filters, identifying the distinguishable channel input is a crucial

TABLE 3 | Input and output sizes of CNN 3-a for 15 s video.

Layer Input size Output size Properties

Convolutional layer 1 208, 24 208, 12 8 filters with kernel size 3

Max-poling 1 208, 12 104, 12 Kernel size 2

Dropout 1 104, 12 104, 12 Dropout rate 50%

Convolutional layer 2 104, 12 104, 12 8 filters with kernel size 3

Max-poling 2 104, 12 52, 12 Kernel size 2

Dropout 2 52, 12 52, 12 Dropout rate 50%

Convolutional layer 3 52, 12 52, 12 8 filters with kernel size 3

Max-poling 3 52, 12 26, 12 Kernel size 2

Dropout 3 26, 12 26, 12 Dropout rate 50%

Fully connected layer 1 312 52 52 hidden layers

Fully connected layer 2 52 26 26 hidden layers

Output layer 26 3 3 hidden layers

operation to examine the first layer of CNN. The forward and
backward propagation are utilized for training the collected data.
CNN can learn how to emphasize some channels containing
distinguishable signals with increasing the related weight values
because of the interaction between each column of filters.
Each channel achieved input data. After data training, each
convolutional filter’s column was averaged to approach the
most distinguishable channel. Finally, the channel for all the
input data samples with the highest weight value of an
averaged convolutional filter was concluded for visualization.
In a nutshell, each convolutional filter has a specific task to
identify the preference levels. For each specific video duration,
its convolutional filter of decoding CNN framework is specific
after training. The following equation is utilized to calculate
the classification accuracy of the preference level for each
video duration.

P =
ND + NS + NL

NT
× 100% (3)
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TABLE 4 | Hyperparameters of each individual subject for CNN.

CNN Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8

Epochs 100 100 100 100 100 100 100 100

Batch size 8 24 16 8 24 16 8 8

Learning rate 0.0005 0.001 0.0005 0.0005 0.001 0.001 0.0005 0.0005

where ND, NS, and NL are the numbers of “dislike,” “so-so”
and “like” samples after the process of the CNN identification,
respectively, and NT is the number of samples of input data.
The classification accuracy is defined as P for each trial, and
the final classification accuracy is achieved by averaging the
results of all trials. There is the same principle to achieve the
classification accuracy for pairwise classification results based on
different genders.

Visualization of Extraction Features
Several extraction and classification methods used in previous
studies have not achieved a high classification performance for
a large number of samples. Consequently, in this study, to
achieve high classification performance, the proposed CNN-
based fNIRS structure was used to extract and classify features
because of its advantage of automatic feature extraction. In
addition to the CNN performance, the visualization approach
was utilized to show the results of decoding different preferences
and genders. During data processing, it is difficult to visualize
high-dimensional data in the classification of preferences. Thus,
principal component analysis (PCA) was utilized to reduce the
quantity and dimensionality of the data.

In this study, the visualization of extracted features provides
insights to analyze the hemodynamic activation and decode the
different preferences of consumers. The visualization results are
plotted using the first and two principle components of the
PCA. The procedure to visualize signal features is shown in the
following section.

Regions of Interest for Preferences
The t-value map is a more intuitive approach to show the brain
activation according to the fNIRS data. In this study, the t-values
were computed by using the robustfit function available inMatlab
in comparison with the expected hemodynamic response. The
t-value was determined to the human brain cortex activation-
related coefficient if the shape of the HbO response is closer to
the expected hemodynamic response. The tcrt value depends on
the degrees of freedom (number: N−1), if a channel with the
computed t-value is greater than tcrt , the channel is defined as
active (Khan et al., 2014). The regions of interest for each subject
are investigated through the maps.

