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Adaptive behavior critically depends on performance monitoring (PM), the ability to

monitor action outcomes and the need to adapt behavior. PM-related brain activity

has been linked to guiding decisions about whether action adaptation is warranted.

The present study examined whether PM-related brain activity in a flanker task, as

measured by electroencephalography (EEG), was associated with adaptive behavior

in daily life. Specifically, we were interested in the employment of self-control,

operationalized as self-control failures (SCFs), andmeasured using ecological momentary

assessment. Analyses were conducted using an adaptive elastic net regression to

predict SCFs from EEG in a sample of 131 participants. The model was fit using

within-subject averaged response-locked EEG activity at each electrode and time point

within an epoch surrounding the response. We found that higher amplitudes of the

error-related negativity (ERN) were related to fewer SCFs. This suggests that lower

error-related activity may relate to lower recruitment of interventive self-control in daily

life. Altered cognitive control processes, like PM, have been proposed as underlying

mechanisms for various mental disorders. Understanding how alterations in PM relate

to regulatory control might therefore aid in delineating how these alterations contribute

to different psychopathologies.

Keywords: performancemonitoring, ERN, error processing, EEG, self-control, ecological momentary assessment,

daily life

INTRODUCTION

Adaptive behavior critically depends on monitoring response outcomes for the need to adapt
behavior and the recruitment of cognitive control, a process called performance monitoring (PM)
(Ullsperger et al., 2014a,b). Altered neural correlates of PM in various mental disorders associated
with deficient goal-directed control, such as obsessive-compulsive disorder (OCD) and substance
use disorders (SUD), indicate a link between neural measures of PM and regulatory control in daily
life (Van Veen and Carter, 2002; Robbins et al., 2012; Euser et al., 2013; Endrass and Ullsperger,
2014; Gillan et al., 2017). Accordingly, self-control in daily life, as assessed via smartphone-based
ecological momentary assessments (EMA), has been linked to error-related activity in the PM
network in a functional magnetic resonance imaging (fMRI) study (Krönke et al., 2018). The aim
of the current study was to establish whether PM-related brain activity as measured by the error-
related negativity (ERN) predicts adaptive behavior in daily life. Given that to date most studies
assessed self-control in daily life using self-report questionnaires, data on actual behavior outside
the lab and the link to brain activity is still rare (de Ridder et al., 2012).
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There are many models and theories on self-regulation, which
focus on different levels of analysis, and which have not yet
been integrated within an overarching framework (Inzlicht et al.,
2020). Self-regulation is the process of ascertaining a desired
goal and then taking action to move toward that goal and
continuously monitoring progress and the need to adapt the
behavior (Carver and Scheier, 1998). Self-regulation includes
various steps, like deciding on a goal, planning how to pursue
it, pursuing it, and shielding that goal from interference or
competing responses (Gollwitzer, 1999; Fujita, 2011). Goal-
directed behavior is thus behavior that is being performed based
on the belief that a specific goal or outcome can be achieved
by this behavior, and that there is a reason to seek that specific
outcome (Dayan, 2009). Self-control constitutes one specific
form of self-regulation, but not all forms of self-regulation
include self-control (Fujita, 2011). Inzlicht et al. (2020) define
self-control as targeting behavior toward a desired goal, a process
which includes inhibitory as well as initiatory components and is
closely connected to the implementation of behavior (de Ridder
et al., 2011, 2012; Baumeister, 2014; Gillebaart, 2018). Self-control
can therefore be described as the ability to change or override
competing response tendencies as well as to regulate behavior,
thoughts and emotions in accordance with a desired goal, and
is exerted to promote desirable responses and inhibit undesirable
responses or impulsive actions (de Ridder et al., 2012; Hofmann
et al., 2012a). Self-regulation is a broader concept, which includes
goal setting, monitoring if there is a need for the exertion of
self-regulation, and implementing actions according to set goals
(Baumeister and Heatherton, 1996; Carver and Scheier, 1998).

A related concept is cognitive control, which can be described
as the ability to pursue goal-directed behavior, opposing
otherwise more habitual or immediately compelling behaviors
(Cohen, 2017). There are differing opinions on how exactly
cognitive control, which in core aspects strongly resembles the
concept of self-regulation, relates to self-regulation. Cognitive
control is typically used as a term for employment of cognitive
operations or executive functions, like inhibition, attentional
shifting and working-memory updating, whereas self-regulation
typically refers to adapting behavior in daily life (Hofmann
et al., 2012b; Miyake and Friedman, 2012; Inzlicht et al., 2020).
The broad monitoring function described in the self-regulation
literature is similar to the aforementioned concept of PM (Carver
and Scheier, 1998; Ullsperger et al., 2014a). PM-related brain
activity has repeatedly been linked to guiding the decision about
whether and which action adaptation is warranted (Botvinick
et al., 2001; Rushworth et al., 2004; Rushworth, 2008).

