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A lot of research has been done on the detection of mental workload (MWL) using
various bio-signals. Recently, deep learning has allowed for novel methods and results.
A plethora of measurement modalities have proven to be valuable in this task, yet
studies currently often only use a single modality to classify MWL. The goal of this
research was to classify perceived mental workload (PMWL) using a deep neural network
(DNN) that flexibly makes use of multiple modalities, in order to allow for feature
sharing between modalities. To achieve this goal, an experiment was conducted in
which MWL was simulated with the help of verbal logic puzzles. The puzzles came
in five levels of difficulty and were presented in a random order. Participants had
1 h to solve as many puzzles as they could. Between puzzles, they gave a difficulty
rating between 1 and 7, seven being the highest difficulty. Galvanic skin response,
photoplethysmograms, functional near-infrared spectrograms and eye movements were
collected simultaneously using LabStreamingLayer (LSL). Marker information from the
puzzles was also streamed on LSL. We designed and evaluated a novel intermediate
fusion multimodal DNN for the classification of PMWL using the aforementioned four
modalities. Two main criteria that guided the design and implementation of our DNN are
modularity and generalisability. We were able to classify PMWL within-level accurate
(0.985 levels) on a seven-level workload scale using the aforementioned modalities.
The model architecture allows for easy addition and removal of modalities without
major structural implications because of the modular nature of the design. Furthermore,
we showed that our neural network performed better when using multiple modalities,
as opposed to a single modality. The dataset and code used in this paper are
openly available.

Keywords: brain-computer interface (BCI), deep learning, multimodal deep learning architecture, device
synchronisation, fNIRS (functional near infrared spectroscopy), GSR (galvanic skin response), PPG
(photoplethysmography), eye tracking (ET)
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INTRODUCTION

Mental workload (MWL) has gained a lot of attention in a
variety of fields, such as neuroscience (Toppi et al., 2016; Lim
et al., 2018), human factors and ergonomics (Schmalfuß et al.,
2018) and human factors in computing systems (Duchowski
et al., 2018). In the context of this work, MWL depends on two
variables: available cognitive resources and required cognitive
resources. Determining the available cognitive resources requires
information about prior knowledge, ability and task experience
and is thus highly personal. The required cognitive resources
depend on task difficulty. In a state of ‘‘flow,’’ as described by
Csikszentmihalyi (1975), one experiences full emersion with the
task at hand. In such a state, the ratio between the available
and required cognitive resources, or α, is between 0.8 and
1.2 (Csikszentmihalyi, 1997). The ability to approximate α is
interesting, since it would yield insight into MWL and allow
for adaptations of tasks. Typically, participants are actively
involved in (self)assessing their MWL. The NASA Task Load
Index (NASA-TLX) questionnaire is often used to retrieve
information about the magnitude and sources of six workload-
related factors (Hart and Staveland, 1988). Explicitly acquired
information about MWL through retrospection is subjective and
results in a measure of perceived mental workload (PMWL).
The mere act of performing a measurement on a phenomenon
can interfere with the phenomenon (Mahtani et al., 2018).
Hence, requiring subjects to extensively reflect and report on
their PMWL during experimentation will impact objectivity,
not to mention interrupt their state of flow. Physiological
measurements can provide an alternative to repeated self-
assessment; an advantage of such bio-signals is that they
can be measured implicitly. They can objectively be acquired
in real-time without explicitly asking participants to provide
this data.

The classification of PMWLhas been attempted in a unimodal
setting using various physiological signals, such as functional
near-infrared spectroscopy (fNIRS; Shin et al., 2018), galvanic
skin response (GSR; Nourbakhsh et al., 2017) and heart rate
(HR), through photoplethysmography (PPG; Schmalfuß et al.,
2018). All the aforementioned modalities have individually
proven to be useful for the classification of PMWL. This research
sought to use an advantageous approach to the classification of
PMWL by leveraging both information inherent in individual
modalities, as well as cross-modality information. Fusion-
based approaches have been surveyed in Baltrušaitis et al.
(2018), covering a.o. multi-layer multimodal fusion (Vielzeuf
et al., 2018), attention-based methods (Hori et al., 2017) and
correlation neural networks (Chandar et al., 2016). Our primary
objective in this study is, however, not to give a literature
overview, but to actually classify PMWL. The secondary objective
is to determine what physiological signals provide valuable
information about PMWL. First, we formulated design principles
that are relevant and effective within the context of multimodal
signal classification that makes use of deep learning. To
achieve the primary objective, these design principles were
used in the formulation of an intermediate fusion multimodal
network (IFMMoN).

MATERIALS AND METHODS

Our goal was to classify PMWL using a deep neural network
(DNN) that flexibly makes use of multiple modalities. During
the design of such a multimodal brain–computer interface,
the principles used to design the end-to-end data path, or
pipeline, guide the outcome. Two key aspects of the pipeline
were modularity and generalisability (MG). To be modular,
new devices should be easy to add to the setup, and
their data (collection and processing) should fit within the
pipeline with minimal structural implications. Two important
libraries that aided modularity throughout the research were
used: LabStreamingLayer (LSL) and TensorFlow. LSL provided
modularity by allowing device-specific data streams to be
easily added (Kothe, 2014). The TensorFlow API allowed
for modularity in deep learning model creation (Abadi
et al., 2016). Generalisability implies that the additional data
that become available from added modalities contribute to
classification accuracy. To further improve generalisability and
thus applicability, the pipeline should also function well in the
classification of other topics besides PMWL. The MG criteria
require our methods to be circumstance and device independent
where possible. Serendipitously, they served as a way of reducing
human error by automating much of the data gathering and
analysis pipelines. All methods and designs applied in this project
were formulated and executed with the MG criteria in mind.

In the first part of this section, we look to previous works
in the field to determine approaches for each of our modalities,
as well as fusion options of the DNN. From there, we discuss
stimulus presentation, participants and data collection and
synchronisation. Lastly, model optimisation with the help of the
TensorFlow and Optuna toolboxes is discussed (Abadi et al.,
2016; Akiba et al., 2019).

Related Work
We combined a total of four modalities to classify PMWL using
this novel approach. To record brain activity, we opted for fNIRS
to measure change in (de)oxygenation in the brain (Villringer
et al., 2013). Our method is based on Shin et al. (2018). Other
bio-signals that we measure are GSR, based on Nourbakhsh et al.
(2017), and HR using PPG, on the basis of Schmalfuß et al.
(2018). Lastly, eye tracking (ET) was also done, as inspired by
Duchowski et al. (2018). In the following subsections, we discuss
these modalities in more detail. Then, we discuss what deep
learningmethods have previously been used to process their data.
Fusion options for the combination of data from various devices
are finally discussed.