RESULTS

Behavioral Results
Figure 6 shows behavioral analysis results using two methods
called independent sample t-test and a one-way ANOVA for
different types of videos. The two independent variables, which
are video playing duration and product brand, are utilized to

analyze the participants’ preferences. All the commercial videos
are divided into six types based on these variables, including
15 s-Coca, 15 s-Pepsi, 30 s-Coca, 30 s-Pepsi, 60 s-Coca, 60
s-Pepsi, respectively. An independent sample t-test was used
to analyze the video playing duration and the product brand
for the two variables (Figures 6A,C). A one-way ANOVA was
utilized to analyze the effects of the six different stimulation types
using the two independent variables (Figures 6B,D). The results
reported that the video playing duration of 30 s-Coca commercial
videos [i.e., mean (M) = 7.13, standard deviation (SD) = 0.835,
p = 0.043] were significantly higher than those of 30 s-Pepsi
commercial videos (i.e., M= 6.75, SD= 1.035, p= 0.043). Video
playing duration for 60 s-Pepsi commercials videos (M = 6.50,
SD= 1.195, p= 0.045) was slightly higher than those of 60 s-Coca
commercial videos (M = 6.25, SD = 1.035, p = 0.045). Also, for
the product brand preferences, the 30 s-Coca commercial videos
(M = 7.38, SD = 1.061, p = 0.035) were greater than the 30 s-
Pepsi commercial videos (M = 7.13, SD = 0.641, p = 0.035), the
60 s-Coca commercial videos (M = 6.50, SD = 1.069, p = 0.037)
were significantly higher than the 60 s-Pepsi commercial videos
(M= 6.13, SD= 0.835, p= 0.037). On the other hand, the video
playing duration for the 30 s-Coca cola commercial videos (M
= 7.13, SD= 0.835) were significantly higher than the preference
scores of the other types: 15 s-Coca videos (M= 6.50, SD= 0.925,
p= 0.012), 15 s-Pepsi videos (M= 6.38, SD = 0.916, p = 0.002),
30 s-Pepsi videos (M = 6.75, SD = 1.035, p = 0.000), 60 s-Coca
videos (M = 6.25, SD = 1.035, p = 0.000), 60 s-Pepsi videos (M
= 6.50, SD = 1.195, p = 0.002). From the point of the product
brand preferences, the 30 s-Coca cola commercial videos (M =

7.38, SD = 1.061) were also significantly higher than the rest of
the types: 15 s-Coca videos (M = 6.63, SD = 1.061, p = 0.000),
15 s-Pepsi videos (M = 6.51, SD = 0.744, p = 0.001), 30 s-Pepsi
videos (M = 7.13, SD = 0.641, p = 0.005), 60 s-Coca videos (M
= 6.50, SD = 1.069, p = 0.000), 60 s-Pepsi videos (M = 6.13, SD
= 0.835, p= 0.012).

Preferences Classification in Visualization
Results
The classification accuracy of each participant for videos of
different durations was used to obtain the overall classification
accuracy of each participant by averaging the results across
the channels and trials (Figure 7). The average values of the
classification accuracy of 15, 30, and 60 s videos are 84.3,
87.9, and 86.4%, respectively. Among them, the classification
accuracy of the 30 s video is the highest. From the measurement
results of three different preferences of eight participants,
participant 7 achieved the highest classification accuracies of
89.2 and 90.6% for the 15 and 30 s videos, respectively, and
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FIGURE 6 | Statistical results of behavioral data: (A,B) by independent sample t-test, and (C,D) by one-way ANOVA. *p < 0.05.

participant 5 achieved the highest accuracy of 89.8% for the
60 s video. For the 30 s video, the classification accuracies of all
participants are over 85% and more explicit to those advertising
decisions. Moreover, compared to other durations (Figure 8),
the classification accuracy of the 30 s video is the highest when
the number of samples is >80, and the CNN achieves an
accuracy >83.5 and 90.6% with 80 samples and 200 samples,
respectively. As the number of samples is increased for videos
of different durations, the increase in classification accuracy
decreases gradually and reaches 90%.

