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Neuromarketing has gained attention to bridge the gap between conventional marketing

studies and electroencephalography (EEG)-based brain-computer interface (BCI)

research. It determines what customers actually want through preference prediction.

The performance of EEG-based preference detection systems depends on a suitable

selection of feature extraction techniques and machine learning algorithms. In this

study, We examined preference detection of neuromarketing dataset using different

feature combinations of EEG indices and different algorithms for feature extraction and

classification. For EEG feature extraction, we employed discrete wavelet transform (DWT)

and power spectral density (PSD), which were utilized to measure the EEG-based

preference indices that enhance the accuracy of preference detection. Moreover, we

compared deep learning with other traditional classifiers, such as k-nearest neighbor

(KNN), support vector machine (SVM), and random forest (RF). We also studied the

effect of preference indicators on the performance of classification algorithms. Through

rigorous offline analysis, we investigated the computational intelligence for preference

detection and classification. The performance of the proposed deep neural network

(DNN) outperforms KNN and SVM in accuracy, precision, and recall; however, RF

achieved results similar to those of the DNN for the same dataset.

Keywords: deep learning, feature extraction, customer neuroscience, classification, signal processing,

neuromarketing

1. INTRODUCTION

Neuromarketing or consumer neuroscience is an emerging disciplinary area that connects the
affective and cognitive aspects of customer behavior utilizing neuroimaging tools such as brain-
computer interfaces (BCIs). BCIs play the role of a communication tool between humans and
computer systems without any external devices or muscle intervention to issue commands,
control, or complete an interaction. BCI research and development initially considered as an
assistive technology aimed to help individuals with physical disabilities in various aspects such as
communication, control, and mobility. In recent times, alternative BCI applications for healthy
humans have been developed, and an increasing number of these re-searches target fields such as
neuromarketing (Al-Nafjan et al., 2017a). Electroencephalography (EEG) is a practical, versatile,
affordable, portable, and non-invasive technique for performing repetitive sessions, tasks, and
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observations. EEG-based BCIs have gained increasing interest in
the literature from various scientific disciplines (Al-Nafjan et al.,
2017a).

In neuromarketing, EEG-based preference detection seeks to
provide insights into an individual’s experience with a variety
of products and media as well as his responses to market
stimuli. It is a well-known fact that consumer emotions impact
decision-making. On the other hand, consumer’s emotions can
strongly be influenced by many internal and external factors.
The detection and recognition of a consumer’s emotional state
thus reveal true consumer preferences (Aldayel et al., 2020).
Although several studies have been conducted on EEG-based
emotion recognition (Ramadan et al., 2015), EEG-based studies
for detecting preferences in consumers are in a very early phase.
Furthermore, only a few preference-recognition studies have
evaluated passive BCIs compared to the number of active BCIs.
Additional research that employee BCIs to assess unconscious
customer preferences is therefore needed, as opposed to research
on BCIs for direct control actions (van Erp et al., 2012).

An EEG-based preferences detection system helps us
understanding consumer preferences and behavior to understand
how one makes a buying decision. It will help marketers and
organizations acting upon them to increase customer satisfaction,
positive customer experiences, consumer loyalty, and revenue.
(Aldayel et al., 2020).

Although the neuromarketing field has evolved significantly
in the last decade; it still has not been fully implemented
in the separated academic fields in marketing research. This
is because marketing researchers lack training on systematic
cognitive practices in neuroscience. In addition, marketing
researchers have previously doubted the implications of violating
ethical rules and the privacy of consumers when using
neuroscience technologies for commercial purposes. However,
there are still reservations against the use of neuromarketing
to extract specific knowledge of customers (Ait Hammou et al.,
2013). Consequently, the potential use of EEG data during
passive observations to derive product preferences remains an
open debate (Telpaz et al., 2015). Accordingly, only a few
neuromarketing research on advertising efficiency (Morin, 2011)
were reported. This research aims to thoroughly examine the
preference detection in neuromarketing using EEG indices.
We chose these EEG indices based on an analysis of neural
correlations of the preference that was explained in our previous
research (Aldayel et al., 2020). We employed two approaches
for the extraction of EEG features, namely, discrete wavelet
transform (DWT) and power spectral density (PSD).

