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Motivation: There is an ongoing search for definitive and reliable biomarkers to forecast

or predict imminent seizure onset, but to date most research has been limited to EEGwith

sampling rates <1,000Hz. High-frequency oscillations (HFOs) have gained acceptance

as an indicator of epileptic tissue, but few have investigated the temporal properties

of HFOs or their potential role as a predictor in seizure prediction. Here we evaluate

time-varying trends in preictal HFO rates as a potential biomarker of seizure prediction.

Methods: HFOs were identified for all interictal and preictal periods with a validated

automated detector in 27 patients who underwent intracranial EEG monitoring. We

used LASSO logistic regression with several features of the HFO rate to distinguish

preictal from interictal periods in each individual. We then tested these models with

held-out data and evaluated their performance with the area-under-the-curve (AUC) of

their receiver-operating curve (ROC). Finally, we assessed the significance of these results

using non-parametric statistical tests.

Results: There was variability in the ability of HFOs to discern preictal from interictal

states across our cohort. We identified a subset of 10 patients in whom the presence

of the preictal state could be successfully predicted better than chance. For some of

these individuals, average AUC in the held-out data reached higher than 0.80, which

suggests that HFO rates can significantly differentiate preictal and interictal periods for

certain patients.

Significance: These findings show that temporal trends in HFO rate can predict the

preictal state better than random chance in some individuals. Such promising results

indicate that future prediction efforts would benefit from the inclusion of high-frequency

information in their predictive models and technological architecture.
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INTRODUCTION

One of the most debilitating aspects of epilepsy is the uncertainty
patients feel, not knowing when the next seizure will occur.
Though seizures themselves account for an extremely small
percentage of an individual’s time (Cook et al., 2013), the constant
threat of a seizure can make the planning of normal day-to-day
activities an impossibility for some (Bishop andAllen, 2003). This
has led many investigators to search for methods to predict when
seizure might occur (Mormann et al., 2005; Freestone et al., 2015,
2017; Gadhoumi et al., 2016; Kuhlmann et al., 2018a).

While “seizure prediction” has been an attractive research
subject for decades, early efforts hadmany unforeseen challenges.
While there was evidence that EEG changed in the minutes or
hours before seizures (Mormann et al., 2005), it was difficult
to prove that these measures could work prospectively. A
major breakthrough occurred when rigorous statistics were
developed—the key was to show that a given algorithm could
outperform random chance (Mormann et al., 2007; Snyder et al.,
2008). Several studies then followed using this method and were
able to show that intracranial EEG signals could predict the
preictal state better than chance (Cook et al., 2013; Karoly et al.,
2017; Kuhlmann et al., 2018b). Critical in that work was the
unprecedented collection of months of continuous EEG in a
clinical trial in Australia, which allowed for rigorous long-term
statistics (Cook et al., 2013; Kuhlmann et al., 2018b). That dataset
has become a crucial tool in later work, including international
competitions (Kuhlmann et al., 2018b), as prediction algorithms
have made many further improvements (Alexandre Teixeira
et al., 2014; Karoly et al., 2017; Truong et al., 2018; Stojanović
et al., 2020). However, the data also have two important
limitations: the data were acquired at low sampling rate (200Hz)
that does not allow analysis of high-resolution EEG signals,
and more importantly, since the trial ended no similar chronic
recordings have been collected.

Thus, while there have been many very promising results in
the field of seizure prediction, most work has been focused on a
single dataset of long-term, low-resolution intracranial EEG. The
results have proven that seizure prediction is possible in many
patients but clearly are far from optimal. One potential avenue
for further improvement is the possibility that higher-resolution
EEG could hold greater information. In particular, over the past
20 years it has become increasingly apparent that high-frequency
oscillations (HFOs) are a powerful biomarker of epilepsy (Jacobs
et al., 2012; Zijlmans et al., 2012; Frauscher et al., 2017; Jacobs and
Zijlmans, 2020). HFOs consist of short (<100ms) oscillations
in the 80–500-Hz frequency band and require sampling rates
of at least 2,000Hz for accurate identification (Gliske et al.,
2016a). HFOs are more likely to occur in the epileptogenic
zone (Jacobs et al., 2012) and may help guide surgical decisions
(Cho et al., 2014; Höller et al., 2015; Fedele et al., 2017; van ’t
Klooster et al., 2017). One relatively unexplored aspect of HFOs
is that their characteristics can also change in the 30min prior to
seizure initiation in certain individuals (Jacobs et al., 2009; Pearce
et al., 2013). These preliminary studies were constrained by small
patient cohorts and datasets that were not as specific as currently
available methods (Blanco et al., 2010, 2011). Nevertheless, the

evidence from those studies motivate using HFOs to identify the
preictal state.