Regarding the classification performance (Figures 7,
11 and Table 5) based on gender, it was observed that
the preferences of “like” and “dislike” present a superior
classification performance for the female and male participants
compared to other combinations such as “like” vs. “so–
so” and “dislike” vs. “so–so.” Moreover, male participants
have targeted preferences for commercial advertising, and
the classification performance of “like” and “dislike” was
better. Participants 1, 4, 5, and 7 show better visualization

results to classify different preference levels after commercial
advertising stimulation.

Quality of the ROIs in the Prefrontal Cortex
Figure 9 shows different brain cortex activation maps from eight
subjects for commercial videos of 15 s-Coca, 15 s-Pepsi, 30 s-
Coca, 30 s-Pepsi, 60 s-Coca, 60 s-Pepsi, which are from the
prefrontal cortex. The regions of interest (ROIs) upon different
videos were found different. The averaged brain activation maps
of different genders over eight subjects were obtained in Figure 9

through the data from the ROI of each trial. Both Figures 9A,B

were the averaged female subject maps and the averaged male
subject maps based on six different types of videos, respectively.
In the female map, the 15 s-Coca, 15 s-Pepsi, and the 30
s-Coca videos showed more activation channels than others.
Among them, channels 8, 9, 10, and channels 1, 2, 3, 4 were
activated when the 15 s-Coca and 30 s-Coca videos were shown,
respectively. Channels 6, 7, 8, 10, 11, and 12 were activated
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FIGURE 7 | Average classification accuracy of individual subjects for different durations.

when viewing the 15 s-Coca video. In the male map, the 15 s-
Coca, 15 s-Pepsi, and the 30 s-Coca videos also showed more
activation than others: Channels 1, 2, 3, 4, 5, 6, and 10 were
activated when viewing the 15 s-Coca video, channels 1, 2, 3, 4,
8, and 10 were activated when the 15 s-Pepsi video was shown,
channels 1, 2, 4, and 10 were activated when viewing the 30 s-
Pepsi video. From the above description, it is considered that the
15 s-Coca, 15 s-Pepsi, 30 s-Coca videos showed more activation
channels for both female and male subjects. The results of ROI
also suggest that the advertising videos with a shorter duration
can generate more region of interest than long-term stimulation.
Furthermore, a significant asymmetry of the ROIs was obtained
from the prefrontal cortex.

DISCUSSION

CNN-Based Neuromarketing Classification
Accuracy
To determine the classification accuracy of the CNN and estimate
the classification performance of the predictive model (Arlot and
Celisse, 2009; Zheng et al., 2019), the 8-fold cross-validation
method was utilized in this study to evaluate the predictive

model in the point of the classification performance. The first
access is to divide the collected data into 8-folds during the
process, and an identical amount of the input data are composed
of each fold. Then, 1-fold is utilized as a test set to evaluate
the model performance, and the rest of the folds are used as
training sets to train the proposed model (Figure 10). Finally,
a classification procedure is applied to the selected testing and
training sets. Each of the 8-folds has performed a critical role
in the testing and training processes, and the related accuracies
obtained from individual testing sets were averaged to evaluate
the model performance. We attempted to discriminate the three
cases of preferences, including high-, mid-, and low- activations,
and defined them as three different preferences of consumers:
“like,” “so–so,” and “dislike,” To achieve a high classification
accuracy, the CNN–fNIRS structures were applied to classify
common signal features.

In particular, Figure 7 shows the classification accuracy of
individual participants, and as expected, the results obtained
using the CNN structures show superior classification accuracy
compared to conventional methods. The average values of the
classification accuracy of the 15, 30, and 60 s videos are 84.3, 87.9,
and 86.4%, respectively. Among them, the classification accuracy
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FIGURE 8 | Average classification accuracy of all subjects based on different numbers of samples and different durations.

of the 30 s videos was the highest. From the measurement results
of the three different preferences of eight participants, participant
7 achieved the highest accuracies of 89.2 and 90.6% for the 15
and 30 s videos, respectively. Moreover, participant 5 shows the
highest accuracy of 89.8% for 60 s-video. To achieve a high
classification performance for videos with different durations,
the automatic learning ability of the CNN to process an input
dataset was crucial to achieving a superior classifier, and the
weight values of the convolutional filters were updated using the
inherent convolutional patterns.