Functional Near-Infrared Spectroscopy
Through fNIRS, relative changes in (de)oxyhaemoglobin
concentrations in the brain can be measured. During activation
of brain function, energy use and thus the distribution of
haemoglobin change (Villringer et al., 1993). This change can
be measured using near-infrared light and then be correlated
with activation in specific regions of tissue. It seems that there
exists no clear consensus about the ‘‘best’’ deep learning-
based analysis method for fNIRS data in MWL detection.
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Literature can be divided into two main categories: Multilayer
Perceptrons (MLPs), consisting of several densely connected
layers, and Convolutional Neural Networks (CNNs). Though
less common, Recurrent Neural Networks (RNNs) were also
used for processing fNIRS (Zhao et al., 2019). Some authors
who opted for generic MLPs (e.g., Naseer et al., 2016; McDonald
and Solovey, 2017) show great accuracy on binary problems, as
well as on more complicated problems. The papers report 63%
accuracy on user identification (n = 30; McDonald and Solovey,
2017) and over 91% in binary classification of mental arithmetic
vs. rest (Naseer et al., 2016). While the former accuracy is
seemingly low, the objective of classification in the work of
McDonald and Solovey (2017) is much more natural since the
authors’ objective was to do user identification on the basis of
recorded data. They reported that among 30 subjects, they could
determine what data the participant belonged to with a 63%
accuracy, whereas chance level is 3.3%.

Tanveer et al. (2019) used two models in their work: one
for Beer–Lambert modified optode densities and another for
heatmaps of channels over time. Their first network was a DNN
with six fully connected dense layers, and their second was a
CNN with two convolutional layers and two dense layers. Binary
cross-entropy loss was used as loss measure. They report an
accuracy of 99.3% on binary classification, achieving the best
result with the CNN. Dargazany et al. (2019) showed that an
accuracy of over 80% can be reached in 5-class motor imagery
problem using a MLP. The benefit of their approach is that they
did not perform any pre- or post-processing to the data. This
makes their solution very scalable in terms of required human
attention, since the majority of the time invested by future users
of the system is spent on the collection of data, rather than the
(pre)processing of it. However, to facilitate this, their network
used two fully connected layers with 10,000 neurons each, leading
to quite serious computational complexity.

PPG and GSR
PPG is an optical method for measuring blood volume changes
in microvascular tissues and is directly related to cardiac activity
(Selvaraj et al., 2008). As such, it can be used to measure HR
and compute measures, such as HR variability and inter-beat
intervals. Biswas et al. (2019) demonstrated that an accuracy
of over 95% can be reached on a HR classification task where
the goal was to perform biometric identification of users. They
propose using two convolutional layers in conjunction with two
long short-term memory (LSTM) layers, followed by a dense
output layer. GSR is an electrodermal response that is associated
with the innervation of the sympathetic nervous system that is
often used to measure affective and cognitive arousal (Venables
and Christie, 1980). Sun et al. (2019) showed that a LSTM–CNN
hybrid network can reach up to 74% accuracy in a six-class
emotion recognition problem using GSR. The use of LSTM
is attractive in GSR for several reasons: the time domain and
temporal nature of the data enables the extraction of metrics,
such as peak frequency and amplitude (Nourbakhsh et al., 2017).

Both PPG and GSR can be processed using methods that
are focussed on feature extraction. The benefit of working with
such features is that they are easy and cheap to compute.

However, such feature extraction removes hidden features that
may be found by a DNN and negates the possibility of
serendipitous findings when combined with other modalities.
Besides the above described methods, both modalities can also
conveniently be processed with fully connected layers due to their
unidimensional shape.

Eye Tracking
ET is used to gain information about where a person is looking
at any given time, which can help understand visual- and
display-based information processing (Poole and Ball, 2006). The
training and evaluation of ET data are highly task dependent;
therefore, this section does not contain any statements about
achieved accuracies and will only discuss the types of networks
that are used in the literature. Louedec et al. (2019) use a
CNN to predict saliency maps in chess games. Their model is
based on VGG16, which was first introduced by Simonyan and
Zisserman (2014). Furthermore, their model comprises several
deconvolutional layers and fusion layers. Krafka et al. (2016) also
use convolutional layers and combine them with fully connected
layers. In their work, they classified gaze based on an input
face-grid that contains the location of the face, the right and left
eyes as well as the full face. Generally, the consensus is to use
convolutional layers for the classification of ET data, regardless
of objective. Intuitively, this makes sense since we are interested
in spatial features in the data.

Fusion Options
There exist many strategies to tackling the multimodal problem
in deep learning. Given that most neural networks are highly
task dependent, the design of a multimodal DNN follows this
same trend. Ramachandram and Taylor formulated several key
considerations to be made for deep learning with multiple
modalities in their overview of deep multimodal learning
(Ramachandram and Taylor, 2017). The first key consideration
is when to fuse the modalities. In general terms, there exist
three options for the time of fusion. The first is early fusion,
or data level fusion. This can, for example, be achieved by
concatenating features or raw data and feeding said data
into a neural network. The second is intermediate fusion.
This involves mapping input to a lower dimension using
various types of layers and fusing somewhere along the way
between the input and output layers. The third option is
late fusion, through e.g., majority vote of several smaller
networks. The choice of where fusion takes place is flexible and
immensely impactful on model performance, as demonstrated
by Karpathy et al. (2014). The second key consideration is
which modalities to fuse, since not all data contribute to
solving a problem equally. The third and final consideration
to make is what to do with missing modalities or data. The
absence of data can be prohibitively problematic, especially in
real-time applications.

In light of MG, early fusion is an unattractive option:
it requires the input data to be ‘‘stitched’’ together, which
leads to multiple problems in our application. First, we are
working with vastly different sampling rates ranging from
10–256 Hz. Furthermore, the dimensionality differs between
devices, requiring us to devise a strategy that would guarantee
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equal share of data in each sample without losing any features
that are present in either temporal or spatial dimensions. Lastly,
instead of working with an MG network, all concatenated
data would be fed into the same network, regardless of what
devices are featured in the data. This would entail tuning
early layers and shapes of the network when the parameters
of the data change. Late fusion through majority vote aligns
with the modularity requirement, but not the generalisability
requirement. Adding or removing modality networks, or MNets,
does not require the adaption of other MNets. However,
separated networks are unable to learn from multiple modalities
simultaneously, since there is no information exchange between
them. Intermediate fusion allows for the creation of several
modular MNets that develop ‘‘expertise’’ in their respective
domain. This expertise can then be shared with an overarching
network. Furthermore, adding or removing modalities is as
simple as ‘‘clipping on’’ MNets, or switching them off in the head
class, respectively. Hence, intermediate fusion satisfied the MG
criteria best.