Utilizing population-level inference and a large clinical
dataset, our group recently found several features of HFO rates
that were highly correlated with the preictal state (Scott et al.,
2020). In that work, we averaged the HFO response over all
available data per patient and compared the responses during
interictal and preictal epochs; several patients had significant
results. However, in order to utilize HFOs to identify the
preictal state prospectively, a different analysis is necessary. The
HFO response in a given segment of data must be compared
individually to that of other segments, rather than in aggregate
as in that prior work.

Robust implementation of seizure detection algorithms
requires several months of continuous recording, as was
accomplished by the Neurovista trial in Australia (Cook et al.,
2013). Such data with a sufficient sampling rate to detect HFOs is
currently impossible to attain. Until such devices are available,
the only alternative is to utilize inpatient intracranial EEG
monitoring, which lasts <2 weeks. Although such data are vastly
inferior, they are also the only current option. Until implantable
devices with >1,000Hz sampling rate are available, the role of
HFOs in the specific context of seizure prediction must first be
evaluated using only the limited intracranial monitoring data
available, which is our goal herein.

With this study, we evaluate the preliminary usefulness of
HFOs in patient-specific seizure prediction. We employ state-
of-the-art automated HFO detection methods on the entire
recorded intracranial EEG data of a clinically diverse cohort
of 27 patients. With more than 10 million detected HFOs in
this dataset, we use various features of HFO rates as predictors
in patient-specific preictal classification models. With robust
machine learning methods and statistical techniques to validate
our results, we find that 10/27 patients have excellent classifier
performance. These results are limited due to the short recording
periods but were very promising. While the technology does
not yet exist that would allow a full prospective analysis using
high-resolution data, these results motivate future studies that
incorporate such technology in the next generation of seizure
prediction devices.

METHODS

Patient Population
To form our patient cohort, we looked at all patients with
refractory epilepsy who had undergone intracranial EEG (iEEG)
monitoring at the University of Michigan from 2016 to 2018. In
order to ensure that sufficient data was available for training and
testing our models, we required patients with the following: (1)
a defined seizure onset zone, (2) at least three recorded seizures
that were each preceded by non-zero HFO rates, and (3) the
availability of at least 24 h of data; applying these criteria to
the 32 available patients resulted in 27 patients. The study was
approved by the local IRB, and all patients in the study consented
to have their EEG data de-identified for later analysis. Of note, all
data were acquired under standard clinical procedures, and the
current work was done retrospectively: no data from this research
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TABLE 1 | Clinical data.

Subject Age Sex ILAE

outcome

Seizure

focus

(hemisphere,

region)

Pathology/

implant type

Number of intracranial

channels

Total

recorded

time (hours)

Total

number

HFOs

Mean HFO rate

(#/min./channel)

Number of

seizures

Responder window

subset

(window duration,

min.)

Total ECoG depth SOZ SOZ OUT Total Used Training Testing 30 15 10

UMHS-0018 41 M Ib L F CD 32 0 32 4 59.8 108,510 4.18 0.54 3 3 2 1

UMHS-0019 59 F II R T Gliosis 106 106 0 2 168.8 170,946 2.30 0.19 5 3 2 1

UMHS-0020 45 F II R T MTS 25 0 25 9 171.2 54,254 0.38 0.12 7 7 5 2

UMHS-0021 30 M II R T Gliosis, PVNH,

PMG

46 0 46 13 179.5 394,398 1.98 0.50 9 7 5 2

UMHS-0023 29 M NR L T, P PVNH/Neuropace 69 41 28 29 164.3 390,134 0.86 0.37 20 9 6 3

UMHS-0024 31 M NR L, R T Neuropace 75 55 20 16 177.2 1,649,380 3.40 1.71 28 11 7 4

UMHS-0025 17 F II L T Gliosis 20 0 20 5 207.7 270,125 1.75 0.86 10 5 3 2

UMHS-0026 22 F NR R T PVNH 52 0 52 3 246.2 382,201 1.28 0.45 40 10 7 3 X X X

UMHS-0027 26 M NR L Diffuse VNS 91 81 10 3 205.2 1,601,359 1.90 1.41 97 11 7 4

UMHS-0028 14 F I R T Tumor: Glioma 53 47 6 5 79.7 140,782 2.95 0.42 7 6 4 2 X X X

UMHS-0029 48 M NR L T, Occ. Neuropace 91 91 0 22 226.3 847,560 0.60 0.71 14 7 5 2

UMHS-0030 5 M III L T MTS, Gliosis 100 100 0 2 146 330,614 0.98 0.56 33 21 14 7 X X

UMHS-0031 13 M I L T Gliosis, Tumor:

NF1

99 99 0 6 180 263,676 1.17 0.39 9 4 3 1

UMHS-0032 41 F I R F CD 32 0 32 3 184.3 295,865 3.79 0.96 8 6 4 2

UMHS-0033 5 F II R Ins. CD, Gliosis 74 0 74 4 120.7 233,883 1.40 0.38 28 8 5 3 X X

UMHS-0034 33 F I R F Gliosis 32 0 32 11 136.3 448,718 2.58 1.26 17 16 11 5 X

UMHS-0035 50 F I L T Gliosis 57 57 0 2 162.7 108,147 0.73 0.21 7 4 3 1 X

UMHS-0036 43 M NR L, R T CD/Neuropace 54 0 54 2 172.5 347,928 1.34 0.60 18 12 8 4

UMHS-0039 47 M NR R P CD/Neuropace 90 0 90 10 155.2 266,422 1.02 0.23 19 9 6 3

UMHS-0040 14 F I L P CD, Gliosis 63 55 8 8 196.7 323,180 0.38 0.66 7 7 5 2 X

UMHS-0041 32 F I R F CD 71 0 71 9 176.5 43,350 0.27 0.04 36 3 2 1

UMHS-0043 28 M II R T Gliosis 86 0 86 9 182.2 386,967 1.34 0.42 46 16 11 5 X X

UMHS-0044 45 F NR L T, P Neuropace 76 0 76 6 170.2 414,195 1.29 0.47 13 5 3 2

UMHS-0045 17 F NR L, R T Neuropace 94 0 94 15 331.5 631,551 0.79 0.25 6 6 4 2 X

UMHS-0046 23 F I L F CD 30 0 30 9 139.3 16,575 0.15 0.04 17 5 3 2

UMHS-0048 22 F NR L, R T Neuropace 86 0 86 8 141.8 404,972 2.76 0.33 23 8 5 3 X X X

UMHS-0049 53 F NR L, R T Neuropace 94 0 94 15 176.8 287,303 0.98 0.16 17 5 3 2

Totals/

averages

1,798 732 1,066 230 4658.6 10,812,995 1.58 0.53 544 214 143 71 5 8 6

172.5 400,481 20 8 5 3

Number of unique responders: 10 (37%).

M/F, male, female; L/R, left/right; T, temporal; P, parietal; F, frontal; Occ, occipital; NR, not resected; CD, cortical dysplasia; MTS, medial temporal sclerosis; PVNH, periventricular nodular heterotopia; PMG, polymicrogyria; VNS, vagal

nerve stimulator; DNET, dysembryoplastic neuroepithelial tumor; NF1, neurofibromatosis type 1.
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had any effect on the clinical care. Further summary of the patient
population is found in Table 1.

Data Acquisition
All intracranial recordings were sampled at 4,096Hz with a
Quantum amplifier (Natus Medical Inc., Pleasanton, CA); the
electrodes implanted for monitoring consisted of subdural grid,
depth, and stereo-EEG electrodes, as deemed appropriate for
each patient during standard clinical care. All recordings were
referenced to a lab-standard instrument reference placed midway
between Fz and Cz when first recorded and then were re-
referenced for HFO detection using common average referencing
(Gliske et al., 2016b), which was applied to all electrodes of the
same type, e.g., all depths or all grids or strips together. The
treating epileptologist determined which channels comprised the
seizure onset zone (SOZ channels), as well as the onset and
offset times of all seizures; we obtained these metadata through
the official clinical report for a given patient. Channels within
the resected volume of tissue (RV channels) were identified and
labeled through consultation with the neurosurgeon and by pre-
and post-op imaging comparisons if available. Any channel that
was not labeled as an SOZ or RV channel was labeled as an OUT
channel. Note that a seizure prediction algorithm should have
knowledge of the SOZ and OUT channels available, as it must
be trained on previous seizures and would be implemented after
these studies are completed. It is also important to note that the
SOZ is what was determined by the reading clinician and does not
depend upon being the true epileptogenic zone. We incorporated
the analysis of OUT channels as a conservative way to account for
diagnostic uncertainty and see if other channels also had useful
information. Channels labeled as RV that did not overlap with
the SOZ were not used in our analysis, in order to maintain a
more conservative analysis.

Data Analysis
All data analysis was conducted with custom MATLAB
(Mathworks, Natick, MA) and C++ functions and scripts.
As described in detail below and shown in the block process
diagram of Figure 1, this analysis consisted of several steps:
first, automated HFO detection was performed on all patient
data. Then, several features across consecutive time windows of
varying duration were computed from HFO rates. These features
were used to train a logistic regression model to distinguish
preictal vs. interictal states. The algorithm was cross validated
with held-out data and compared vs. random chance. Model
performance was quantified using ROC curves.