These approaches were used to measure the EEG-based
preference indices. The preference indices enhance the accuracy
of preference prediction. In fact, to the best of our knowledge, this
is the first study that examines in detail the effect of preference
indicators in enhancing the performance of classification
algorithms. Furthermore, we analyzed the performance of deep
learning with other conventional classification algorithms, such
as k-nearest neighbor (KNN), random forest (RF), and support
vector machine (SVM).

The remainder of this paper is arranged as follows: section
2 introduces the main concepts of this study with background

details; section 3 presents the related works; section 4 describes
the research methodology, i.e., the experiments with EEG data;
section 5 discusses the evaluation results; and, finally, section 6
presents the conclusion.

2. BACKGROUND

In this section, we provide an overview of BCI-based preference
detection and examine EEG-based preference indices.

2.1. BCI-Based Preference Detection
This section explains the design process of neuromarketing
experiments for anticipating customer preferences and choices.
First, a customer places a BCI device on his/her head. Then,
the customer looks at the products while EEG data are recorded
at the same time on the BCI. Next, the customer rates his/her
preference on each product using a nine-point subjective ranking
scale. After viewing all products, the subjective ranks need to
be manually labeled as “preferred” or “unpreferred.” Next, the
recorded EEG signals go through preprocessing and feature
extraction. The training and prediction of the classifier are based
on the consumer’s choice (subjective ranks). The proposed BCI
system for preference detection is shown in Figure 1. This system
has three fundamental modules: signal preprocessing, feature
extraction, and classification modules.

2.2. EEG-Based Preference Indices
This section explains the preference indicators based on EEG
signals. Based on our literature review (Aldayel et al., 2020),
we defined the following four EEG indices to measure people’s
responses to marketing stimuli: the approach-withdrawal (AW)
index, valence, choice index, and effort index. Such indices help
marketers in realizing the reactions of consumers to products
(Cartocci et al., 2017; Cherubino, 2018).

2.2.1. AW Index
The AW index measures the frontal alpha asymmetry reflected
the difference between the left and right hemispheres; that is,
the percentage of participation of the left hemisphere compared
to the right one in the frontal alpha band (Cartocci et al., 2017;
Touchette and Lee, 2017; Cherubino, 2018; Ramsøy et al., 2018).
Several studies have shown the efficacy and precision of frontal
alpha asymmetry as an essential determinant in emotion and
neuromarketing research (Cartocci et al., 2017; Touchette and
Lee, 2017; Al-Nafjan et al., 2017b; Cherubino, 2018; Modica et al.,
2018; Ramsøy et al., 2018).

2.2.2. Effort Index
This measure is described as the activity level of the frontal theta
in the prefrontal cortex. Higher theta activity has been associated
with higher levels of task difficulty and complexity in the frontal
area. It is an indication of cognitive processing arising from
mental exhaustion (Modica et al., 2018) and has been frequently
studied in neuromarketing research (Vecchiato et al., 2010, 2011;
Boksem and Smidts, 2015; Telpaz et al., 2015;Modica et al., 2018).
This reveals the significance of handling emotional changes for
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FIGURE 1 | EEG-based BCI for preference recognition.

TABLE 1 | Classification algorithms employed for preferences detection in neuromarketing.

References Classification

Algorithm
Class Best accuracy (%)

Chew et al., 2016
SVM 1. Liked

2. Disliked

75

KNN 80

Kim et al., 2015
SVM

1. Preferred image

2. Unnoticed image
83.64

Hadjidimitriou and Hadjileontiadis, 2012, 2013
KNN

1. Liked

2. Disliked
91.02

Pan et al., 2013
SVM

1. Liked

2. Disliked
74.77

Moon et al., 2013

Quadratic discriminant analysis 1. Most preferred

2. Preferred

3. Less preferred

4. Least preferred

97.39

KNN 97.99

Teo et al., 2017, 2018a,b
DNN 1. Liked

2. Disliked

74.38

SVM 60.19

Hakim et al., 2018

Logistic Regression

1. Most favored

2. Least favored

67.32

SVM 68.50

KNN 59.98

Decision trees 63.34

Yadava et al., 2017

DNN

1. Liked 2. Disliked

60.10

SVM 62.85

RF 68.41

HMM 70.33

the formation of sustainable memory in commercials (Cartocci
et al., 2017).