Stimulus Presentation
To simulate MWL, participants were asked to solve several
zebra puzzles. Zebra puzzles are verbal logic puzzles that are
solved by connecting attributes to objects on the basis of hints.
The difficulty of the puzzle was modulated by the number of
hints that were given and the average number of hints required
before an attribute could be chosen. Hints could be ticked off
when used. Figure 1 provides an example of a zebra puzzle.
In total, there were five different puzzles, each with their own
difficulty ranging from ‘‘very low’’ to ‘‘very high’’ difficulty.
All puzzles were retrieved from Brainzilla (2020), and initial
difficulty indications were also based on the content of Brainzilla.
Between every puzzle, participants were asked to take a moment
to relax. Furthermore, they indicated how difficult they perceived
the puzzle to be on a scale of one to seven, seven being the highest
difficulty. These ratings were later used as labels during training.
The order in which the puzzles were presented was completely
randomised. An LSL stream was active during the entirety of the
stimulus presentation. This stream sent a marker at every action.

FIGURE 1 | Example zebra puzzle. Below the puzzle, several hints are given
that allow participants to connect all attributes (vertical) to each boy
(horizontal). An example hint is: “Joshua is in one of the ends.” Clicking the
arrow of a cell drops down all options for that cell.

Actions were (un)selecting hints and (un)selecting answers.
Markers contained the participant ID, action timestamp, type
of action, the id of the action and status of the action (correct,
incorrect or checked). The timestamps of this stream are later
used to segment the data.

Participants
In total, data were collected from 23 participants (11 males,
12 females, mean age = 24.7, SD = 9.8, min = 20, max = 57).
Of these participants, one was excluded from the dataset
because of poor data quality. Participants were recruited
using the Sona system, a cloud-based participant management
software (SonaSystems, 2020) that is used at the University of
Twente. Recruitment was also done in social circles. Prior to
experimentation, the study was approved by the ethics committee
of the BMS faculty of the University of Twente. All participants
granted written informed consent for the collection and open
sourcing of data.

Data Collection and Synchronisation
All data were streamed and recorded on a Dell Precision
3530 Laptop with an Intel i7–8750H CPU, 16 GB RAM and an
NVIDIA Quadro P600 GPU. Three different devices measured
four modalities. The Shimmer3 GSR+ was used to measure
GSR and PPG (Shimmer GSR3+; Shimmer, Dublin, Ireland),
the Tobii Pro X3–120 was used for ET (Tobii X3–120; Tobii
Group, Stockholm, Sweden) and the Brite24 was used to collect
fNIRS (Brite24; Artinis Medical Systems, Elst, The Netherlands).
Since participants were aware of sensors that were attached
to their bodies, measurements were not unobtrusive. Each
device was set up such that data streams were sent to LSL
in real-time. The LabRecorder app was used to record data
from all streams into a single XDF file per participant (Kothe,
2014). Data were then imported into Python using PyXDF
(Boulay, 2020), which automatically performs checks on the
indicated vs. received sampling rates and de-jitters the data
where necessary. Data synchrony was also checked manually to
ensure that all streams were aligned throughout the recording.
Several checks for synchrony were also implemented during data
selection and processing, which are documented in the ‘‘Data
Selection’’ section.

Raw GSR and PPG were directly streamed to LSL from the
Shimmer3 GSR+ using an application that was written by the
HBA Lab of Thales (Groot de, 2020). The sampling rate of this
stream was 256 Hz. The data of the Tobii Pro X3–120 were
streamed using a custom python application that was made
with the Tobii Pro SDK and PyLSL (Kothe, 2014; TobiiProAB,
2019). ET data were streamed at 120 Hz and contained x and y
coordinates for both eyes. For the collection of fNIRS, Oxysoft
3.2.51.4 × 64 was used (OxySoft; Artinis Medical Systems, Elst,
The Netherlands) with the Brite24 in the available 27 channels
optode arrangement. Two wavelengths (756 and 853 nm) were
sampled at 10 Hz, and the Beer–Lambert modified optode
densities of O2Hb and HHb were mapped to LSL directly from
Oxysoft. See Figure 2 for a detailed view of the optode template.
For a complete overview of the data pipeline, please refer
to Figure 3.
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FIGURE 2 | Optode template for fNIRS collection. Between each transmitter
(T) and receiver (R), one channel exists. In total, there are 10 transmitters,
eight receivers and 27 channels. The arrow represents the nose of the
participant. This Brite24 27 channels optode arrangement is available in
Oxysoft 3.2.51 (OxySoft; Artinis Medical Systems, Elst, the Netherlands).

Model Optimisation
Data Selection
Data were selected on the basis of markers that were present
in the Zebra Puzzle’s data stream. These markers were sent

through LSL at a variable rate that depended on the participant’s
actions. The nature of the stimulus presentation contributed
to several key things to pay attention during data selection.
For one, markers could be close together when participants
selected multiple answers in quick succession. Hence, selections
made around these markers contained some overlap in data.
Due to software issues and practical shortcomings, some parts
of data were missing. To overcome these problems, several
Boolean masks determined which markers were fit for usage.
First, the nearest index to the time of a marker was identified
in the data of each device. When said indices were identical for
multiple markers, the samples were removed from the dataset.
Such exactly matching indices were likely the result of drifting
device timestamps and/or missing data and were hence excluded.
Segmented selections were inspected for noise by means of
computing simple statistics of samples, such as mean, variance,
max, min, etc., to gain an overview of data quality. However,
noisy samples exposed the network to ‘realistic’ data and were
not removed thusly.