PM can be described as a set of continuously operating
cognitive and affective functions that determine whether adaptive
control is required and therefore provide the basis for successful
goal-directed behavior (Ullsperger et al., 2014b). At a neural level,
PM functions appear to be implemented by a PM network that
comprises the anterior midcingulate cortex (aMCC), the pre-
supplementary area (pre-SMA) and the adjacent dorsomedial
prefrontal cortex (dmPFC) and is connected to the posterior
medial frontal cortex (pMFC) (Rushworth, 2008; Nee et al.,
2011; Shenhav et al., 2013; Ullsperger et al., 2014a). There
is evidence, however, that the preSMA is more involved in

inhibitory mechanisms and not conflict processing per se (Huster
et al., 2011). Necessity, type and magnitude of adaptation are
associated with signal changes in the pMFC (Ullsperger et al.,
2014a). Various theories of PM exist, mainly differing with
respect to the presumed information-processing mechanism
generating the adaptation signal. While some theories assume
that adaptation is employed based on a weighted prediction
error signal (Holroyd and Coles, 2002; Alexander and Brown,
2011; Ullsperger et al., 2014b), others focus on the occurrence of
information-processing conflicts and their detection by certain
brain regions (mainly the aMCC), and propose that conflict
signals serve as one aspect of a more general outcomemonitoring
function, which triggers strategic adjustment of cognitive control
(Botvinick et al., 2004).

The ERN is a defined event-related potential (ERP) that is
associated with PM at the response processing stage of goal-
directed behavior (Falkenstein et al., 1991; Gehring et al., 1993;
Ullsperger et al., 2014b). The ERN is an early frontocentral
negativity which occurs on error trials peaking 50–100ms after
the response, and has been shown to be independent of stimulus
and response effector modality (Falkenstein et al., 1991; Gehring
et al., 1993; Ullsperger et al., 2014a). The ERN amplitude also
appears to be influenced by subjective error significance (Endrass
et al., 2007), and its source is assumed to be mainly localized
within the anterior midcingulate cortex (aMCC) (Debener et al.,
2005; Keil et al., 2010). The correct-related negativity (CRN)
is a similar component that is observed following correct
responses, but is reduced in amplitude (Ford, 1999; Endrass
et al., 2012; Grützmann et al., 2014). During response processing,
errors can be detected immediately when task rules are known
(Danielmeier and Ullsperger, 2011). The ERN may therefore
reflect fast alarm signals indicating the need to adapt behavior
(Steinhauser and Yeung, 2010; Ullsperger et al., 2010; Wessel
et al., 2011). The ERN amplitude has been shown to predict
subsequent neural as well as within-task behavioral adjustments.
This has been posited as evidence for the monitoring activity
of the aMCC playing an important role in the employment
of cognitive control or self-control (Kerns et al., 2004; Inzlicht
and Gutsell, 2007). Evidence for this also arises from findings
regarding altered PM correlates in mental disorders associated
with deficient goal-directed control, such as OCD and SUD,
which indicate a connection between neural measures of PM and
regulatory control in daily life (Euser et al., 2013; Endrass and
Ullsperger, 2014; Pasion and Barbosa, 2019). Stable individual
differences in the ERNmagnitude are considered a trait indicator
for the disposition to recruit the control network and show
adequate re-test reliability (Olvet and Hajcak, 2009; Fischer and
Ullsperger, 2013; Riesel et al., 2013, 2014). Impaired self-control
can be described as a deficient implementation of cognitive
control—some models of self-control posit a balance between
top-down control (as implemented by the prefrontal cortex)
and subcortically mediated impulsive reactions to emotional
stimuli or appetitive cues (Heatherton and Wagner, 2011;
Hofmann et al., 2012b). These self-control failures (SCFs) can
result from both underregulation and misregulation. Whereas,
underregulation is a failure to exert self-control, misregulation
entails the exertion of self-control, but in a misguided or
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counterproductive way (Baumeister and Heatherton, 1996).
These connections are usually assessed via task performance
or by using self-report questionnaires (de Ridder et al., 2012).
However, there is data on links between PM and actual behavior
outside the lab: In a study focused on emotion regulation, ERN
difference scores also predicted the strength of the associations
between daily stress and anxiety (Compton et al., 2008). Apart
from error-related activity, higher inferior frontal gyrus (IFG)
activity on correct trials of a go/no-go task has been connected
to higher resistance to food-related temptations in daily life
(Lopez et al., 2014). One study also more directly examined this
association: Error-related activity inside the PM network in an
fMRI study has been linked to self-control in daily life, as assessed
by EMA. A higher amount of SCFs was associated with low error-
related activation of the PM network involving aMCC, preSMA
and anterior Insula, as well as low post-error IFG activation and
less post-error slowing (Krönke et al., 2018).

The aim of the present study was to establish whether PM-
related brain activity as indicated by the ERN predicts adaptive
behavior in daily life, following the brain-as-predictor approach
(Berkman and Falk, 2013). We specifically were interested in
the employment of self-control in real-life situations involving
conflicts between transient desires and superordinate or long-
term goals. To this end, PM-related brain activity was assessed
using electroencephalography (EEG) in an adapted version of
the Eriksen flanker task (Eriksen and Eriksen, 1974). Self-
control in daily life was measured utilizing EMA following
procedures described by Wolff et al. (2016). We expected the
ERN amplitude, as a measure of PM-related brain activity, to
predict the amount of SCFs in daily life. Based on Krönke
et al. (2018) we expected that lower amplitudes of the ERN,
indicating attenuated error monitoring leading to a reduced
behavioral adaptation and mobilization of cognitive control
- should relate to higher propensity to commit SCFs in
daily life.