Automated HFO Detection
All HFOs were identified with a validated automated detector
(Gliske et al., 2016b) with additional modifications described
further below. In summary, this detector is based upon the
original “Staba” RMS-based detector (Staba et al., 2002) which
then increases the specificity by redacting detections that overlap
in time with several EEG artifacts such as sharp transients,
electrical interference and noise, and artifacts from signal
filtering. To further increase HFO specificity, we excluded
detected events with waveforms consistent with features of
muscle (EMG) artifact, using another validated algorithm (Ren

et al., 2019) as in our previous work (Scott et al., 2020). Of note,
these algorithms have previously been shown to be similar to
human reviewers (Gliske et al., 2016b, 2020).

We also modified the data processing pipeline of our
automated detector to ensure that it functioned appropriately
within the unique constraints of seizure prediction. Most
automated detectors operate by processing incoming EEG data
in successive epochs of fixed length, e.g., 10min, and then assess
the background activity of the entire epoch to determine a
threshold for detecting HFOs within that epoch. That process
cannot happen in real-time nor (pseudo)prospectively, because
evaluating a potential HFO at a specific point in time requires
knowledge of background activity that has yet to occur. Such a
process would not be possible for prospective seizure prediction,
in which there should be no knowledge of the future. To address
this constraint, we modified the detection algorithm to work
prospectively. First, we approximated real-time detection by only
detecting HFOs for 30 s at time. Second, we still used 10min of
EEG to calculate the background, but use the previous 10min
of EEG data, relative to the end of each of data segment. In
effect, the algorithm is identical to the previous one except it
only reports the HFOs that are detected during the final 30 s of
a 10min segment, and the same process is repeated by sliding
the 10-min window forward 30 s. One outcome of this is that
the first HFOs detected in any given data file start after the first
10min of recording.With these adaptations, our automatedHFO
detection was better suited to the constraints of seizure prediction
and more closely resembled a real-time process. Further—and
perhaps most importantly for preictal HFO detection—these
changes also prevented seizure activity from influencing the
detector (see section Feature Data Labeling and Exclusion). We
compared these results to those of the original detector, and there
was no appreciable difference in HFO rate (data not shown),
which is expected since there were no changes inherent to the
detector itself, but rather how it was fed data.

Computation of HFO Rate
In order to investigate temporal variations in HFO rate with
sufficient resolution, we approximated HFO rate (which we
define as the number of HFOs per minute per channel) in both
SOZ and OUT channel groups as a continuous function of time
(cHFO rate). The cHFO rate was obtained by calculating the
estimated HFO rate during 1min of data, then sliding the 1-
min window forward 1 s and recalculating. This sliding window
method approximates a continuous HFO rate with a 1-s time
resolution. The sliding window was applied to all SOZ or OUT
channels, which were grouped separately. For a given window
segment and channel group, the HFO rate was computed by
summing the number of HFOs occurring across all channels
of the same group; this value was then divided by the total
number of channels in that respective group, which resulted in
an estimate of the average cHFO per channel within each group
(SOZ or OUT).

Features of HFO Rate
The advantage to using cHFO rate as computed above—rather
than averaging it over longer periods—is that the temporal
resolution of cHFO rates can reveal fluctuations and patterns in
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FIGURE 1 | Schematic diagram showing overall data analysis workflow. (A) General analysis workflow. After automated HFO detection, continuous HFO rates (cHFO

rate) are computed in both the SOZ and OUT channel groups. Next, several statistical quantities (features of HFO rate) are computed from cHFO rates in three “feature

windows” of different durations: 30-, 15-, and 10-min feature windows. After labeling this feature data as either preictal or interictal, observations that remain after an

exclusion process are randomly divided into training and test data sets. Training data is used to train predictive LASSO logistic regression models, which are then

tested with unseen testing data. The performance of each model with this testing data is assessed by computing the test AUC value, which, when averaged over 10×

cross-validation runs for each of the three feature windows, are finally compared across patients; these results are visualized in Figure 3. (B) Example HFO detection,

“responder” patient UMHS-0040. The HFO waveform is displayed on the left, while its time–frequency decomposition (computed with the Morse wavelet) is visualized

on the right. (C) Example of cHFO rates computed for patient UMHS-0040. Continuous HFO rates (cHFO rate—defined as HFOs/min/channel) are computed in both

the SOZ and OUT channel groups separately. The rate features used in the proceeding Table (D) are computed from these cHFO trajectories in 30-, 15-, and 10-min

segments. (D) Table of rate features. Eight features are applied to cHFO rates per channel group (SOZ and OUT channel groups), which yields a total of 16 rate

features. Abbreviations shown in this table are used throughout the text.