2.2.3. Choice Index
The choice index measures the frontal irregular fluctuations in
beta and gamma, frequently associated with the actual stage
of decision-making. It has been the most associated marker of
willingness to pay for assessing customer desire and preferences,
particularly in the gamma band. Higher gamma and beta implied
greater neural activity of the left frontal area, while smaller
amounts are associated with greater neural activity of the right
area (Ramsøy et al., 2018).

2.2.4. Valence
Asymmetrical activation of the frontal hemisphere was correlated
to preferences interpreted as valence, that is, the orientation
of affective status of a consumer). Activation of the right and
left prefrontal area is related to negative and positive values
of valence, respectively. A large number of studies support the
theory that frontal EEG asymmetry can be a measure of valence
(Al-Nafjan et al., 2017b).

3. RELATED WORK

EEG-based preference classification normally includes the
spectral conversion of waveforms into features exploited by
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data-mining algorithms, which are trained on labeled data to
forecast whether preferences are presently being detected. The
preference classification of EEG varies from binary labels such
as (“like” vs. “dislike”) and (most favored vs. least favored) to
multiple ordinal labels in the form of ranks, such as the nine-scale
rank or five-scale rank. Several preference studies have usedmore
than two algorithms of classification to find tuned classifiers for a
set of features (Hwang et al., 2013). Chew et al. (Ramadan et al.,
2015) evaluated user preferences of aesthetics displayed as virtual
three-dimensional objects. The frequency bands were used as
features for the EEG classification into two classes—“like” and
“dislike”—using SVM and KNN and achieving an accuracy of 75
and 80%, respectively. These results, however, are not considered
credible since the authors used a relatively low dataset of five
subjects. In their extended research (Teo et al., 2017, 2018b), the
authors raised the number of subjects to 16 but did not obtain
better results.

By integrating EEG measures with questionnaire measures,
Hakim et al. (2018) obtained an accuracy of 68.5% using the
SVM to determine themost and least preferred items. Combining
classifiers, such as boosting, voting, or stacking, can be used

TABLE 2 | Affective dataset description.

Preference model Binary (like-dislike)

Stimul Visual-based stimuli (4 s per product picture )

Participants Twenty-five participants, aged 18–38

Trials 1,050 trials (42 trials for each subject)

EEG device Emotiv EPOC+ device includes 14 channels

Experimental method

Each user viewed and evaluated his or her preferences

toward 42 pictures of products in form of either like or

dislike.

to gather multiple classification algorithms by integrating their
outcomes and/or training them to complement each other and
improve their performance (Lotte et al., 2018). The choice of
classifiers in a BCI system is mainly dependent on both the
type of mental signals acquired and the setting in which the
application is used. LDA and SVM, however, are the most widely
used classification algorithms and were used in over half of the
EEG-based BCI experiments. Some works employed graph-based
deep learning to study attention behavior (Zhang et al., 2019,
2020). Table 1 summarizes several studies in neuromarketing in
which various classifiers were used to achieve the most accurate
accuracy in predicting customer preferences.

Our review in Aldayel et al. (2020) highlighted the need to use
further features and fusion of classifiers to boost the accuracy
of the prediction. In this study, we used a publicly available
neuromarketing dataset (Yadava et al., 2017) that was previously
used (Yadava et al., 2017) in building a predictive model for
consumer product choice from EEG data. By using a passive BCI,
researchers studied the influences of gender and age on consumer
preferences in terms of like/dislike. However, all indices of EEG-
based preference recognition have not been combined in any
study. To the best of our knowledge, this is the first in-depth
investigation of the effect of preference indicators in enhancing
the performance of classification algorithms.