METHODS

Sample
One hundred and forty participants were recruited from the
general population in the Dresden area. Seven participants made
more than 40% errors across all trials, one had a significant
number of random button presses, and another had discontinued
the assessment. They were therefore excluded from further
analyses. The final sample consisted of 131 participants (58.8%
female; M = 25.86 years, SD = 5.65), 121 participants (92.4%)
had completed advanced education degrees, 9% reported past
mental health problems. 95.4% of participants self-identified
as of mainly European, 4.6% as of mainly Asian ancestry.
All participants had normal or corrected-to-normal vision,
were native speakers of German, and reported no history of
head trauma or neurological disease. Participants were further
not included if they reported taking psychotropic substances
within the past 3 months; reported a history of bipolar
disorder, borderline personality disorder, psychotic episodes,
or severe alcohol use disorder; currently met the criteria for
an eating disorder or severe episode of major depression;

reported a lifetime use of illicit substances of more than
twice a year and lifetime use of cannabis of more than twice
a month.

The study was conducted in accordance with the ethical
guidelines of the Declaration of Helsinki. The ethics committee
at the University Hospital Carl Gustav Carus, Technische
Universität Dresden approved study procedures (EK 372092017).
All participants gave informed consent.

Procedure, Measures, and Tasks
Procedure
Participants completed two sessions in the lab, and between those
sessions a week of EMA of self-control in daily life. Questionnaire
data were obtained during the first session, at the end of which
participants received a smartphone for EMA and completed a
short EMA tutorial. The tutorial comprised answering the EMA
questionnaire regarding five fictive situations and participants
could ask questions and received feedback. PM-related brain
activity was assessed using the ERN during a flanker task
using EEG during the second session. We also assessed correct-
related activity in incongruent trials, as well as the difference
between error- and correct-related activity in incongruent trials,
to distinguish between error-sensitive and outcome-independent
aspects of response monitoring (Endrass et al., 2012; Grützmann
et al., 2014). The EEG session took place at least 8 days after the
first session. During both sessions, participants completed other
tasks, which are not part of this report.

Ecological Momentary Assessment
We assessed self-control in daily life using EMA during a
seven-day period similar to Wolff et al. (2016) and Hofmann
et al. (2012a), assessing the occurrence of desires, how strong
they were, if these desires were conflict-laden, how strong the
conflict was, if participants tried to resist the desire and if they
enacted the desire. Up to four dichotomous variables (desire,
conflict, resistance, and enactment), one categorical variable
(desire type), and two continuous variables (desire and conflict
strength) were acquired per questionnaire. Participants were
instructed to carry the devices with them at all times during the
assessment window. Depending on response rates, participants
completed up to 56 questionnaires. SCFs were operationalized
as enactments of conflict-laden desires divided by the number
of questionnaires participants had responded to. Self-control
is required when one experiences a desire that conflicts with a
long-term goal or a personal standard (Hofmann et al., 2012a).
Participants received eight short questionnaires throughout the
day, delivered within a 14 h time window, which was chosen
based on participant’s usual waking hours (starting at either 8,
9, or 10 a.m.). The time points were randomized, but at least
1 h apart and signaled by an alarm. Alarms could be manually
deferred by participants, for a maximum of 15min. Participants
received identical smartphones (Nokia 5). A customizable EMA
application delivered the questionnaires, all other functions
were blocked (movisensXS, version 1.3.3; movisens GmbH,
Karlsruhe, Germany). See Supplementary Figure 2 for a
schematic depiction of a questionnaire. Internal consistency
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of SCFs was acceptable, determined as the Spearman-Brown
corrected split-half reliability, using the odd-even method (0.77).

Flanker Task
Participants performed a modified version of the arrow-version
of the Eriksen flanker task (Eriksen and Eriksen, 1974; Kopp
et al., 1996). The flanker stimuli consisted of four vertically
arranged arrows pointing to the left or the right. A fifth arrow
appeared as target stimulus with a delay of 100ms, in addition to
the surrounding flanker arrows. All arrows remained on screen
for 30ms. In 50% of the trials, the target stimulus pointed in
the same direction (congruent) as the surrounding arrows. In
the other 50% of the trials, the target pointed in the opposite
direction (incongruent). Participants had to respond using a left
or right button, according to the direction of the target arrow.
The task was presented in two incentive contexts whichwere cued
as follows: Each trial started with an incentive cue, a green or
red frame surrounding a fixation cross, signaling potential gain
(green) or loss (red) of 40 points in the current trial (presented
for 500ms). The frame remained visible for the duration of the
trial. In the gain condition (50% of all trials), the fastest 20%
of the correct responses were rewarded (40 points) while errors
resulted in reward omission (0 points). In the loss avoidance
condition, incorrect and the slowest responses were punished
(minus 40 points), and correct responses resulted in punishment
omission. Slowest responses were defined by an adaptive deadline
based on individual performance and response time, in order
to obtain a rate of 20 % negative feedback for each context.

Performance feedback was presented for 800ms after a response
interval of 900ms following target onset or 600ms after response.
The deadline was initially set at 500ms, and was adapted based
on the rate of negative feedback. If the rate of negative feedback
was higher than 20%, 30ms were added to the adaptive deadline,
if the rate was below 20%, 30ms were subtracted from the
deadline. The two incentive contexts were introduced to the task
for a different research question than the one addressed here.
However, associations with SCF were examined separately for the
two incentive contexts, and reported as supplementary results.
Associations were significant in both contexts and exhibited
similar effect sizes. Participants could earn a bonus of up to 5
EUR, depending on task performance and points earned. They
received 4 EUR if they earned less than 5,000 points, 4,50 EUR
for 5,001 to 5,500 points, and 5 EUR for more than 5,501 points.
The task included 640 trials of 2.53 to 2.75 s duration. The task
was presented using Presentation 19.0 (Neurobehavioral Systems
Inc., Berkeley, CA, USA). See Figure 1 for a schematic depiction
of the task.