Once a full selection of the markers was made, a segment
of 8 s of data before the marker was selected; 8 s, because
the haemodynamic response function shows a peak after
5–8 s of neuronal activity onset (Zhang et al., 2005); before,
because the participant’s contemplation takes place prior to
knowing and selecting the correct answer. A CSV file that
contained the final selection of the markers was created for
each participant. Each sample in our dataset consists of four
synchronised measurements: fNIRS, GSR, PPG and ET. The
difficulty rating for the sample’s respective puzzle served as
the label. These samples were added to a TFRecord file, which

FIGURE 3 | Experimental setup. The left section contains an overview of all active data streams, being: Tobii Eye Tracking data, Brite fNIRS data, Shimmer GSR
and PPG data, and the Zebra Puzzle marker stream. Dotted lines indicate a streamed connection to LSL. The LabRecorder in the middle section records the data in
XDF format. The right section shows example outputs of processed data.
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allowed many useful methods, such as shuffling, batching and
splitting, to be applied to all the selected data simultaneously
(TensorFlow, 2020).

The dataset that was generated and analysed for this study
can be found in the 4TU.ResearchData repository under the
following doi: 10.4121/12932801 (Dolmans et al., 2020).

Models
To maximise usability and allow for feature sharing of our
multimodal data while also adhering to theMG criteria, we opted
for intermediate fusion. This resulted in a model architecture
that adheres to the general structure of one base network, or
MNet, for eachmodality and oneHead network that integrates all
MNets. Two concrete routes were chosen for the implementation
of both the MNets and the Head networks: one model based on
literature and one model that contains only densely connected
layers. The model based on previous work as discussed in the
‘‘Related Work’’ to ‘‘Participants’’ sections had four custom
MNets, one for each modality and one custom Head network.
The PPG MNet consisted of two convolutional layers; the GSR
MNet consisted of two convolutional and two LSTM layers;
the ET MNet consisted of four convolutional layers; finally, the
fNIRSMNet consisted of two convolutional and two dense layers.
All MNets were represented in a lower-dimensional space with
the help of a single densely connected layer before fusion in
the Head. Figures 4, 5 contain the structure and layers of the
model based on literature and the densely connected model,
respectively. Table 1 details the models’ layers and the number of
units/filters for each layer. Batch normalisation and max pooling
were utilised as a means of stabilisation. For both models, a
smaller alternative model was created that contained exactly half
of the units and filters in each layer in order to gain an initial
idea of the effect of reduced network size. This brought the total
number of models to four, which will be referred to as MLP (only
dense), S_MLP (small, only dense), LIT (literature) and S_LIT
(small literature). All models were trained on the same dataset.

Two variations of labels were used. The first variation
contained samples that were labelled with the indicated difficulty
of their respective puzzle and participant, thus containing a total
of seven different ‘individual’ labels. e.g., participant 1 indicated
a difficulty of 6 for puzzle 3; hence, all samples in puzzle 3 have
label 6 for participant 1. Models under this labelling variation
were evaluated by their ability to predict what level of workload
(LoW) the participant indicated. Participants rated their PMWL
on a 7-point scale, seven being the highest PMWL. These ratings
were converted to values between 0 and 1 using the formula:
(rating 1)/7, such that a rating of 1 corresponded to a label of
‘‘0,’’ a rating of 2 corresponds to a label of ‘‘0.1667,’’ etc. It follows
that, in order to be within-level accurate, the average difference
between predicted and true labels must be lower than 0.1667.
All models used a single output unit with a Sigmoid activation
function, resulting in predicted labels between 0 and 1.

The second variation contained samples that were labelled
with the average indicated difficulty of all participants over the
respective puzzle. This resulted in five different ‘‘group’’ labels,
one for each of the puzzles. These ratings were mapped between
0 and 1, where the lowest average rated difficulty corresponded

FIGURE 4 | (S_) LIT model. Each modality is indicated at the bottom. All
MNets feed into one Head network and are based on what is commonly used
in the literature. Before fusion in the Head network, MNets are flattened and
represented in a lower-dimensional space with the help of a single densely
connected layer.

to 0, etc. This labelling variation was used to assess the difference
in classification accuracies for individual vs. group labelling
schemes. Like the first labelling variation, all models used a
single output unit with a Sigmoid activation function, resulting in
predicted labels between 0 and 1. An intuitive way of visualising
performance was through histograms. By removing the true
labels from the predictions, we created a distribution of the
error; the ideal result would be a slim Gaussian distribution
around zero.

Hyperparameter Optimisation
The models were optimised with the help of hyperparameter
tuning, or hyperparameter optimisation (HPO). The
combination of hyperparameters greatly impacted model
performance. In this work, we made use of Optuna, an
open-source define-by-run API that allowed us to flexibly and
quickly set up a parameter search space (Akiba et al., 2019). We
used the default Tree-structured Parzen Estimator to sample

Frontiers in Human Neuroscience | www.frontiersin.org 6 January 2021 | Volume 14 | Article 609096

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Dolmans et al. PMWL Classification Using IFMMoN

FIGURE 5 | (S_) MLP model. Each modality is indicated at the bottom. All
MNets feed into one Head network. Both the MNets and the Head consist
solely of densely connected layers.

values for learning rate, dropout rate and momentum. All losses
were calculated as a mean squared error. We opted to use mean
squared error because we have ordinal labels ranging from
1–7. Classifying a data sample with label 1 as 7 is a larger error
(6 off) than classifying it as a 2 (1 off). Cross-entropy does not
take the distance in misclassification into account, whereas
MSE does. Furthermore, we provided four different models as
categorical suggestions, and these models are discussed in the
‘‘Models’’ section. In total, we ran 20 ‘‘trials’’; each trial contained
a 5-fold cross-validation, in which the total dataset was split
into four training and one testing part for every fold. On every
fold, a different split was made, and a new model was trained
to prevent exposing any trained model to the entire dataset
simultaneously. The objective of the HPO was to minimise the
average difference between predicted and true labels. To further
optimise the learning, we used a learning rate policy that is based
on the ‘‘1Cycle Policy’’ as described in Smith (2018). This policy
slowly increases and decreases the learning rate in a pyramidal
shape as a network cycles through a dataset. This helps prevent
getting stuck in local minima. For the creation of visualisations,
the best performing models were trained separately using the
hyperparameters that were found during HPO. During training,

TABLE 1 | Overview of models, their layers and the number of units/filters for
each layer.