The size of the training dataset as a critical element affected
the learning performance, and this is especially true for CNNs
and other artificial algorithms. Furthermore, to examine the
relationship between the size of the dataset and classification
accuracy, the average values of the classification accuracy of all
participants were obtained. The 8-fold cross-validation method
was utilized to evaluate the CNN classification performance.
For all classification accuracies at different durations, it was
observed that the classification performance increased with
the number of samples in the data set. Figure 8 shows the
classification accuracy of CNN for different numbers of samples.
Moreover, compared to other durations, the classification
accuracy of the 30 s video is the highest when the number

of samples is >80. Furthermore, CNN achieves >83.5 and
90.6% accuracy for 80 samples and 200 samples, respectively.
With the increase in the number of samples, the classification
performance of the preferences also improves. Thus, to
further classify the different preferences and decision-making of
consumers, more participants and the number of samples should
be considered.

Visualization of Different Preferences
Levels Using CNN
To decode the different preference levels of consumers using
CNN-based fNIRS and to better understand the decoding results
and feature extraction performance, we visualized three cases of
high-, mid-, and low-activations (defined as different preference
levels: “like,” “so-so,” and “dislike,” respectively). In particular,
three cases were visualized using convolutional processing.
Figure 11 shows the results of the PCA in the first and second
principles. The results of female participants 1 and 4 and those
of male participants 5 and 7 show that the extracted features
using convolutional filters were better discriminated at different
activation levels for different commercial advertisements, and the
results are compared based on gender.
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TABLE 5 | Preference pairwise-classification results for different genders.

Gender Duration Like vs. So-So Like vs. Dislike So-So vs.

Dislike

Female Participant 1 15 s 85.8 87.5 84.6

30 s 86.7 88.6 85.5

60 s 87.5 87.4 88.6

Participant 2 15 s 86.6 88.2 84.9

30 s 87.2 87.9 86.6

60 s 86.1 87.3 84.4

Participant 3 15 s 88.2 87.8 85.7

30 s 85.5 86.5 85.1

60 s 82.5 85.2 83.8

Participant 4 15 s 86.2 88.7 85.1

30 s 87.2 86.9 84.3

60 s 83.5 87.2 83.6

Averaged 86.1 87.4 85.2

Male Participant 5 15 s 87.5 88.5 86.8

30 s 88.5 89.2 86.5

60 s 86.8 88.5 89.6

Participant 6 15 s 84.6 86.9 82.6

30 s 86.6 88.6 84.2

60 s 85.6 87.6 85.1

Participant 7 15 s 86.8 90.4 84.2

30 s 88.6 90.4 88.5

60 s 85.9 88.5 87.8

Participant 8 15 s 83.5 86.6 80.9

30 s 83.5 87.9 84.6

60 s 80.5 87.8 83.8

Averaged 85.7 88.4 85.4

The bold values indicate the highest classified values for each participant in pairwise

classification.

The classification performances (Figures 7, 11), indicated
that, in the case of male participants, the preferences of “like” and
“dislike” present superior classification performance compared
to other combinations such as “like” vs. “so-so” and “dislike”
vs. “so–so.” In particular, it is easy to classify wide-range
hemodynamic responses using CNN-based fNIRS. In contrast,
in the case of female participants, the visualization of different
consumer preferences shows a good classification performance.
Compared to female participants, there are specific differences
in the preference decision-making levels of male participants.
Among them, male participants have more targeted preferences
for commercial advertising, and the classification performances
of “like” and “dislike” were better.

To decode the different preference levels of consumers in
neuromarketing, a novel and automatic method, which includes
a CNN algorithm and decoding process, is utilized to explore
consumer behavior and intention. Compared to other general
extraction and classification feature methods, the CNN-based
fNIRS method shows superior classification and visualization
performance in this study. In future work, other CNN structures
and optimized decoding processes should be considered to
improve classification accuracy.