Psychophysiological Recording and Data
Reduction
The EEG was continuously recorded at a sampling rate of
500Hz using elastic EEG caps with 63 Ag/AgCl electrodes at
equidistant locations (EasyCap GmbH, Herrsching-Breitbrunn,
Germany) and two 32-channel BrainAmp amplifiers (Brain
Products GmbH, Munich, Germany). Impedances were kept
below 10 kOhm. Two external electrodes placed below the left

FIGURE 1 | Schematic depiction of the flanker task. Participants were instructed to respond with the left or right button according to the direction of the middle arrow.

In the gain context, the fastest 20% of the correct response were rewarded (1a), in the loss avoidance context incorrect and slowest responses were punished (2b).

The other responses were neither punished nor rewarded (1b, 2a).
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and right eye were used to capture eye movement. Ground
and reference electrodes were placed next to Fz (at AFF1h
and AFF2h, theta/phi spherical coordinates:−58/78 and 58/78).
Offline analyses were performed using EEGLAB 14.1.2 (Delorme
and Makeig, 2004) and MATLAB 2018b (The MathWorks Inc.,
2018). The EEG was high- and low-pass filtered with cutoffs of
0.1 and 30Hz, respectively, and epoched from −500 to 2,000ms
relative to target stimulus onset. Epochs with artifacts were
rejected automatically based on signal deviations >5 SD of the
mean probability distribution on any single channel or the whole
montage. Remaining epochs were demeaned and submitted to
adaptive mixture independent component analysis (AMICA)
implemented in EEGLAB. Independent components reflecting
ocular or cardiovascular artifacts were removed manually and
EEG data were re-referenced to common average reference.
Subsequently, response-locked epochs from −500 to 1,000ms
were created. The average EEG activity 400 to 200ms prior
to response was used as baseline. Individual participant’s mean
amplitudes per trial type were calculated for each time point and
electrode within the extracted epochs. Internal consistency of
EEGmeasures was excellent, determined as the Spearman-Brown
corrected split-half reliability (odd-even method) for error and
correct amplitudes (0.92, 0.98), respectively, averaged for FCz, Fz,
F1, and F2 in a time window of 20ms around the individual peak.

Data Analysis
An adaptive elastic net regularized (aenet) regression based on
the Poisson distribution was fit to predict SCFs from response-
locked EEG (Zou and Hastie, 2005; Zou and Zhang, 2009; James
et al., 2013). The model was run using within-subject averaged
response-locked EEG activity of incongruent error trials. Two
additional models were run: one using difference scores of the
within-subject averaged response-locked EEG for incongruent
error minus incongruent correct trials and one using the within-
subject averaged response-locked EEG for incongruent correct
trials. The aenet regression selects the variables relevant for
the prediction of an outcome from an ultra-high dimensional
dataset, a dataset in which the number of predictors outnumber
the amount of observations, by setting the coefficients of non-
relevant features to zero (Zou and Hastie, 2005; Zou and Zhang,
2009). However, it also allows the grouped selection of correlated
features, which is highly relevant when dealing with EEG data
(Zou and Hastie, 2005; Zou and Zhang, 2009). We also chose the
aenet regression because in the analysis of ultra-high dimensional
data, a method should have oracle properties in addition to
yielding sparse models, meaning that it consistently identifies the
right subset model and has an optimal estimation rate (Fan and
Li, 2001; Fan and Peng, 2004; Zou, 2006; Zou and Zhang, 2009).
The predictors, or features, in this case were the EEG signals
at each electrode and time point. Epochs were selected so that
they would contain relevant time points for response-processing
but also reduce the amount of features, so that estimation would
be more reliable (James et al., 2013). We chose an epoch from
50ms prior to the response to 300ms after the response. A central
cluster of 23 electrodes was also chosen for relevance in response
processing (including Cz, FCz, FC2, CP2, CPz, CP1, FC1, Fz,
F2, FC4, C4, CP4, P2, Pz, P1, CP3, C3, FC3, F1, PO4, PO2,

PO1, PO3). This resulted in 4,025 data points (23 electrodes
× 175 time points). In order to be able to compute accurate
estimates within a relatively small sample, we tuned the alpha
and lambda hyperparameters using 5-fold cross validation with
10 repeats within an elastic net regression. We used the root-
mean-square error (RMSE) as the metric for optimization. Then,
the adaptive penalty factors were estimated using the estimated
beta values from the first model with the best tuning results.
Using these adaptive penalty factors, the aenet regression was
tuned using 5-fold cross validation with 10 repeats. Finally, an
aenet regression using the final aenet model hyperparameters was
internally validated using 0.632 bootstrapping (Efron, 1983), with
1,000 bootstrap samples. We chose bootstrapping for internal
validation over external cross validation using training and test
data, because in smaller datasets this has been shown to reduce
bias and improve model performance (Harrell, 2015). We then
estimated the importance of predictors in the model using the
absolute values of the coefficients corresponding to the tuned
model. Variable importance represents the effect of an predictor
on the output of a model when inputs are varied (Kuhn et al.,
2020).

