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The linearity of BOLD responses is a fundamental presumption in most analysis
procedures for BOLD fMRI studies. Previous studies have examined the linearity
of BOLD signal increments, but less is known about the linearity of BOLD signal
decrements. The present study assessed the linearity of both BOLD signal increments
and decrements in the human primary visual cortex using a contrast adaptation
paradigm. Results showed that both BOLD signal increments and decrements kept
linearity to long stimuli (e.g., 3 s, 6 s), yet, deviated from linearity to transient stimuli
(e.g., 1 s). Furthermore, a voxel-wise analysis showed that the deviation patterns
were different for BOLD signal increments and decrements: while the BOLD signal
increments demonstrated a consistent overestimation pattern, the patterns for BOLD
signal decrements varied from overestimation to underestimation. Our results suggested
that corrections to deviations from linearity of transient responses should consider the
different effects of BOLD signal increments and decrements.
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INTRODUCTION

Among the different types of brain imaging techniques, blood oxygen level dependent (BOLD)
functional magnetic resonance imaging (fMRI) is known as a powerful and non-invasive technique
for the detection of brain neural activities (Deyoe et al., 1994; Logothetis et al., 2001; Logothetis
and Wandell, 2004). Relying on observing the underlying hemodynamic changes within the
brain, this technique has been adopted to study and identify brain regions or networks that
are associated with perception, attention, memory, and other mental processes, covering a wide
range of research topics (Logothetis, 2008; Kim, 2011; Cortese et al., 2012; Peelle, 2014). With
BOLD fMRI becoming one of the most common brain mapping tools since 1992 (Bandettini
et al., 1992; Blamire et al., 1992; Kwong et al., 1992; Ogawa et al., 1992), different data analysis
procedures have been developed to better study the observations that are obtained by this
imaging technique, with most of them presuming a temporal linear relationship between the
stimuli and BOLD responses (Friston et al., 1994a,b; Poline and Brett, 2012). Yet, this linear
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relationship can only be established when the BOLD response
to the sum of stimuli equals the temporal linear summation of
BOLD responses to each stimulus (Boynton et al., 1996; Birn
et al., 2001). Particularly, if the linearity holds, and there is a
long stimulus that can be divided into a shorter stimulus and
its temporally shifted copies, then the BOLD response to the
long stimulus should be approximated by the summation of the
BOLD response to the shorter stimulus and its temporally shifted
copies. This property is referred to as the superposition principle
of linearity. The present study focuses on the investigation
of the superposition property of BOLD signal decrements,
shedding light on the data analysis procedures for the BOLD
signal decrements.

Boynton et al. (1996) demonstrated the linearity of BOLD
signal increments in an earlier study, showing that the BOLD
signal increment to long visual stimulus could be predicted by
the summation of the BOLD signal increment to shorter visual
stimulus and its temporally shifted copy or copies (Boynton et al.,
1996). While the linearity of BOLD signal increments to long
stimuli has been confirmed (Birn et al., 2001; Soltysik et al.,
2004), several studies reported non-linearity for BOLD signal
increments to transient stimuli (Savoy et al., 1995; Konishi et al.,
1996; Friston et al., 1998; Robson et al., 1998; Vazquez and Noll,
1998; Birn et al., 2001; Soltysik et al., 2004; Wager et al., 2005;
Thompson et al., 2014; Alahmadi et al., 2017). Specifically, the
predictions made by BOLD signal increments to transient stimuli
tended to overestimate the BOLD signal increments to longer
stimuli. Previous studies showed the overestimation pattern for
the BOLD signal increments in the human primary visual,
motor, and auditory cortices by using stimuli with durations
less than 3, 7, and 10 s (Soltysik et al., 2004). The degree of
overestimation increased as the stimulus duration decreased. For
instance, studies revealed a slight overestimation tendency for
BOLD signal increments to 3-s visual stimulus and an apparent
overestimation pattern for BOLD signal increments to 1-s visual
stimulus (Boynton et al., 1996; Vazquez and Noll, 1998; Birn et al.,
2001; Soltysik et al., 2004).