Prefronal Cortex Activation in the
Preferences
The prefrontal cortex (PFC) area is a crucial part of the
whole brain cortex, and it has been implicated in decision-
making, moderating social behavior, planning complex cognitive
behavior, etc. In this work, the prefrontal cortex for activation
maps (Figure 9) had presented the activated channels when the
participants were stimulated with different types of commercial
videos. From the viewpoint of the activated maps, compared
to the PFC’s right area, the PFC’s left and center regions had
higher cortex activation when the 15 s-Coca, 30 s-Coca, and 30
s-Pepsi videos were played before female participants. Otherwise,
the other types of videos have shown mostly similar activation
between the compared PFC area. On the other hand, from
the insight of the male participants’ activation map, the 15 s-
Pepsi, 30 s-Coca, and 30 s-Pepsi videos are significant higher
activation in the left and center region of the PFC compared to
the right region. Also, the 60 s-Coca and 60 s-Pepsi videos are
slightly higher activation except for the 15 s-Coca video. It is
concluded that the PFC’s left and central regions play a critical
role in the decision-making, preference-related behavior, and
positive behavioral cognition when attractive commercial videos
are shown.

LIMITATION AND FUTURE PROSPECTS

In this study, the number of participants (eight participants)
for the training and testing process of the CNN structures
was less than the real number of classification preference
levels. With respect to consumer behavior cognition, many
impact factors cause changes in consumer decision-making,
and the experiment was designed and developed without any
changes in the surroundings. To solve these problems, a large
number of participants should be involved in this experiment to
optimize the deep neural network model and further enhance the
stability and universality of this model. Through the continuous
optimization of the decoding model, high classification accuracy
can be achieved for different consumers in any specific
commercial advertisement, and consequently, the corporate and
sales marketing can obtain more accurate information about
product involvement.

CONCLUSION

This study demonstrated fNIRS-based classification of
high-, mid-, and low-activation using a CNN as the classifier
in the field of neuromarketing, and compared the classification
performance of the visualization results of participants in
an experiment. The participants were instructed to focus on
commercial advertisements of different durations (15, 30, 60 s),
as displayed on a computer monitor. The high-, mid-, and low-
activation, which were referred to as different preference levels:
“like,” “so-so,” and “dislike,” were classified using CNN along with
various features, such as mean, peak, slope, variance, kurtosis,
and skewness. From the measurement results of three different
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FIGURE 9 | The averaged brain activation maps of six different videos for different genders. (A) Averaged female subjects’ maps. (B) Averaged male subjects’ maps.

FIGURE 10 | Cross-validation procedure.

preference levels of eight participants, a superior classification
accuracy of 87.9% for the 30 s advertisement video was observed
compared to videos of other durations. The classification
performance of participant 7 showed the highest accuracies
of 89.2 and 90.6% for the 15 and 30 s videos, respectively, and
participant 5 achieved the highest classification accuracy of
89.8% for the 60 s video. From the results of the classification

visualization, the male participants were observed to have
targeted preferences for commercial advertising compared to
female participants, and the classification performances of “like”
and “dislike” were better. The results of the CNN-based fNIRS,
which present a good classification performance, indicate the
applicability of BCIs in neuromarketing, which can be used in
the practical development of the BCI systems.
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FIGURE 11 | Preference classifications: The visualization of the hemodynamic response signals using CNN for different genders and durations. (A) Female (participant

4): 15 s-advertising. (B) Male (participant 7): 15 s-advertising. (C) Female (participant 1): 30 s-advertising. (D) Male (participant 7): 30 s-advertising. (E) Female

(participant 1): 60 s-advertising. (F) Male (participant 5): 60 s-advertising.
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Because the classification performance is a critical factor in
decoding the preferences of the consumers, and the superiority
of CNN as a superior classifier over other conventional methods
has been reported in other publications, we plan to optimize
the performance of the CNN-based neuromarketing systems
by applying various deep neural networks, and develop novel
approaches with respect to hybrid imaging modalities such as
combining electroencephalography with fNIRS.
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