In addition, generalized linear models (GLMs) based on
negative binomial distribution were built to predict SCFs from
mean ERN amplitude in a time window of 20ms around the
individual ERN peak, averaged for FCz, Fz, F1, and F2, as well
as from behavioral measures. See the supplement for GLMs
predicting SCFs from difference scores and the mean CRN
amplitude, also based on a time window around the individual
peak. Because the behavioral data were not normally distributed,
we analyzed differences between behavioral measures using a
bootstrapped version of Yuen’s test. The difference between
incongruent error trials and incongruent correct trials was tested
for each time point within an epoch from 50ms prior to the
response to 300ms after the response in electrodes Fz and FCz,
using dependent sample t-tests with Bonferroni-corrected alpha.
Statistical analysis of EEG and behavioral data was performed
in R 4.0.0 (R Core Team, 2020) using the packages glmnet v4.0,
msaenet v3.1, caret v6.0-86, MASS v7.3-51.5, and WRS2 v1.0-0
(Venables and Ripley, 2002; Kuhn, 2008; Friedman et al., 2010;
Xiao and Xu, 2015; Mair and Wilcox, 2019) and MATLAB 2018b
(The MathWorks Inc., 2018).

RESULTS

Behavioral Results
Ecological Momentary Assessment
On average, participants responded to 48.52 (SD = 7.59, MD =

51) of the 56 issued alarms (86.64 %). In 70.19% of answered
alarms participants reported desires, 38.22% of desires were
conflict-laden, and of those 56.60%were enacted. See Table 1 and
Supplementary Figure 1 for further results.

Flanker Task
Average error rate was 16.75% (SD = 8.22%). The propensity
for committing an error was significantly reduced on post-
error trials compared to post-correct trials, Yt = 0.04 (95%
CI: 0.02 0.05), p < 0.001, providing evidence of improved
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TABLE 1 | Measures (means, medians, and standard deviations) in ecological

momentary assessment.

M MD SD

Desires 34.05 36 12.20

Desire strength 2.72 2.82 1.05

Conflict 13.02 12 8.64

Conflict strength 0.91 0.88 0.61

Resistance 8.98 8 6.63

Enactment 25.66 27 10.15

SCFs 0.15 0.13 0.12

Desires, number of experienced desires; Desire strength, strength of experienced desires

on scale of 1-6 (low to high); Conflict, number of conflicted desires; Conflict strength,

strength of experienced conflict on scale of 1-6 (low to high); Resistance, number of

desires that participants tried to resist; Enactment, number of enacted desires; SCFs,

self-control failures, number of conflict-laden desires that were enacted divided by

answered questionnaires.

accuracy resulting from post-error adaptations. Reaction time
(RT) was significantly higher on correct than error trials, Yt

= 67.50 (95% CI: 65.37 69.63), p < 0.001. For correct trials,
RT was significantly higher on incongruent than congruent
trials, Yt = 89.41 (95% CI: 85.78 93.04), p < 0.001, providing
evidence for an interference effect (Cohen et al., 2000). For
further analyses, trials were categorized into pre-error (correct
trials before error commission), error, post-error (correct trials
after error commission), and post-correct trials (correct trials
following other correct trials) (Danielmeier et al., 2011). These
trials also differed in RT: Error RT were significantly faster than
post-error RT, Yt = 72.05 (95% CI: 68.89 75.20), p < 0.001, post-
correct RT, Yt = 65.50 (95% CI: 63.25 67.74), p < 0.001, and
pre-error RT, Yt = 49.42 (95% CI: 47.05 51.78), p < 0.001. Post-
error RTwere significantly slower than post-correct RT, Yt = 6.55
(95% CI: 4.17 8.93), p < 0.001. Pre-error RT were significantly
faster than both post-error and post-correct RT, respectively, Yt

= 22.63 (95% CI: 25.20−20.06), p < 0.001, and Yt = 16.08 (95%
CI: 18.16 13.99), p < 0.001. Trials in the loss avoidance condition
had slightly longer RT, compared to the gain condition (all p <

0.05), but this was not the case on incongruent correct trials. We
did not find evidence of post-error slowing, when comparing RT
of post-error and post-correct incongruent trials, Yt = 0.07, p =
0.93. Behavioral results are also presented in Table 2.

Associations Between Behavioral Measures and

SCFs
There was no significant association between SCFs and post-
error slowing (p = 0.61), operationalized as the RT difference
between post-error and post-correct incongruent trials, error
rate (p = 0.15), post-error accuracy (p = 0.17), post-correct
accuracy (p = 0.17), and the interference effect (p = 0.64),
operationalized as the RT difference between incongruent and
congruent correct trials. Internal consistency of PES and the
interference effect (0.67, 0.94), respectively, was determined as
the Spearman-Brown corrected split-half reliability, using the
odd-even method.

TABLE 2 | Task performance and measures of performance monitoring (means

and standard deviations) in the flanker task.