LIT Full-sized units/filters MLP Full-sized units

PPG Conv1: 128
Conv2: 128
Dense: 256

GSR Dense1: 256
Dense2: 256

GSR Conv1: 128
Conv2: 128
LSTM1: 256
LSTM2: 256
Dense: 256

PPG Dense1: 256
Dense2: 256

ET Conv1: 256
Conv2: 256
Conv3: 256
Conv4: 256
Dense: 1,024

ET Dense1: 1,024
Dense2: 1,024
Dense3: 1,024

NIRS Conv1: 512
Conv2: 512
Dense1: 2,048
Dense2: 2,048
Dense3: 2,048

NIRS Dense1: 2,048
Dense2: 2,048
Dense3: 2,048

HEAD Dense1: 3,584
Dense2: 4,096
Conv1: 512
Conv2: 512
Conv3: 256
Dense3: 512
Dense4: 256

HEAD Dense1: 3,584
Dense2: 2,048
Dense3: 1,024
Dense4: 512

LIT refers to the model that was based on literature, and MLP refers to the model that
only contains densely connected layers. Table contains information about the full-sized
models, and half-sized models contain exactly half the number of units/filters per layer.

the dataset was split 90–10% train-test randomly, in order to
prevent testing the network on previously seen samples. All
training was done on a single NVIDIA GeForce GTX 1080-Ti
GPU. For further details on the HPO and its implementation,
kindly refer to the code that can be found on the following doi:
10.5281/zenodo.4043058 (Dolmans, 2020), or on GitHub1.

RESULTS

In this section, we discuss the retrieved data and the achieved
results for the various configurations of models.

Data
The total number of samples that were selected is 4,082, with
an average of 185.5 samples per participant (max: 345, min:
77). The distribution of samples across LoWs can be seen in
Table 2. Participants most commonly indicate that the puzzles
have a 5/7 difficulty, followed by a 6/7 difficulty. Participants
rarely indicate that the puzzles are the easiest (1/7) or hardest
(7/7) possible difficulties: 2.1 and 9.3%, respectively. The internal
consistency of labels was assessed using Cronbach’s alpha
(Tavakol and Dennick, 2011). There were two perspectives from
which an alpha could be calculated for the labels. The first was
how internally consistent the puzzles are as a predictor of PMWL
under the assumption that the puzzles are test items; the resulting
alpha was 0.74. The second perspective was how internally
consistent the participants are in self-assessing MWL under the

1https://github.com/Tech4People-BMSLab/mwl-detection
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assumption that participants are test items; the resulting alpha
was 0.97.

Model Performance—Individual Labels
As discussed previously, models were evaluated by their ability
to predict the LoW the participant indicated. Two sets of 10 trails
were done using the Optuna toolbox, once with theMLP and LIT
models and once with the S_MLP and S_LIT models. Table 3
contains an overview of the trials that were done on personal
labels. The best result that was achieved with the MLP model is
an average absolute difference 0.1892 between predicted and true
labels. This corresponded to 1.13 LoW when translated back to
the 7-point scale that participants rated their PMWLon. Training
times per 5-fold cross-validation with 25 epochs per fold were
around 40 min. The best result that was achieved with the LIT
model is 0.1978, or an average of 1.19 LoW. Training times lay
around 70min. The best result that was achieved with the S_MLP
model is 0.1642, or an average of 0.985 LoW. This is also the
best result that was achieved within our search space. Training
times lay around 25 min. The best result that was achieved with
the S_LIT model is 0.1681, or an average of 1.009 LoW. Training
times lay around 43 min.

The best performing model predicted 63.6% of the samples
within one LoW and 72.7% within 1.5 LoW. The distribution
of the difference between the predicted and true labels had
µ = 0.033 and σ = 0.233, see Figure 6. The mean of the
distribution was slightly larger than zero, meaning that the model
was prone to overestimating the workload of the participant.
The confusion matrix shows that the model most frequently
correctly classified samples with a label of 0.6667, corresponding
to a difficulty rating of 5. See Figure 7 for the confusion matrix.
From this confusion matrix, it can be deduced that the accuracy
of the classifier is 32%, which is considerably above chance
level: a random classifier for seven target labels would correctly
classify 14% of the samples. If one considers a difference of
one label to also be correct, the accuracy of the classifier is 77%.
In this case, a random classifier would have a performance of
3/7 that equals 43%.

Model Performance—Group Labels
As discussed, a second labelling variation was assessed. This
variation leads to five different labels, and their distribution can
be viewed in Table 4. Since these labels depended on the average

TABLE 2 | Drift, sample distribution, and puzzle difficulties.

Drift Difficulties: number of samples Average puzzle difficulties

Avg: 548 ms 1: 87 (2.131%) VLow: 2.73
Std: 590 ms 2: 350 (8.574%) Low: 3.73

3: 479 (11.73%) Mid: 4.7
4: 611 (14.97%) High: 3.89

5: 1,275 (31.23%) VHigh: 5.76
6: 902 (22.10%)
7: 378 (9.260%)

Total: 4,082

The first column details the recorded drift in terms of the average and standard deviation.
The second column summarises the samples and their distribution within each level of
difficulty. The third column contains the average difficulty rating for each puzzle on a
7-point scale, as rated by the participants.

TABLE 3 | Overview of hyperparameter optimisation (HPO) trials and their
respective scores, ran on individual labels.

Trial Model Difference LoW Duration (min)

1 MLP 0.5996 3.60 39:09
2 MLP 0.3556 2.13 39:04
3 MLP 0.3685 2.21 39:14
4 MLP 0.2208 1.32 39:18
5 LIT 0.2440 1.46 1:15:49
6 LIT 0.3772 2.26 1:10:32
7 MLP 0.1892 1.14 38:50
8 LIT 0.5672 3.40 1:09:05
9 LIT 0.3798 2.28 1:09:38
10 LIT 0.1978 1.19 1:09:33
11 S_LIT 0.2957 1.77 43:03
12 S_MLP 0.1840 1.104 25:30
13 S_LIT 0.5930 3.558 47:39
14 S_MLP 0.1772 1.063 25:30
15 S_LIT 0.1715 1.029 47:30
16 S_MLP 0.1701 1.021 25:31
17 S_MLP 0.1642∗ 0.985∗ 25:21
18 S_LIT 0.1681 1.009 47:09
19 S_MLP 0.1808 1.085 25:13
20 S_LIT 0.4534 2.720 47:14

Trial indicates the trial number of the HPO. Model indicates which neural network
was used in the trial. Difference indicates the mean difference between true label
and predicted label. LoWs (levels of workload) indicate the number of LoW the mean
difference translates to, one LoW being 0.1667. Duration is time needed for a five-fold
cross-validation. Bolded numbers are the best performances for each model type. An
asterisk indicates best overall performance.

rating of participants, they were not equidistant. There existed a
gap of 0.33 from the lowest difficulty puzzle to the next puzzle.
The puzzles thereafter only had 0.05 LoW between them. Similar
gaps are present between the third and fourth and fourth and
fifth difficulties. Similar to model training with individual labels,
a total of 20 trials of HPO were done using the Optuna toolbox.
Table 5 contains the results of these trials. The best result was
achieved with the S_LIT model, with a mean difference between
true label and predicted label of 0.2386. The distribution of
prediction vs. label had µ = −0.055 and σ = 0.284, see Figure 8
for clarification. The confusionmatrix shows that themodelmost
frequently classifies data into the fourth difficulty, regardless of
true label, see Figure 9 for details. In this case, the accuracy of
the classifier is 27%, which is just above chance level (accuracy
of 20%). If 1 label off is also correct, the performance of the
classifier is 72%. Hence, one can conclude that using group labels
decreases the performance of the classifier, probably due to the
introduction of noise in the labels.