HFOs down to the scale of a second—which could be important
in characterizing preictal trends. We quantified the temporal
variation of cHFO rates with several descriptive statistics,
including mean, variance, linear slope, quartiles, skewness, and
kurtosis across a given epoch of time. We also compared linear
trends in cHFO rates using the slope extracted from linear
regression applied to cHFO rates for a given epoch of time. All
these values were computed separately in SOZ and OUT channel
groups across three different epochs of time: 30, 15, and 10min,
which we call “feature windows.” The feature windows were
designed to account for possible differences in seizure horizons
between patients, as we hypothesized that the duration of any
preictal state would not be constant across the entire cohort. All
features were computed from the start of a given data file in
consecutive 1-min intervals. Each feature window was analyzed
independently of the others throughout the entirety of the study.

Feature Data Labeling and Exclusion
In machine learning, classification algorithms used in prediction
need labeled observations of data in order to train their models.
In this case, we label data as either interictal or preictal. Based on

our prior data showingHFO features changing up to 30min prior
to seizures (Pearce et al., 2013; Scott et al., 2020), we defined the
“preictal period” as the 31min prior to the start of the seizure.
The extra minute occurs because we inserted a buffer of 1min
just prior to seizure onset, which accounts for some interrater
variability in seizure onset time (Abend et al., 2011).

For each of the feature windows (10, 15, or 30min), the
“preictal” windows were defined as the last window immediately
prior to the seizure, but not including any of the 1min just
before seizure onset. Because the calculations slide forward
in 1-min steps, this means each “preictal” feature window
ends between 1 and 2min prior to the clinician-determined
seizure onset time. For each feature window length, we only
included the one “preictal” window immediately before the
seizure. Because our prior data suggested up to 30min could
be considered as the physiological preictal period, to be
conservative we ignored data during that period that was
not in the “preictal” feature window. Data from those times
(the two previous 10-min windows and one previous 15-
min window) were discarded from both the preictal and
interictal analysis.
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“Interictal” was defined as all data starting 11min after a
seizure until 31min prior to the next seizure, which allows a 1-
min buffer for uncertainties in the start/stop times of the seizure.
We note that some research has shown that the preictal state may
extend beyond 30min (Litt et al., 2001; Stacey et al., 2011), so this
definition is conservative and may not capture all differences. We
calculated an “interictal” feature window for every consecutive
epoch (i.e., every 30min for the 30-min feature window; every
10min for the 10-min feature window).

There were other limited circumstances that we excluded from
analysis. To ensure that seizures were evaluated independently of
other seizures, such as when multiple seizures occur sequentially,
we redacted preictal observations falling within peri-ictal extent
(11min postictal or 31min preictal) of other seizures. Further,
we also redacted any observation that overlapped with periods of
incomplete or missing data, which could result from gaps within
a file or from a file’s end. Finally, considering our modifications
to the HFO detector, any data observation overlapping with the
first 10min of a given data file was also redacted, as HFOs are not
detected for the first 10 min.

Logistic Regression Model
We used a logistic regression model to classify preictal vs.
interictal data. Logistic regression determines the probability
that given data is from a specific labeled class and has been
used in seizure prediction studies previously (Mirowski et al.,
2009). It also has the advantage of allowing us to analyze the
relative contributions of each feature, rather than being a “black
box” approach. We trained models for each of the three feature
windows (10, 15, 30min) using 2/3 of the data and then testing
on the remaining 1/3. This process was cross-validated 10 times
for each feature window by randomly selecting different interictal
and preictal data, and re-running the training and testing step,
for a total of 30 models per patient. Random selection, rather
than chronological, was used because of the limitations of this
dataset: unlike in the Neurovista dataset that had months for the
recordings to stabilize (Ung et al., 2017), our data is limited to 2
weeks of inpatient monitoring. This unavoidably leads to some
variability over time due to various factors such as medication
taper, sleep disturbances, and the settling of electrodes (Zijlmans
et al., 2009; Ung et al., 2017; Gliske et al., 2018). Here, we
used random selection to reduce the influence of these factors
on overall model performance, but this also may reduce the
effectiveness of the model.

In order to facilitate the models helping to determine which
coefficients were most useful in forecasting seizures, we used
LASSO logistic regression (Mirowski et al., 2009; Tibshirani,
2011; Lu et al., 2020) to create the predictive models used in
our study. Specifically, in Matlab we used the lassoglm function,
with the following general syntax: lassoglm(XTrain, yTrain,
“binomial,” “CV,” k), where XTrain is the feature vector, yTrain
is a binary vector with “0” for interictal and “1” for preictal,
and k is chosen as the number of seizures within the training
data. This function inherently cross-validates the trained model
based upon the number of seizures k, which reduces overfitting.
In general, LASSO introduces a penalty on the absolute value of
the coefficients, and optimizes the model by iterating through

different penalty parameters to find the lowest error, while
removing coefficients that have minimal effects (Tibshirani,
2011). Thus, one outcome of the training step is to identify
which features were the most important for identification of the
preictal state.