4. MATERIALS AND METHODS

The outcome of preference detection is dependent on the
choices of algorithms for feature extraction and classification.
In this study, we examined the probability that two affective
levels, namely, “like” and “dislike,” could be identified employing
different feature combinations of EEG indices as well as different
approaches of feature extraction and classification algorithms.

FIGURE 2 | Architecture of the consumer preference prediction system.
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We chose these EEG indices based on an analysis of neural
correlations of the preference that was explained in our previous
research (Aldayel et al., 2020). For EEG feature extraction, we
used DWT and PSD. Then, the PSD features were used to
calculate the EEG-based preference indices. We applied deep
learning classification to identify approaches of using intelligent
computational modeling in the form of classification algorithms
as these approaches can effectively reflect the subjects’ preferred
states. Moreover, we compared the efficiency of deep learning
with other traditional classifiers, such as SVM, RF, and KNN. We
developed our model in Python programming language using the
Scikit-Learn, SciPy, and MNE and Keras packages for machine
learning, EEG preprocessing and filtration, and signal processing
and deep learning, respectively.

In this section, we present our methods and describe the
architecture of the proposed EEG-based preference recognition.
First, we examine the neuromarketing benchmark dataset and
labeling of preferences states. Then, we illustrate how to extract

features from EEG signals. Lastly, we explain the DNN classifier
for preference detection. Figure 2 presents the methods used in
the consumer preference prediction system.

4.1. Dataset
This section describes a publicly available EEG dataset (Table 2)
that has been used (Yadava et al., 2017) in neuromarketing
experiments. The Emotiv EPOC+ headset was used to record

TABLE 3 | Frequency bands correlated to decomposed coefficients.

Decomposed coefficient Frequency bands (Hz) Decomposition level

D1 32–64 Gamma

D2 16–32 Beta

D3 8–16 Alpha

D4 4–8 Theta

A4 0–4 Delta

FIGURE 3 | Different levels of DWT decomposition by low-pass (LP) and high-pass (HP) filtering yield A4, D4, D3, D2, and D1 corresponding to delta, theta, alpha,

beta, and gamma, respectively, with 128 Hz sampling frequency (SF).
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EEG data. Twenty-five users participated, and their EEG data
were recorded while they watched products on a computer
screen. The age of the users ranged from 18 to 38 years. A set of 14
diverse products, each with three variations, were selected. A total
of 42 (= 14 × 3) diverse product pictures were then generated,
and 1050 (= 42×25) EEG data were therefore logged for all users.
The EEG data were downsampled to 128 Hz and preprocessed
to 14 channels, resulting in 25 documents or one document per
user. The EEG features were collected from 14 channels placed
at AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, and
AF4 locations. Responses in the form of either “like” or “dislike”
were collected from the users for each product. Each product
was presented for 4 s, and EEG data were logged simultaneously.
After each image was presented, the preferred choice of the user
was collected.

Since consumers may not be able to express their preferences
when asked to clearly articulate them, their subjective labeling
is not sufficient. We extracted true hidden preferences (i.e., the
ground truth table) from EEG signals. We used two methods
to identify preference labels (“like” or “dislike”): (1) subjective
self-assessment labels collected during the experiment; and (2)
valence-based labels to identify the objective preference states. In
this experiment, we used different types of preference labeling to
obtain more accurate results. We used the valence index as the
determinant of preference to match the target preference state—
“like” or “dislike.” Valence rates were categorized to lower rates if
values ranged from one to five and higher rates if values ranged

from six to nine. A lower valence rate is an indicator of a “dislike”
preference state, while a higher valence rate is an indicator of a
“like” preference state.

We used Cohen’s kappa to test the agreement level between
two types of labeling, namely, subjective self-assessment and
valence-based labels determined from EEG. The kappa score was
0.03, which can be interpreted as a slight agreement between
these labels. We also noticed there were differences in 513
of the 1050 trials, which in line with the main goal of this
neuromarketing research: real and more accurate identification
of preferences using EEG signals.