M SD

Correct Trials

Correct incongruent RT in ms 380.20 32.95

Correct congruent RT in ms 290.33 32.60

Trials Around Errors

Error RT in ms 259.52 29.43

Post-correct RT in ms 324.13 35.16

Post-error RT in ms 330.75 39.23

Pre-error RT in ms 307.95 33.40

Accuracy

PEA in % 77.45 15.37

PCA in % 73.86 14.42

RT, reaction time; Error reaction times refer to all error trials; Pre-error reaction times refer

to correct trials before error commission; Post-error reaction times refer to correct trials

after error commission; Post-correct reaction times refer to correct trials after correct

responses; PEA, Post Error Accuracy; PCA, Post Correct Accuracy.

EEG Analysis
The ERN peaked at 48ms at electrode FCz, and at 46ms at Fz
(local minimum of grand average). Peak electrode was FCz. The
difference between error trials and correct trials following the
response was significant between 0 and 104ms at FCz (all p <

0.0001), and 28 and 110ms for Fz (all p < 0.0001).
Averaged response-locked EEG epochs for incongruent error

trials were submitted to aenet regression analysis with SCFs as
outcome; EEG signals at each electrode and time point served
as predictors [final model: α = 0.75, λ = 0.0273, RMSE = 2.05,
R2 = 0.04, mean absolute error (MAE) = 2.04]. This analysis
revealed four variables of importance with predictive value for
SCFs (see Table 3). All of these coefficients corresponded to
fronto-central electrode Fz and time points associated with the
ERN in the averaged event-related potentials. Therefore, the
ERN amplitude of error trials in a flanker task significantly
predicted the amount of SCFs at a frontal electrode site. Higher,
or more negative, ERN amplitudes predicted less SCFs and mean
amplitude of the ERN was reduced in individuals reporting a
higher number of SCFs. See Figure 2 for a visualization of ERP
waveform and scalp distribution for the ERN and Figure 3 for
visualization of the association. Additionally, difference scores of
the averaged response-locked EEG epochs for incongruent error
minus incongruent correct trials were also submitted to aenet
regression analysis with SCFs as outcome (final model: α = 0.75,
λ = 0.0213, RMSE = 2.05, R2 = 0.03, MAE = 2.04). Variables of
importance corresponded to fronto-central electrodes and time-
points associated with the ERN (see Table 3). Lastly, averaged
response-locked EEG epochs for incongruent correct trials were
submitted to aenet regression analysis with SCFs as outcome
(final model: α = 0.75, λ= 0.0208, RMSE= 2.05,R2 = 0.03,MAE
= 2.04). All variables of importance corresponded to posterior-
occipital electrode PO1 and time-points prior to the response
(see Table 3). Therefore, we found no evidence that the CRN
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amplitude, unlike the ERN, predicted the amount of SCFs and the
effect was specific for error-related activity.

Individual peak ERN amplitude at electrodes FCz, Fz, F1, and
F2 also predicted SCFs within a GLM based on negative binomial
distribution (β = 0.058, z = 2.097, p < 0.05).

TABLE 3 | Most important variables with predictive value for SCFs defined by

electrode and timepoint.

Electrode Time point (ms) Estimate

Incongruent error trials Fz 62 0.001410

Fz 64 0.008173

Fz 66 0.008735

Fz 68 0.002214

Incongruent correct trials PO1 −38 −0.003124

PO1 −36 −0.007063

PO1 −34 −0.004974

PO1 −32 −0.000045

Difference scores Fz 54 0.000001

Fz 56 0.000502

FC3 56 0.004293

FC3 58 0.009801

FC3 60 0.002800

SCFs, self-control failures; time point, time point within response-locked epoch including

50ms before and 300ms after response; estimate, estimate of regression weight for the

respective predictors.

DISCUSSION

The present study investigated the association between neural
correlates of PM in a flanker task and self-control in daily
life as measured by EMA. Results showed that higher ERN
amplitudes predicted fewer SCFs, indicating higher self-control
in daily life. Results therefore support an association between lab-
based assessment of neural correlates of PM and self-control in
daily life, as our analysis revealed four variables of importance
corresponding to the ERN time window in an analysis that
included 23 electrodes and all time points from 50ms before
until 300 after the response. In addition, this association was also
shown by a regression with the mean amplitude for the ERN at
frontocentral electrodes in a time window around the individual
peak. The association was also observed for the difference
between error- and correct-related activity, but no relationship
between SCFs and CRN was observed. As adaptive, goal-directed
behavior depends on monitoring for the need to adapt behavior,
and ERN amplitudes have been interpreted as reflecting the
detection of errors or unexpected action outcomes, indicating the
need to adapt (Steinhauser and Yeung, 2010; Ullsperger et al.,
2010; Wessel et al., 2011), a connection between PM and self-
control seems plausible. This connection has been established
before, using fMRI (Krönke et al., 2018). However, despite PM
being necessary for appropriate recruitment of control, it is not
sufficient, as additional brain regions have to respond to these
signals for adaptive control to be implemented (Botvinick et al.,
2001). This might also account for the small size of the effect
within our sample.