Assessing Predictive Performance
Each cross-validation iteration tests whether the predictivemodel
can correctly classify novel preictal vs. interictal data. We
computed the ROC curve for each iteration, then computed the
arithmetic mean of all the areas under the curve (AUC) across
all 10 iterations. A random predictor would have an AUC of 0.5,
while a successful predictor should have an AUC higher than
0.5. We chose a nominal threshold of 0.6 to show the minimal
improvement above 0.5 that would be meaningful. However,
that threshold is subjective so we then tested the significance
of each AUC using bootstrapping by randomizing preictal and
interictal labels (n = 1,000). The statistical significance of these
average AUC was determined by taking the harmonic mean of
the bootstrap p-values (Wilson, 2019), a procedure used in meta-
analysis to combine p-values from multiple tests. Successful tests
were those in which the average AUC was ≥0.6 and p < 0.05.
We note that in clinical practice an AUC of 0.6 might be difficult
to implement successfully on its own; however, it is comparable
with prior seizure prediction work in standard EEG (Mormann
et al., 2005; Freestone et al., 2015, 2017; Gadhoumi et al., 2016;
Kuhlmann et al., 2018a).

RESULTS

Our heterogeneous patient cohort was comprised of individuals
with a variety of ages, clinical etiologies and pathologies, and
seizure foci. Out of 32 original patients in our database,
four patients (UMHS-0037,−0038,−0042,−0047) were excluded
because of either insufficient recorded seizures or undefined
seizure onset zones. One patient in particular (UMHS-0022)
had seizures with no HFOs prior to onset; this patient was
also excluded, which left a total of 27 patients remaining for
further analysis. Across these 27 patients, we detected more
than 10 million HFOs across over 190 total days of intracranial
EEG recordings. Over 210 seizures and 3,800 h of interictal data
(average of 8 seizures and 141 h per patient) were used to train
and test our classification models.

Comparison of Test AUC Values
We first assessed the general responses across all cross validation
models in all patients. Over the 27 patients, with 30 models each
(810 total), the model successfully converged to a solution in
403 instances (49.8%). The non-converging solutions are easily
identified because all coefficients for HFO features are 0, and it
is obvious that the model could not be used. In such cases, we
conservatively assigned them a testing AUC value of 0.5 (and
a bootstrap p-value equal to 1)—the same performance as a
random predictor. The remaining patient models were composed
of linear combinations of HFO rate features. As shown in the
histogram of Figure 2, the distribution of test AUC values for
these models overall showed significant variability and spread
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FIGURE 2 | Distribution of test AUC values for tested models. This histogram

of testing AUC values, computed for all tested models individually over all

patients and feature windows, is skewed toward predictive performance that is

better than random chance, i.e., values higher than 0.5.

from 0.5 (AUC test—maximum: 0.97, minimum: 0.024, median:
0.64). The skew of this distribution toward values >0.5 suggests
that a significant portion of models that used HFO features
could perform better than random chance at identifying the
preictal period.

We evaluated the consistency and reliability of this result
within patients by determining if its average test AUC was at
least 0.6 and if the average bootstrapped p-value was < 0.05.
These values are shown with statistical significance noted in the
bar plots of Figure 3. We found that 10 out of the 27 patients
had a significant response in at least one of the feature windows.
We denote these 10 patients as “responders,” and their average
predictive response was robust and consistent. The presence of
this subset of patients in our cohort suggests that there are
measurable changes in preictal HFO rate preceding epileptic
seizures that deviate from interictal trends. This finding shows
that HFOs can act as a temporal biomarker of seizure onset in
some patients.

Within the responder group, 4 were significant in only one
feature window, while the rest had multiple. We compared the
three windows (10, 15, 30min) and found no evidence that
the performance of one window was better than any other—
either by how frequently it was significant in these patients, or
by how high its overall performance was (Chi-square test: p =

0.61; Kruskal–Wallis test: p = 0.737). All responders and their
significant windows are identified in Figure 3 and in Table 1. The
p-value and associated asterisks indicating statistical significance
in Figure 3 were based on individual bootstrap tests and not
corrected for multiple comparisons.