4.2. Signal Preprocessing
We first averaged the EEG signals and then resampled the
frequency to 128 Hz per channel. From prior knowledge of
EEG, the correlated signal frequency ranges produced by the
brain during preferences states are mainly concentrated below 45
Hz. The useful frequency band in EEG signal data is therefore
between 4 and 45 Hz. We used a bandpass filter ranging from 4.0
to 45.0 Hz. Subsequently, we used ICA and Savitzky–Golay filters
to remove artifacts. We considered only the following electrodes
in the preference calculation: AF3, F3, AF4, and F4.

4.3. Feature Extraction
Feature extraction aims to find important and relevant
information from EEG signals. We extracted EEG frequency
bands using two approaches: DWT and a PSD method named

FIGURE 4 | Block diagram of the DNN classifier.
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Welch. Then, we used the resulting frequency bands to calculate
the preference indices. The first approach extracts a set of
statistics-based features for each frequency band (details [D2-
D5] and approximation [A5]) computed by DWT. The second
approach stacks the features computed by PSD into a single array
over the raw EEG of the channels.

4.3.1. Discrete Wavelet Transform
The DWT is a time-frequency domain analysis method that
decomposes signals into different coefficients. It can be defined
as multi-resolution or multi-scale analysis, where each coefficient
is a unique representation of mind signals. The convolution
operation is a two-function multiplication process (Chen et al.,
2015; Vega-Escobar et al., 2016). Each inner product results in a
wavelet coefficient. Therefore, the DWT can be expressed using
the following Equation (1):

W(j, k) =

M−1∑

N=0

f (n) · ψ∗

j,k(n) (1)

where f (n) is a signal (sequence) of length n, andψ∗

j,k
(n) is scaling

wavelet function. DWT decomposition can be implemented as a
group of high- and low-pass filters in a filter bank. The outputs
of the low-pass filters are called approximation coefficients, and
those of the high-pass filters are called wavelet detail coefficients.
After the filtering, the signal is down-sampled by a factor of two
based on the Nyquist Theorem, resulting in a frequency band
ranging between fn/2 and fn. Assuming fs sampling frequency
and L decomposition level, every detail coefficient frequency
is related to the sampling frequency rate fs of the raw signals,
given by fn = fs/2L + 1. The number of wavelet decomposition
levels and the selection of a proper wavelet technique are critical
to achieving DWT analysis accuracy (Chen et al., 2015; Vega-
Escobar et al., 2016; Yadava et al., 2017).

Since the sampling frequency in the present study was 128 Hz,
we used four levels of Daubechies (db4) wavelets to decompose
EEG signals into five coefficients, namely, A4, D4, D3, D2, and
D1. Each coefficient is approximately correlated to the basic
frequency bands, namely, (1–4 Hz) delta, (4–8 Hz) theta, (8–
13 Hz) alpha, (13–22 Hz) beta, and (22–64 Hz) gamma. The
decomposed details D1-D4 and approximation A4 for each of the
14 channels are shown in Figure 3, and their correlated ranges of
frequency are listed in Table 3.

Moreover, we computed the (Shannon) entropy values as
measures of signal complexity and extracted the statistical
features that are most commonly used for signals, such as
variance, standard deviation, mean, median, 25th and 75th
percentile values, root mean square of the average amplitude
values, zero and mean crossing rates, and the mean of the
signal derivatives. These 10 statistical features and entropy and
coefficient values were calculated for the five coefficients for the
14 channels. Thus, the number of DWT features was 12 × 5 ×

14 = 840.

4.3.2. Power Spectral Density
The PSD is an indicator of power in a certain signal in terms of
frequency (Xie andOniga, 2020). PSD is one of themost common

feature extraction approaches in neuromarketing research, based
on frequency domain analysis. Previous studies (Ohme et al.,
2009, 2010; Khushaba et al., 2013) have demonstrated that the
PSD obtained from EEG signals is suitable for determining
consumer preferences. The PSD approach transforms the data
from the time domain to the frequency domain, and vice versa.
This conversation is focused on the fast transformation of
Fourier, measuring the discrete transformation of Fourier and its
opposite. In addition to DWT, we applied the PSD technique in
this study to divide each EEG signal into four different frequency
bands: theta θ (4–8 Hz), alpha α (8–13 Hz), beta β (13–30
Hz), and gamma γ (30–40 Hz). The MNE package for signal
processing was employed for computing PSD and the average
power across the frequency ranges.