Overall, our results fit well into the literature on self-
regulation and self-control (Inzlicht et al., 2020). PM appears

FIGURE 2 | Time course of response-locked EEG activity at electrodes FCz and Fz, and scalp distribution of response-locked EEG activity as well as difference in

EEG activity between high and low number of self-control failures. Grand average event-related potential (ERP) waveforms are depicted on the left, response-locked

for incongruent error trials. Waveforms are, for purpose of visualization, split by median and plotted separately for those with a lower (loSCF, blue) and those with a

higher amount of self-control failures (hiSCF, red). Shadows indicate the SEM. Scalp distribution of response-locked EEG activity for ERN effect at 64ms, as well as

the difference in EEG activity at 64ms between those with a lower and those with a higher amount of self-control failures are depicted on the right, as split by median

for visualization.
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FIGURE 3 | Regression of ERN amplitude at FCz and Fz on SCF at 60 to

70ms. Regression of mean ERN amplitude at FCz and Fz between 60 and

70ms response-locked for incongruent error trials on amount of self-control

failures per answered questionnaire.

to exhibit parallels to the monitoring function described in
the self-regulation literature and predicts self-control in daily
life and therefore the implementation of actions according
to desired goals (Baumeister and Heatherton, 1996; Carver
and Scheier, 1998). Hofmann and Kotabe (2012) proposed a
taxonomy of different SCFs, including self-monitoring failures,
motivational SCFs and volitional SCFs, and distinguish between
preventive (anticipatory) and interventive (momentary) self-
control. Whereas interventive self-control refers to inhibition of
immediate impulses, preventive self-control includes initiating
desired, goal-directed behavior as well as preventing encounters
with situations, which may elicit temptations (Myrseth and
Fishbach, 2009; de Ridder et al., 2011). A related concept from
cognitive neuroscience is the distinction between preparatory
and corrective control (Cohen et al., 2000) or the distinction
between proactive and reactive control (Braver, 2012). SCFs
as assessed in this study probably fall in the categories of
motivational and volitional SCFs, as the preceding desire
and conflict are reported and self-monitoring was therefore
successful. An influence of motivation on how successfully
individuals exert self-control has frequently been reported
(Muraven and Slessareva, 2003; Hofmann and Kotabe, 2012;
Vohs et al., 2012). Having low motivation for self-control might
result in fewer reported conflict-laden desires, and thus, SCFs.
At the same time, individuals with higher motivation might
report more conflict-laden desires, while at the same time also
trying to avoid situations in which they might encounter a desire.
However, individuals high in self-control have been reported to
experience desires less frequently (Bernecker et al., 2018). This
could indicate that individuals higher in self-control may avoid
situations in which they might be tempted because of a high
subjective significance of not failing at the implementation of self-
set goals, and subsequently experience less desires. This would
also fit well with the reported modulations of the ERN amplitude

by subjective error significance (Endrass et al., 2010; Wessel
et al., 2012): Individuals high in self-control may attach great
importance to sticking to their goals and performing well, which
is consequently reflected in higher error-related brain activity as
indicated by the ERN.

Higher ERN amplitudes predicting less SCFs therefore
presents as an intuitive connection at first. Individuals with
higher ERN amplitudes appear to possess a more effective
monitoring system to signal a higher need for the employment
of cognitive control when needed, while at the same time
attaching more significance to errors, resulting in better self-
control (Inzlicht and Gutsell, 2007; Endrass et al., 2010). The
ERN has been shown to have high re-test reliability, and changes
in ERN amplitude have been observed in psychopathology
(Riesel et al., 2013; Pasion and Barbosa, 2019). But when
thinking about individuals with OCD, who display impaired self-
control in daily life despite consistent evidence on higher ERN
amplitudes (Endrass and Ullsperger, 2014), questions about how
our findings relate to enhanced ERN in individuals with OCD
do arise. Larger ERN amplitudes in OCD appear to be unrelated
to performance or adjustment of behavior within-task, such
as post-error slowing. This could suggest deficient translation
of monitoring signals into adaptive behavior and therefore a
failure to implement control (Endrass et al., 2010; Jansen and
de Bruijn, 2020). Another explanation, which might fit with
clinical representations of OCD,might be misguided self-control:
such that in OCD self-control is applied in an inadequate or
counterproductive manner (such as washing hands 50 times a
day to prevent infection transforms a usually adaptive behavior—
hand washing—into a self-control problem, presenting as
excessive behavior) (Heatherton andWagner, 2011). The concept
of self-control could therefore also be discussed in terms of how
much and what kind of self-control is “healthy,” and what kind
of behavior is excessive, misguided and costly (Goschke, 2014).
Other disorders, more on the externalizing spectrum, like SUD
or pathological gambling, might fit more with the framework of
underregulation, as those disorders appear to reflect a failure to
exert self-control when needed (Luijten et al., 2014). Consistent
with our present findings, externalizing disorders (including a
general aggressive disposition) have been associated with lower
ERN amplitudes (Troller-Renfree et al., 2018; Grisetto et al., 2019;
Pasion and Barbosa, 2019).