Significance of Responder Predictors
We investigated which features contributed to the significant
predictive response observed in responder patients. Overall,

both the combination and relative magnitude of HFO features
in responder models varied significantly between patients,
feature windows, and even between different cross-validation
runs. Considering this variability, we could not evaluate
feature importance directly by the raw coefficient values that
resulted from LASSO logistic regression. Instead, we calculated
how often a given feature was included among models—
specifically, how often its corresponding coefficient was non-
zero. In this manner, we considered the most commonly
used features to be the most important to differentiating the
preictal state from other interictal observations—whether its
associated output coefficient was positive (which would indicate
increased likelihood of an imminent seizure resulting from an
increase in the feature’s value) or negative (i.e., decreased seizure
likelihood from a feature’s increase). These frequencies of non-
zero model coefficients per feature are shown by a feature
window in Figure 4 and are sorted in order from most to
least common within responder models. Though we did not
evaluate feature magnitude directly, we note that the medians
of all responder SLOPE-SOZ features by patient and feature
window were all positive, which reinforces our prior findings
that gradually increasing HFO rates anticipate seizure onset
(Scott et al., 2020).

While there were some observed differences in which features
were the most common between window durations, there
were no statistically significant differences in feature frequency
across the three feature windows (Kruskal–Wallis: p = 0.64).
In terms of the most important features, the linear slope
of HFO rate in the SOZ (Slope-SOZ) was most important
in both the 30- and 15-min windows. Also common among
important features were those computed from cHFO rates in
OUT channels—channels that might be traditionally considered
as less involved in pathological brain networks. Yet, there were
no statistical differences in frequency between SOZ and OUT
channel features (rank-sum tests: p = 0.34, = 0.24, = 0.42
for 30-, 15-, and 10-min windows, respectively), even though
SOZ features were highest ranked across feature windows,
with an average cumulative frequency almost 14% greater
than that of OUT channel features. This suggests that HFO
rates could be used to identify the preictal state regardless of
their location.

Clinical Factors of Responders
Considering the clinical outcomes of responders, four were ILAE
class I, two were class II, there was one class III, and the others
were not resected. Comparing various clinical factors, there
was no statistical evidence for differences in the composition
of responder patients compared to the rest of the cohort. The
ratio of temporal to extra-temporal seizure foci in responders
was similar to other that of other patients (Fisher exact test:
p = 0.68), and while there appeared to be a difference in the
pathology of resected responders favoring gliosis, this was not
significant in comparison to the rest of the cohort (Fisher exact
test: p = 0.14). Despite lacking a clinical factor to differentiate
this group from the rest of the population, based on our results,
we estimate the relative proportion of responders in a given
population is 19–55% of patients (95% binomial confidence

Frontiers in Human Neuroscience | www.frontiersin.org 7 January 2021 | Volume 14 | Article 612899

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Scott et al. Preictal HFOs in Seizure Prediction

Average test AUC by feature window

***

***

***

***
***

***

**
** **

**
**

**

**

**** **

**

*

*

U
M

H
S

-0
0
1
8

U
M

H
S

-0
0
1
9

U
M

H
S

-0
0
2
0

U
M

H
S

-0
0
2
1

U
M

H
S

-0
0
2
3

U
M

H
S

-0
0
2
4

U
M

H
S

-0
0
2
5

U
M

H
S

-0
0
2
6

U
M

H
S

-0
0
2
7

U
M

H
S

-0
0
2
8

U
M

H
S

-0
0
2
9

U
M

H
S

-0
0
3
0

U
M

H
S

-0
0
3
1

U
M

H
S

-0
0
3
2

U
M

H
S

-0
0
3
3

U
M

H
S

-0
0
3
4

U
M

H
S

-0
0
3
5

U
M

H
S

-0
0
3
6

U
M

H
S

-0
0
3
9

U
M

H
S

-0
0
4
0

U
M

H
S

-0
0
4
1

U
M

H
S

-0
0
4
3

U
M

H
S

-0
0
4
4

U
M

H
S

-0
0
4
5

U
M

H
S

-0
0
4
6

U
M

H
S

-0
0
4
8

U
M

H
S

-0
0
4
9

Patient

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v

e
ra

g
e

 t
e

s
t 

A
U

C

30 min.

15 min.

10 min.
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important were features in OUT channels, a novel finding that suggests HFOs outside epileptic tissue could still be involved in the process of seizure generation.
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interval with a test sample of 10/27), which demonstrates
that patients with potential for significant HFO rate predictive
performance could comprise a substantial portion of a large
clinical cohort.