4.4. Calculation of Preference Indices
We implemented various equations to measure the following
EEG-based preferences indices (Section 2.2): the AW index, effort
index, choice index, and valence. The AW index (frontal alpha
asymmetry), measures motivation and desire as higher activation
of alpha in the left frontal cortex. We used (Equation 2) stated
by Touchette and Lee (2017) to measure the AW scores using
electrodes F4 and F3 to find the difference between the right and
left PSD divided by their amounts.

AW index =
α(F4)− α(F3)

α(F4)+ α(F3)
(2)

The effort index measures effort and cognitive processing as
higher theta activation in the prefrontal cortex. We used the
following equation to calculate the effort index:

Effort Index =
θ(F4)− θ(F3)

θ(F4)+ θ(F3)
(3)

The choice index measures choice possibility in decision making
as higher gamma and beta activation in the frontal cortex
(Ramsøy et al., 2018). We used Equation (4) reported by Ramsoy
et al. to calculate the choice index for each band individually
(gamma and beta) using electrodes AF3 and AF4:

Choice index =
log(AF3)− log(AF4)

log(AF3)+ log(AF4)
(4)

The valence measures positive emotion as left frontal activation
in alpha and beta bands. We applied different valence equations
and investigated the relationships between the self-assessment
and different valence measurements. We computed the values
of valence using Equations (5), (6), (7), and (8), which are
well-explained in literature (Al-Nafjan et al., 2017b).

Valence =
β(AF3, F3)

α(AF3, F3)
−
β(AF4, F4)

α(AF4, F4)
(5)

Valence = ln[α(Fz,AF3, F3)]− ln[α(Fz,AF4, F4)] (6)

Valence = α(F4)− β(F3) (7)
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Valence =
α(F4)

β(F4)
−
α(F3)

β(F3)
(8)

For all preference indices, we used the PSD to extract frequency
band powers from the neuromarketing data because the PSD is
based on frequency analysis, unlike DWT, which is based on time
and frequency analysis.

4.5. Preference Classification Algorithms
In our study, two preference states (“like” or “dislike”) were
detected from EEG neuromarketing data. Mainly, we proposed
a DNN classifier and compared its performance with those
of the KNN, RF, and SVM classifiers. We applied four
classifiers, namely, DNN, KNN, RF, and SVM, to discover the
optimal preference index and a well-matched classifier with the
best accuracy.

RF is an ensemble learning used for classification and
regression problems. It consists of a combination of several
decision trees where the final outcome class is the mode of
all outcome classes of individual trees. Such advantage resulted
in low error rates and robustness against over-fitting while
preserving computational efficiency (Al-Nafjan et al., 2017b; Teo
et al., 2018a). We used the default hyper-parameters of RF in an
sklearn package and adjusted the number of trees in the foreset
to 500, which all processed in parallel.

4.5.1. DNN Classification
There is an explosive growth of deep learning in machine
learning due to its capacity to learn good feature representations
from the raw input. DL was able to provide optimal solutions
to many problems in natural language processing, image, and
speech. With EEG-based BCI, DL has been proven an effective
tool to analyze EEG signals (Roy et al., 2019). We aim to
investigate the possibility to detect two preference states in the
EEG data. We proposed a DNN classifier and compared its
performance with the performances of KNN and RF classifiers.
The proposed DNN classifier block diagram is shown in Figure 4.
The extracted features were first normalized using minimum-
maximum normalization (Equation 9) and then fed into the
DNN classifier.

x−scaled = (x−min)/ (max−min) (9)

In our work, we experimented various techniques and
architectures. The optimal DNN architecture and properties are
as follows:

• Fully connected feed-forward neural network comprised of
three hidden layers.

• The input layer consisted of 2,367 units, and each hidden layer
consisted of 50% units from its predecessor layer.