Unimodal Performance
To investigate the additional value of additional modalities,
individual modalities were also evaluated. All models were
trained using the hyperparameters that proved most effective for
each model type, using individual labels. In other words, HPO
was not run for each of the unimodal problems, but relied on
earlier optimisations for the respective models. Table 6 details
the results of these tests. The best performance was achieved
using the PPG modality and the S_MLP model, with an average
absolute difference between predicted vs. true label of 0.1969, or
1.18 LoW. The best overall performance for a single modality
was achieved with the S_LIT model and the GSR; a difference
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FIGURE 6 | Histogram of predicted vs. true label difference using individual labels. Labels and predictions have been offset such that all true labels are 0 and their
respective predictions are deviations away from 0. The vertical lines indicate −1/6 and 1/6 bounds, or one LoW on each side. Predictions outside these lines are
more than one workload level inaccurate. For this histogram, the S_MLP was used with HP corresponding to trial 17 in Table 3.

of 0.1796, or 1.08 LoW. The fNIRS modality performed worst on
both models, reaching a difference of 0.2865, or 1.71 LoW, and
0.3188, or 1.91 LoW, for S_MLP and S_LIT, respectively.

DISCUSSION

Performance
Model performance on models trained with individual labels
reached sub-level accuracies on a seven-level scale in the
classification of PMWL on unseen samples. This showed that the
choice of implementation and the IFMMoN were able to learn
and generalise from the training data. The histogram shows a
normal distribution where the vast majority of points lie around
zero, indicating that predicted labels were frequently close to
the true labels. The confusion matrix showed that the average
prediction of the IFMMoNwas slightly higher than the true label,
yet a diagonal trend could still be observed. Themodel performed
best in the classification of the fifth LoW, followed by the third
and sixth. This followed the trend where more prevalent labels
show better performance, with the exception of the third LoW.
Furthermore, the fourth LoW, though third-most represented
in samples, showed the worst results for unknown reasons.
Because of the sample distribution, performance in the relatively
underrepresented extremes was hard to assess. This distribution
also led to great variability in performance during HPO since
the dataset was shuffled differently on each fold. Hence, some
folds contained relatively many samples from underrepresented
classes in the test set.

The classification of the alternative labelling variation showed
no significant diagonal trend; the IFMMoN classified the
majority of samples in the fourth LoW, regardless of label. This
LoW was the most prevalent label, meaning that the IFMMoN
was unable to generalise and minimise loss by classifying into
the class that five was the lowest loss. A reason for this could
be that the average PMWL did not represent the individual
PMWL of participants well enough, rendering the connection
between sample and label insignificant. The IFMMoN might
learn individual physiology given an individual label but might
be unable to generalise in the dataset if all labels are common
for vastly different physiologies. In future works, determining
the effect of individual differences would be worth pursuing.
Model affectivity, as well as performance in general, may vary
between subjects, and gaining more insight into these differences
can improve the usability of the IFMMoN.

Evaluation of unimodal performance showed that some
modalities performed significantly better than others. Though
not visually reported in this work, unimodal classification
showed a similar trend to the alternative labelling variation:
all classifications merge towards one label. This reduces the
credibility and value of the classifications based on a single
modality. In particular, the fNIRS modality performed poorly.
This could mean that the data do not contain valuable signals,
or that the implemented processing was inadequate. Another
reason for the poor performance of the modality could be the
stimulus presentation. The fNIRS modality is often only used
in block designs; this optimises the separability of conditions,
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FIGURE 7 | Confusion matrix of the predicted vs. actual classes using individual labels. Labels range from 0–6, totalling seven levels of workload. Every square
contains two numbers: the number of times the label was predicted and the relative proportion of predictions in their respective class (in parenthesis). To plot this
confusion matrix, predicted labels were placed into the nearest class. The majority of prediction is on or above the diagonal.

which is known from the field of functional MRI (fMRI), since
the two modalities essentially measure the same signal (Maus
et al., 2010). However, stimulus presentation in our research
did not follow such a block design. Instead, our work uses a
more naturalistic stimulus in that participants worked on several
longer tasks. This ‘realness’ of the stimulus allowed us to assess
the effectiveness of fNIRS in non-lab situations but likely also
negatively impacted the distinguishability between conditions.
Because HPO was not done for each of the unimodal problems,
but the best parameters for the respective network type were
used, performance may not be optimal. In order to determine
qualities, such as the informativity of the individual modalities,
HPO will have to be done.

TABLE 4 | Labels, occurrences, and prevalence percentages.

Label (puzzle) Occurrences Percentage

0 (VLow) 424 10.39%
0.33 (Low) 691 16.93%
0.38 (High) 965 23.64%
0.65 (Medium) 1,138 27.88%
1 (VHigh) 864 21.17%

Total: 4,082

The first column shows the scaled average rated difficulty for the respective puzzle level
between parentheses. The second column indicates the number of occurrences for each
LoW. The third column details the percentage of occurrences in the respective difficulties.

To really prove that a multimodal approach outperforms,
one needs to validate this on different workload paradigms,
such as N-back and visual information overload. Moreover, one
needs a sound statistical methodology for proving significance
that also includes a false discovery rate correction due to
multiple testing. We would not be surprised that for some
workload situations, the unimodal approach is on par with
a multimodal approach. This however, lies outside of the
scope of this research and is a line of further research. While
lacking in efficacy, unimodal evaluation allowed us to assess
the MG of the implementation. Altering the configuration
of the IFMMoN was quick and simple due to the modular
design. This indicated that the modularity criterium was adhered
to, and that it was practical during research. Furthermore,
since we were able to achieve better performance using all
modalities, the generalisability criterium was also satisfied. The
IFMMoN appeared to generalise better given data from multiple
physiological sources. Hence, we consider the MG criteria to be
practical and valuable.