DISCUSSION

In this first-of-its-kind study, we combined advanced automated
HFO detection with the intracranial data of a large clinical
cohort to investigate the potential use of high-frequency
oscillations in seizure prediction. Across patients, we found a
significant variation in the ability of time-varying properties
of HFO rate to discern a preictal state. After applying a
statistical benchmark to the average predictive performance of
all models across our cohort, a subset of patient responders
was identified that had consistent predictive performance
better than random chance. The identification of these 10
individuals represents a novel finding and is our study’s
most important result. It provides firm support that high-
frequency oscillations can function as a temporal biomarker
of seizure onset and additionally gives preliminary evidence
that seizure prediction using HFOs is not only possible
in a clinical context; it can hold significant potential for
certain patients.

Another important outcome is the identification of which
HFO rate features are the most useful. Ranked by their frequency
in responder models across multiple windows of time, the most
important predictive features of HFO rate included linear slope,
variance, and the first quartile cHFO rate within the feature
window. The most common feature was the linear slope, which
measures gradual changes in HFO rate (either increasing or
decreasing), suggesting that these changes are centrally important
in determining if a seizure is imminent. One surprising finding
was that even HFOs outside the SOZ were useful features.
Note that it is not possible to compare relative magnitude of
these feature coefficients directly because of the considerable
model variability between patients, feature windows, and cross-
validation runs. We analyzed the 10 responders and found
that three of them had clinical situations in which the OUT
channels were likely to be pathological. One patient had a
known secondary seizure focus not included in the official
SOZ (UMHS-0026), while another had high HFO activity in
a non-resected hippocampus that was likely dual pathology
from a parietal lesion (UMHS-0040). However, the OUT
features were not restricted just to those patients, and thus our
finding of predictive value of HFO features outside the SOZ
is an intriguing finding. This result suggests that HFOs even
outside the SOZ provide important information on identifying
impending seizures.

The test AUC values of responder patients we report are
within the ranges presented in several seizure prediction studies,
notably Brinkmann et al. (2016), Karoly et al. (2017), and
Kuhlmann et al. (2018b). There is one caveat to using the
AUC metric in seizure prediction, as the inherent imbalance of
interictal and preictal data can increase the reported specificity.
In order to compare our work with other studies, however,

this was an acceptable limitation for our analysis. While
no prior work has evaluated HFOs for seizure prediction,
there is evidence for a “preictal state” (Stacey et al., 2011).
HFOs have been shown to have different signal features
(Pearce et al., 2013; Bandarabadi et al., 2019) and changes
in rate 30min before seizures (Scott et al., 2020). Further,
some studies have shown distinct changes in high-frequency
activity preceding seizure onset; some have also suggested
that HFOs could be linked to seizure-generating mechanisms
(Worrell et al., 2004).

Despite our positive result, it must be noted that our
overall methodology has a number of inherent constraints
that limit our findings from being more widely applicable to
seizure prediction in general. First, this analysis was based
upon processing several minutes of data at a time (10, 15, or
30min) rather than analyzing features of individual HFOs. There
are a wide range of HFO features that could be incorporated
into future prediction algorithms. Next, we note that “true”
seizure prediction would involve choosing a specific algorithm
and testing accuracy prospectively, which was not done here.
Second, this method requires HFOs to be present and enough
seizures to develop a predictive model; five of our cohort of
32 did not meet this standard. Finally, as stated before these
data are limited to only 2 weeks immediately postoperatively
during varied medication changes, which is known to be
insufficient to have consistent EEG signals and sometimes
even atypical seizures. Several of our patients had inconsistent
results, but with so few seizures it is impossible to predict
whether this would stabilize to an effective solution with more
data. A much longer dataset under standard living conditions
would be necessary to develop robust algorithms, but such
data are not physically possible at present. Future work with
a larger dataset could also incorporate additional features of
the HFOs themselves (e.g., signal features such as frequency
data), as well as previous prediction algorithms using standard
EEG. This type of synergistic analysis on larger datasets could
have much greater chance at a clinically realizable seizure
prediction algorithm.

CONCLUSION

Our results show that HFOs can function as a temporal
biomarker of seizure onset. We show that changes in the
HFO rate are capable of identifying the preictal state up to
30min before a seizure in some patients. As a preliminary
study, our findings are a foundation for future work pursuing
individualized seizure-specific prediction efforts, which we
envision could eventually function as a tool inside advanced
implanted neuromodulation devices that utilize patient-
specific and seizure-specific prediction methodologies.
Advancement of this HFO seizure prediction framework,
however, will require the availability of many chronic high-
sampling rate intracranial recordings. While this technology
does not yet exist, recent technological improvements have
brought it closer to realization—which is sufficient impetus
to further investigate HFOs both as a temporal biomarker

Frontiers in Human Neuroscience | www.frontiersin.org 9 January 2021 | Volume 14 | Article 612899

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Scott et al. Preictal HFOs in Seizure Prediction

of epilepsy, and as a potentially powerful predictor of
epileptic seizures.
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