In contrast to the various studies that tested the linearity
of BOLD signal increments, the linearity of BOLD signal
decrements has rarely been examined. While the BOLD signal
increments are thought to reflect the localized neural activity
(Deyoe et al., 1994; Logothetis et al., 2001; Heeger and Ress, 2002;
Arthurs and Boniface, 2003), the underlying neural-physiological
processes for BOLD signal decrements remain unclear (Birn and
Bandettini, 2005; Tang et al., 2009). The linearity of BOLD signal
decrements was analyzed in two previous studies which focused
on the BOLD signal decrease in response to visual stimulus
cessation. Results showed a pattern of underestimation for signal
decrements to stimulus cessations that were 3-s or shorter while
confirming the linearity for signal decrements to longer stimulus
cessations (Birn and Bandettini, 2005; Gardner et al., 2005a; Tang
et al., 2009). However, the BOLD signal decrements in these
studies have been averaged out across all selected voxels, either
for each participant or across participants, leaving the voxel-
wise variations for the linearity of BOLD signal decrements an
uncertain element. The deviations from linearity could have a
huge impact on the robustness of related analysis procedures,

yet the linearity has been presumed in the analysis procedures
for most BOLD fMRI studies (including the studies for BOLD
signal decrements). Moreover, while voxel-wise analysis has been
commonly applied in many BOLD fMRI studies, relevant studies
in observing the BOLD signal decrements are limited, making it
necessary to investigate the linear properties of the BOLD signal
decrements in a voxel-wise manner.

The present study assessed the voxel-wise linearity of both
BOLD signal increments and decrements in the human primary
visual cortex (V1) using a contrast adaptation paradigm, and a
direct comparison between this linearity was made across BOLD
response types. Participants were presented with an intermediate
contrast level visual stimulus for visual contrast adaption.
They were then introduced to increments and decrements of
contrast level to elicit BOLD signal increments and decrements,
respectively. The increments and decrements of contrast level
were set to last for 1, 3, or 6 s, with reference to the stimulus
durations that were frequently used in event-related BOLD
fMRI studies (Huettel, 2012). Linearity was tested by calculating
the similarity between linear predictions made by the BOLD
responses to the short stimulus and the measured BOLD
responses to the long stimulus in a voxel-wise manner. Results
showed that both BOLD signal increments and decrements
behaved in a more linear way for long stimuli (e.g., 3 s, 6 s)
when compared with transient stimuli (e.g., 1 s). Moreover,
while the BOLD signal increments demonstrated a consistent
overestimation pattern, the patterns for BOLD signal decrements
varied from overestimation to underestimation.

MATERIALS AND METHODS

Participants
Twelve healthy right-handed participants (five males and seven
females, aged between 19 and 29 years) with normal or corrected-
to-normal vision were recruited in the present study. The
study was approved by the Institutional Review Board of
the Department of Psychology and the Center for Biomedical
Imaging Research at Tsinghua University. All participants
provided written informed consent before the experiments.

Visual Stimuli
Four circular flickering checkerboards with different contrast
levels were presented to elicit BOLD responses. The visual
stimuli were displayed via a mirror and screen system.
The visual stimuli were presented on an LCD screen,
which was viewed through an angled mirror attached
above the head coil. As there was an upgrade of the visual
stimulus system during the research, an Invivo system
(Gainesville, FL, United States) was used for the first four
participants (screen size = 64 cm × 40 cm, corresponding
visual angle ≈ 19.7◦ × 12.4◦, resolution = 1280 × 800,
refresh rate = 60 Hz) and a Sinorad system (Shenzhen,
Guangdong, China) was used for other participants
(screen size = 89 cm × 50 cm, corresponding visual
angle ≈ 24.6◦ × 14.0◦, resolution = 1920 × 1080, refresh
rate = 60 Hz). The visual stimuli consisted of four
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circular flickering checkerboards (radius ≈ 2.0◦, checker
size ≈ 0.3◦ × 0.3◦, flickering rate = 6 Hz), which were presented
in four respective quadrants of a uniformly gray background
with their centers ∼4.4◦ away from the center of the screen.
Since it is difficult to map out the visual area boundaries
corresponding to the fovea (Zeki, 1969; Dougherty et al.,
2003; Schira et al., 2009; Wandell and Winawer, 2011) and the
meridians that are sensitive to eye movements (Engel et al., 1997;
Noory et al., 2015), the visual field corresponding to fovea as
well as the horizontal and vertical meridians were avoided to
constrain the BOLD responses inside V1. The checkerboards
with a contrast level of 25% (Michelson contrast, adaptation
contrast) were presented during the adaptation period. After
this period, the checkerboards with a contrast level of 100 or
6.25% (Michelson contrast, test contrast) were presented to elicit
respective BOLD signal increments or decrements (Figure 1).
Increments and decrements of the contrast level were introduced
to a logarithmic scale (in octaves, one step equals 2-fold), and a
4-fold contrast level change was used to elicit the largest BOLD
signal increments or decrements (Gardner et al., 2005b). In
addition to the four circular checkerboards, a circular fixation
dot (radius ≈ 0.1◦) was placed at the center of the screen
throughout the whole experiment.