Limitations
Our limitation is that we are aware of some in several
categories. First, there are hardware limitations, which become
most apparent when inspecting device synchrony. The average
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TABLE 5 | Overview of HPO trials and their respective scores, ran on group
labels.

Trial Model Difference Duration (min)

1 LIT 0.2491 39:09
2 S_MLP 0.2583 39:04
3 S_MLP 0.2484 39:14
4 S_MLP 0.2642 39:18
5 S_MLP 0.4670 1:15:49
6 S_MLP 0.2540 1:10:32
7 S_MLP 0.3202 38:50
8 S_MLP 0.5389 1:09:05
9 S_MLP 0.2616 1:09:38
10 MLP 0.2616 1:09:33
11 S_MLP 0.2594 43:03
12 S_LIT 0.2352 25:30
13 S_LIT 0.2546 47:39
14 S_LIT 0.3129 25:30
15 S_LIT 0.2396 47:30
16 S_LIT 0.2304∗ 25:31
17 LIT 0.4366 25:21
18 S_LIT 0.2447 47:09
19 MLP 0.5276 25:13
20 S_MLP 0.2804 47:14

Trial indicates the trial number of the HPO. Model indicates which neural network
was used in the trial. Difference indicates the mean difference between true label
and predicted label. Duration is time needed for a five-fold cross-validation. Bolded
numbers are the best performances for each model type. An asterisk indicates best
overall performance.

recorded drift across all participants was 548 ms (SD = 590 ms,
max = 2, 827 ms, min = 58 ms). In total, four participants
had a drift of larger than 1 s. For two of these, the reason is
known: crashing software and device shutdown before recording
end. The reason for the drift in the remaining two is unknown.
An average recorded drift of 548 ms is quite large for some
modalities, such as ET, and not so much for fNIRS. If this
system is to be used with a modality that is even more sensitive
to drift, such as electroencephalography (EEG), significant
improvements need to be made. One way of doing this is by
performing data collection on a more powerful computer, or
by distributing the data collection over multiple computers.
Dedicating more CPU to each device and stream will likely
yield better results. Device-specific hardware limitations may
also play a role in the drift of data streams. Finally, the
recording software may also be looked to when investigating the
drift further.

Second is the limited number of participants. A common way
of improving performance is by gathering more data. In total,
4,082 samples were collected from 22 participants. To put this
dataset in perspective, ImageNet, a large image database that
is commonly used, has over 14 million images (Deng et al.,
2009). Of course, gathering physiological data is significantly
more time-consuming, especially when using multiple devices.
Nonetheless, an almost-guaranteed way of improving the
performance is to gather data from more participants.

Third is the choice of modalities. Currently, only gaze data
(X and Y coordinates of both eyes) are used in this work.
Duchowski et al. (2018) demonstrate the efficacy of pupillary
activity with regard to the assessment of cognitive load. The
inclusion of pupillary data into this work may have led to
different results. The same can be said for our measurements

of the brain. Currently, fNIRS is used to measure the relative
changes in (de)oxyhaemoglobin. However, EEG can also be
used to predict cognitive load, as demonstrated by Friedman
et al. (2019). This train of thought can be extended to other
measures, to the extent where this same research can be
performed with a different set of modalities to achieve vastly
different results.

A fourth limitation is the model architecture and
optimisation. Currently, two variations of IFMMoN were
used, each with a small and large version. Smaller versions
showed better performance while also being more efficient,
possibly due to the small size of the dataset. No further
exploration into where model performance stops improving
with the reduction of model size and/or complexity was done.
Furthermore, HPO was done only on momentum, learning
rate and dropout rate. This can be improved by also varying
the number of hidden layers and neurons, as demonstrated
by Akiba et al. (2019). On the other hand, the performance
estimates given in the results could be a little optimistic
due to the fact that HPO applied was on the total dataset
instead of using nested cross-validation (i.e., applying HPO
on each train fold in the cross-validation approach). But, since
HPO was used to optimise only some learning parameters,
the presented performances are a good reflection of the
actual performances.

Data selection around markers can be changed and
customised for each of the modalities. For example, selecting
fNIRS data around marker can be done differently when
compared to ET data, given that the haemodynamic response
is very ‘slow’ compared to eye movements. For this reason, data
after the markers could also contain valuable information for
some modalities. Worth noting, however, is that changes to the
dataset or modalities would require the network to be retrained
and HPO would need to be redone. If a modality is added,
then the Head network and the sub-network corresponding
to the new modality need to be (re-)trained. If a modality is
removed, then only the Head network needs to be re-trained.
This is a time- and resources-consuming process. Testing on
additional subjects that contain the same modalities does not
require retraining. The latter is something that was not tested
in this research and is thus considered one of its shortcomings.
Lastly, network outputs could be encoded in a 7-dimensional
vector where each output gives the probability of this the
respective label, rather than outputting a single number between
0 and 1.

Finally, some complications arose during collection and upon
inspection of the retrieved data. Data of Participants 3, 8, 13 and
16 were partially excluded due to software crashes and poor
device connectivity. Participants 6, 9, 15 and 21 sporadically
show minor artefacts likely related to movement or dark hair.
However, this data was included in the dataset with the intention
to expose the system to a certain, perhaps more realistic, degree
of noise.

Labelling
A more psychometric point of discussion lies in our labelling
scheme. Participants will give different ratings for the

Frontiers in Human Neuroscience | www.frontiersin.org 11 January 2021 | Volume 14 | Article 609096

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Dolmans et al. PMWL Classification Using IFMMoN

FIGURE 8 | Histogram of predicted vs. true label difference using group labels. Labels and predictions have been offset such that all true labels are 0 and their
respective predictions are deviations away from 0. µ indicates the mean, and σ indicates the standard deviation. For this histogram, the S_LIT was used with HP
corresponding to trial 16 in Table 5. Vertical lines show the original bounds of 1 LoW for reference.

FIGURE 9 | Confusion matrix of the predicted vs. actual classes using group labels. Labels range from 0–4, totalling 5, one for each puzzle difficulty. Every square
contains two numbers: the number of times the label was predicted and the relative proportion of predictions in their respective class (in parenthesis). To plot this
confusion matrix, predicted labels were placed into bins that represent their class. The majority of predictions are in the second highest workload level.
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TABLE 6 | Overview of results for individual modalities.