Our finding that a reduced ERN predicts a higher frequency
of SCFs is fully consistent with Krönke et al. (2018) result
that reduced activation the PM network as assessed with fMRI
predicts a higher propensity to commit SCFs. However, results
are less consistent with respect to error rates and interference
effects. While Krönke et al. (2018) did find evidence for an
association between error rates, post-error slowing, and SCFs,
this was not the case in our study. One possible explanation for
this discrepancy may reside in the different tasks used in our and
the Krönke et al. (2018) study (flanker versus counting Stroop,
respectively). Within-task adjustments of behavior, reflecting
enhanced goal-directed control, have been associated with higher
aMCC activity on high-conflict and error trials (Kerns et al., 2004;
Danielmeier and Ullsperger, 2011; Danielmeier et al., 2011).
Implementation of these behavioral adjustments, however, seems
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to be mediated by lateral PFC regions, and aMCC engagement
has been proposed to reflect signaling for an enhanced
recruitment of top-down control (Kerns et al., 2004). However,
whether behavioral adaptation effects in such tasks actually reflect
control adjustments or whether they can be accounted for by
non-control related processes has been questioned (Braem et al.,
2019; Schmidt, 2019). Consequently, there have been demands
for analysis of other measures of control implementation, such
as ecologically more valid assessment of self-control via EMA
(Notebaert et al., 2009; Danielmeier et al., 2011; Gehring et al.,
2018; Meyer and Hajcak, 2019). Also, the current version of the
flanker task including feedback shortly after every response, even
punishing correct responses when they were too slow and thereby
giving false external feedback, might hinder the emergence of
post-error slowing (Saunders and Jentzsch, 2012). In addition,
the reliability (0.67) of our post-errors slowing measure (as
RT difference) was insufficient [see also Hedge et al. (2018)].
It therefore remains a question for future research, whether
the connection between neural correlates of PM and control
recruitment may be more valid predictors of self-control in
daily life than behavioral adjustments in laboratory tasks. In
addition, current findings should be replicated using a standard
flanker task (without task contexts and feedbacks). However,
irrespective of these unresolved issues, the present results add to
a growing body of evidence documenting associations between
neural indicators of monitoring and control processes with
ecologically valid assessments of real-life self-control via EMA.

How neural correlates of PM relate to regulatory control
in daily life is central to our understanding of the complex
mechanisms underlying goal-directed behavior. Other aspects
of the connection uncovered in the current study have to be
examined in future studies. SCFs reported by participants of
the present study most likely represent instances, in which
interventive self-control would be required to resist current
temptations and to support the pursuit of long-term goals.
However, the number of SCFs might also partly reflect individual
differences in the use of preventive self-control strategies (e.g.,
pre-commitment), which might help to avoid temptations and
self-control conflicts and thus result in fewer reported desires
and conflicts. Whether PM differentially influences interventive
and preventive self-control remains an interesting but unresolved
question (de Ridder et al., 2011; Hofmann and Kotabe, 2012).
As mentioned above, it would also be of interest to examine the
connection between PM and the actual neural implementation
of self-control and how that in turn relates to goal-directed
behavior in daily life. It has been suggested that the exertion
of self-control is implemented via the top-down-modulation of
task-relevant perceptual representations in conflict tasks (e.g.,
the Stroop task) (Kerns et al., 2004; Krönke et al., 2018) and
of value representations in choice conflict tasks (Hare et al.,
2009; Krönke et al., 2020) by goal representations maintained
in the dorsolateral prefrontal cortex. Moreover, such top-down
modulations have been shown to predict real-life self-control.
Thus, bridging the gap between PM and the implementation
of self-control in laboratory tasks, and assessments of goal-
directed behavior in daily life will be particularly important for
understanding mechanisms underlying deficient or misguided
self-control in various mental disorders. Moreover, it could

also help to understand how to effectively implement public
policies aiming at a reduction of harmful behavior and SCFs
(Duckworth et al., 2018). Of particular interest is the role of
affect in conflictmonitoring, which has been addressed within the
framework of the affective-signaling hypothesis (Dignath et al.,
2020). Another focus could be the specificity of the influence of
PM on different kinds of SCFs, for example comparing dietary
SCFs with SCFs in social situations. To summarize, research
aiming to elucidate more aspects of self-control in daily life
as well as studies connecting PM and self-control in daily life
to within-task measures of neural implementation of control
are warranted.

Limitations of the current study include that even though
EMA has been shown to have high ecological validity, compared
to other methods, as it does measure behavior in daily life,
it cannot be excluded that the assessment itself has effects
on behavior. Because participants are instructed to monitor
themselves, EMA could function as an intervention and thus
dampen ecological validity (Ram et al., 2017). Regarding the
analysis, while aenet regression does improve prediction accuracy
and robustness by shrinking estimated parameters or setting
them to zero and can handle correlated predictors, it does not
take into account the structure of the data that is spatially
and temporally correlated (Grosenick et al., 2013; Engebretsen
and Bohlin, 2019). Depending on the tuned hyperparameters
it is also possible that the aenet selects just one subgroup
of correlated variables as a representative for the correlated
predictors. Consequently, important variables might be missed
in the presence of this subgroup of variables correlated with
them (Grömping, 2009). This may also be an explanation for why
ERN time points at other frontocentral sites failed to be selected
as predictors. Future studies should consider these aspects,
increasing interpretability. Aside from these measurement and
analysis concerns, our sample size could have been larger to
optimize prediction.

The ERN, as a neural correlate of PM processes, appears
to predict self-control in daily life. Previously, regulatory
control has mainly been assessed using within-task performance
measures. However, such measures have been criticized for
their lack of ecological validity. Our design sought to remedy
these shortcomings, and we were able to establish a more
ecologically valid connection between lab-based assessment of
PM and self-control in daily life. Altered cognitive control
processes and PMhave been proposed as underlyingmechanisms
for various mental disorders (Goschke, 2014), and the ERN
amplitude in particular has been shown to be associated with
various psychopathologies, including OCD and SUD (Weinberg
et al., 2015). Understanding how alterations in PM relate to
regulatory control might therefore aid in delineating the type of
deficit exhibited and developing targeted treatment strategies for
affected individuals.
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