Contrast ramps were introduced when the stimuli changed
their contrast level (Tuan et al., 2008). To be precise,
checkerboards with intermediate contrast levels were presented
sequentially during the change, and the contrast level would
increase or decrease linearly as time went by. There were seven
intermediate states for each change, and each intermediate
state took 1/60 s.

Experimental Design
All participants were instructed to complete a localizer
experiment and a contrast adaptation experiment in the present
study. The localizer experiment was conducted to identify the
activated voxels. The localizer experiment consisted of two types
of blocks which were a 30-s rest block and a 30-s stimulus block.
The two blocks were presented and alternated four times in each
run. No visual stimulus was presented on the gray background
during the rest block, and checkerboards with a contrast level of
100% were presented during the stimulus block.

The event-related contrast adaptation experiment was
performed to examine the linearity of BOLD responses
(Figure 1). The contrast adaptation experiment consisted of
three runs, with each run lasting for 890 s. For each run, no
stimulus was presented at the background during the initial 30 s,
then the adaptation stimulus with a contrast level of 25% was
presented for 60 s. After the adaptation phase, 24 trials were
conducted sequentially with each trial including a test stimulus
presentation followed by a 30-s adaptation stimulus presentation.
The test stimulus was presented for 1, 3, or 6 s, with a contrast
level of 100 or 6.25%. Four repetitions for each combination of
stimulus duration and contrast level were included in each run,
and the order of trials was randomized.

Throughout the whole experiment, participants were
instructed to conduct a button-pressing task. Every 1–5 s, the
white fixation dot that the participants fixated on turned red for

200 ms, and participants were required to report the change of
color with a button press within 1 s.

MR Image Acquisition
Two different MRI systems were used during the experiment due
to a mandatory upgrade of the system. A Philips Achieva 3 T
MRI system was used for the first four participants and a Philips
Ingenia CX 3 T MRI system was used for all other participants.
Upon the MRI system upgrade, a serious artifact appeared in
functional images using the new Philips Ingenia CX 3 T MRI
system when the original Echo Planar Imaging (EPI) sequence
that was used for the older Philips Achieva 3 T MRI system was
applied to the new system. Therefore, a new EPI sequence with
slightly different parameters was designed and applied under the
guidance of professionals to adapt to the new Philips Ingenia
CX 3 T MRI system. It should be noted that there were no
systematic differences in the measurements between the new and
old MRI systems.