Model Labels Difference LoW

MLP Individual 0.1892 1.14
S_MLP Individual 0.1642 0.985∗∗

LIT Individual 0.1978 1.19
S_LIT Individual 0.1681 1.09
MLP Group 0.2616 –
S_MLP Group 0.2616 –
LIT Group 0.2484 –
S_LIT Group 0.2304 –

Modality
S_MLP PPG 0.1969 1.18

GSR 0.2160 1.30
NIRS 0.2865 1.71
ET 0.2159 1.30

S_LIT PPG 0.2400 1.44
GSR 0.1796 1.08∗

NIRS 0.3188 1.91
ET 0.2224 1.33

The first column contains the name of the model. The second column describes which
labels were used. The third column reports the achieved mean difference between
predicted vs. true label. The last column shows the mean difference in level of workload.
An asterisk indicates the best performance in the unimodal setting; a double asterisk
indicates the overall best performance.

same PMWL. Ratings are entirely subjective and volatile
because one can only assess one’s PMWL relative to oneself.
Furthermore, one person might feel confident and calm
while experiencing high workload, whereas another might
feel stressed while experiencing low workload. Hence, one
should always expect to see a high degree of error and
variance when assessing PMWL, or any human emotion
for that matter. Since the objective of our system is to
eventually classify PMWL in naturalistic environments in
real-time, we chose to work with such naturalistic stimuli
from the start. Comparing classification results between
our labelling variations that accuracy is highly sensitive to
which labelling scheme is used. Based on these observations,
our recommendation is to use individual labels to train
the IFMMoN.

CONCLUSION

The goal of this research was to use PMWL using a multimodal
DNN. While participants were solving verbal logic puzzles,
GSR, PPGF, fNIRS and ET data were collected simultaneously
using LSL. We proposed a novel IFMMoN; the best model
was able to classify PMWL with a 0.985 LoW accuracy on
a 7-level scale. This result allows us to conclude that the
IFMMoN can use the provided four modalities to classify
PMWL. The MG criteria were guiding in all stages of the
research: data collection, data selection and model design.
The modularity criterium was satisfied through streaming of
data from various separate applications into one collection
software, as well as the choice of intermediate fusion using
MNets that feed into one Head model. Generalisability was
satisfied through improved model performance when adding
multiple modalities. We showed that smaller models achieved
better results in our classification task, while experiencing

a speedup factor roughly equivalent to the size-difference
factor. A critical discussion highlights the strong and weak
points of this work, and we highlight clear avenues for
improvement. Future works will work towards the classification
of PMWL in real-time so that applications can be adapted to
their users.

FUTURE WORKS

Currently, two variations of labels were trained on: one with
individual difficulty ratings and one with averaged difficulty
ratings over all participants. However, the output of our
models is always a number between 0 and 1. Different
objectives for classification can be interesting to pursue. Given
a known option space, a vector containing probabilities of
a participant’s next move can be outputted. This could be
interesting because it would allow the prediction and even
interception of mistakes. A different route would be to train
on data that originate in an alternative task. This would yield
insight into the generalisation capabilities of the pipeline and
networks and would thus likely benefit the overall robustness of
the system.

The long-term outlook of this line of research is to
create a system that can classify user PMWL in real-time
and eventually can do so for multiple users simultaneously.
Users can then be steered to improve the overall efficacy in
their task, whatever it may be. This can, for example, be
done by adapting the environment’s intensity to trigger a
state of flow. However, the participant can also be adapted
to the environment by modulating the participant. Such
modulation can be done with the help of visual, audial or even
olfactory stimulation (Hughes, 2004; Weinbach et al., 2015).
This research takes several relevant steps in the direction of
such a system since it shows that PMWL can be classified
accurately using multiple modalities. Additional modalities
and users can easily be added due to the employed design
principles. Furthermore, the size of the network allows for
real-time implementation.

Moreover, such a system might even be able to detect which
person is currently using it. This can improve the system’s
adaptability, as well as clusters usage patterns, similar to what
is done in unsupervised problems. The ability to cluster users
together may prove especially valuable in collaborative and
team contexts. McDonald and Solovey (2017) demonstrated the
potential of using fNIRS to distinguish between 30 different users
with 63% accuracy, providing a clear route for implementation.

Data Augmentation
A proven method of increasing model accuracy is simply to
supply more data, so that the model is better able to generalise.
However, the task of collecting, formatting and labelling data
is time-consuming and expensive. Data augmentation allows
for the generation of new and unseen data, offering a solution
to the data shortage problem. There are several different
options for data augmentation. It can be done in the input
space, the feature space or in the learned feature space,
to name a few. Augmentations in the input space involve
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performing several transformations on the original data. In
image classification, this often takes the form of rotation
or scaling, or by adding noise to the image (Sajjad et al.,
2019; Sun et al., 2019). For data augmentation in input and
feature space, domain expertise is often required to ensure
that newly generated data respects the domain from which
it is synthesised. Examples are works by Steven Eyobu and
Han (2018) and Schlüter and Grill (2015). Generative models
were also proven to be capable of performing such tasks while
also overcoming missing data and even modalities (Ngiam
et al., 2011; Srivastava and Salakhutdinov, 2012). In the above
examples, new feature extraction and augmentation blocks
must be designed for each data type and problem specifically.
This requires both tailoring, as well as domain expertise,
and therefore does not generalise well across domains and
problem statements.

Vries and Taylor propose to perform data augmentation
in the learned feature space (DeVries and Taylor, 2017).
Their approach relies on first learning a representation of
the data and then performing data augmentations on those
representations. They hypothesise that simple augmentations on
encoded data, rather than input data, result in more plausible
synthetic data. They propose using a sequence autoencoder on
the bases of the proven generalisability of the seq2seq models
that were independently devised by Cho et al. (2014) and
Sutskever et al. (2014). The approach that DeVries and Taylor
(2017) propose has several benefits over the other discussed
methods of data augmentation. Similar to a previous work
(Sutskever et al., 2014), the feature augmentation is done in
reduced dimensionality, making the implementation lightweight.
However, instead of designing constraints that are specific to
the domain task and input data, more generalised parameters
that dictate augmentation can be formulated. These parameters
are then also eligible for HPO. Hence, this approach fits best
within the MG criteria and would be worthy of pursuing in
future works.
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