• Rectified Linear Unit (ReLu) as activation functions.
• Cross entropy (cost function) to compute the output of the

softmax layer.

FIGURE 5 | Accuracy results of KNN, RF, SVM, and DNN (hinge activation) using raw EEG signals with and without feature engineering (DWT and PSD).
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FIGURE 6 | Classification results of the SVM, RF, KNN, and DNN (hinge function) of different combination of preference indices. (A) Accuracy. (B) Recall. (C) Precision.
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• The dimension(s) of the output layer was related to the
number of target preferences state (2) units.

We used the Adam gradient descent with three objective loss
functions: the binary cross-entropy, categorical cross-entropy,
and hinge cross functions for training the DNN classifier with
the following properties:

• Learning rate was set to 0.001.
• Dropout rate for the input and hidden layers was set to 0.5.
• Stopping criterion, to prevent over-fitting, was determined

according to the model performance on a testing set.

Then, we tested our classifier on a test set, which contained
approximately 20% of the data samples in the dataset. In
our work, we used different approaches to prevent over-
fitting including regularization ( such as L1 regularization, L2
regularization, and Gaussian noise), early stopping, and dropout.
Adding noise to the DNN model in a relatively small dataset
can improve its robustness with regularizing effect and decrease
over-fitting.

5. RESULTS AND DISCUSSION

We detected the preference states (“like” or “dislike”) of the
subjects using two different feature extraction methods (PSD
and DWT) and four classifiers: DNN, KNN, RF, and SVM.
For validation and evaluation, we used various measurements,
namely precision, recall, and accuracy. The precision was the
percentage of the prediction of “like” states, which was correct.
The recall was the percentage of actually expected “like” states.
To evaluate the efficiency of the classification algorithms, we split
the data into train and test sets with holdout cross-validation.

The proposed DNN classifier was compared with three
traditional classifiers for EEG signals: KNN, RF, and SVM using
PSD and DWT feature extraction methods as well as various
preference indices. Tables 4, 5 list the results of recall, accuracy,
and precision results of the KNN, RF, SVM, and DNN algorithms
using various activation functions in the DNN: hinge and
cross-entropy (categorical and binary) functions. To show the
importance of the feature extraction (DWT and PSD), Figure 5
presents the accuracy results of KNN, RF, SVM, and DNN (hinge
activation) using raw EEG signals with and without feature
engineering (DWT and PSD).

When using PSD-based features, the KNN and SVM classifiers
yielded enhanced accuracies of 80 and 87% with the valence
index, whereas RF and DNN (binary cross-entropy function)
achieved the highest accuracy of 93% with all preference indices.
Similar results were achieved with the valence index. Using
DWT-based features, the best results were achieved with all
preference indices for all classifiers. The KNN and SVM classifiers
led to enhanced accuracies of 73 and 81%, respectively. The

highest accuracy was 87% with RF and the second-highest
accuracy was 83% with DNN and the hinge loss function.

Figure 6 analyzes the results from the viewpoint of preference
indices. We consider the DNN results with hinge loss function
as it achieved the best accuracy result compared with other loss
functions. About EEG features that exclude preference indices,
the best accuracy results reached 83% with RF and DWT-
based features.

6. CONCLUSIONS

ADNNmodel is proposed for detecting subject preferences from
EEG signals using the benchmark neuromarketing dataset. Two
kinds of features—PSD and DWT—have been generated from
the EEG to obtain a set of 2367 interesting attributes, which
demonstrate the EEG task in each experiment. We used various
evaluation measures (recall, accuracy, and precision) to test the
performance of the classifiers. We built four classifiers, namely,
DNN, KNN, RF, and SVM.

The results demonstrated that RF reached the best results
in PSD-based and DWT-based features with either valence
or all preference indices, however, RF obtained comparable
outcomes to DNN. PSD-based features achieved better results
in preference detection than DWT-based features. Moreover,
combining preference indices leads to better results with either
PSD or DWT-based features. This is perhaps the first study that
examines in detail the effect of preference indicators in enhancing
the performance of classification algorithms.
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