The imaging data were recorded using a 32-channel radio-
frequency coil. The whole-brain structural images were acquired
using a T1-weighted Turbo Field Echo sequence (TR = 7.6 ms,
TE = 3.7 ms, FOV = 23 × 23 cm2, in-plane voxel
size = 0.96 × 0.96 mm2, in-plane matrix size = 240 × 240 pixels,
180 contiguous slices, slice thickness = 1 mm). Then the images
of the slices that were perpendicular to the calcarine sulcus were
collected, covering most areas of the occipital lobe extending
from the occipital pole. The structural images for these slices
were collected using a T1-weighted Turbo Field Echo sequence
(TR = 2.2 s, TE = 13 ms, FOV = 23 × 23 cm2, in-plane voxel
size = 0.45 × 0.45 mm2, in-plane matrix size = 512 × 512
pixels, 13–14 contiguous slices, slice thickness = 3 mm), and
the functional images for these slices were acquired using an
EPI sequence during the experiments (TR = 1 s, TE = 35 ms,
flip angle = 90◦, slice thickness = 3 mm). The EPI sequence
that was used for the older Philips Achieva 3 T MRI system
(FOV = 19.2 × 19.2 cm2, in-plane voxel size = 3 × 3 mm2, in-
plane matrix size = 64× 64 pixels, 13 contiguous slices, no Multi-
band SENSE used) was slightly different from the EPI sequence
that was used for the new Philips Ingenia CX 3 T MRI system
(FOV = 22.0 × 22.0 cm2, in-plane voxel size = 2.75 × 2.75 mm2,
in-plane matrix size = 80× 80 pixels, 14 contiguous slices, Multi-
band SENSE used, MB factor = 2). Lastly, additional empty
scans were included at the beginning of each functional run,
allowing the longitudinal magnetization to reach a steady state.
The additional scans were excluded from the functional data that
would be used for further analysis.

Data Pre-processing
The functional images were head-motion corrected, followed by
undergoing different pre-processing procedures for the localizer
experiment and contrast adaptation experiment respectively.
They were then registered to the structural images.

Firstly, head-motion correction was performed for the
functional data via a two-step procedure: all EPI volumes were
aligned to the first volume of the corresponding run and were
then further aligned to the first volume of the time course of the
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FIGURE 1 | Visual stimulus presentation paradigm for the contrast adaptation experiment.

localizer experiment. The 3dvolreg program in AFNI1 (Cox, 1996)
was used to conduct this procedure.

Secondly, the functional images for the localizer experiment
were further pre-processed. Considering that the frequency range
of BOLD signal fell between 0.0167 and 0.15 Hz (this frequency
range was calculated based on the simulated BOLD time courses,
see Supplementary Figure 1 for details), the linear trend for
the BOLD time course was first removed, and a band-pass filter
(high-pass frequency = 0.0125 Hz, low-pass frequency = 0.2 Hz)
was then applied to remove the low and high-frequency noise.
The 3dFourier program in AFNI was used for temporal filtering,
removing the mean and the linear trend before each filtering.

Thirdly, the functional images for the contrast adaptation
experiment were pre-processed by going through a series of
procedures. As the initial period of the time course contained
an ascending trend (the BOLD signal remained low in the first
30 s baseline, then increased to a higher level when the adaptation
stimulus was presented, see Figure 2A), the linear trends of signal
and noise were mixed together, and a complete removal of the
linear trend would remove the signal that needed to be retained.
Thus, the linear trends of the test period were removed after
the first 90 volumes in each run were discarded. The simulation
results suggested that the frequency range of the BOLD signal
was approximately 0–0.15 Hz for the remaining time course
in each run (Supplementary Figure 1), which was intermixed
with the low-frequency noise. Instead of applying a band-pass
filter on each run directly, a two-step filtering procedure was

1http://afni.nimh.nih.gov/afni/

introduced. Specifically, the high-frequency noise was firstly
removed with a low-pass filter (low-pass frequency = 0.2 Hz)
in each run, followed by recombining the time courses of
all trials of the same condition for three runs to form new
time courses (Supplementary Figure 1). For instance, if a 1-
s stimulus occurred 200 s after the start of a run, the trial
for this stimulus that corresponded to volume 201–231 of this
run would be selected to form the recombined time courses.
The newly formed time courses with signals starting from the
frequency that corresponded to the 12th FFT component (12
cycles per time course) were then filtered with a high-pass filter,
in which the high-pass frequency that equaled the frequency of
the 10th FFT component was applied to the newly formed time
courses to remove the low-frequency noise. The frequency of
the 10th FFT component was calculated according to the time
length of the newly formed time course. Each recombined time
course contained the time courses of 12 trials, and a total of 6
recombined time courses were formed for the 6 conditions (2
BOLD response type × 3 stimulus duration), respectively. As
each trial contained a test stimulus presentation followed by a
30-s adaptation stimulus presentation, the time length for the
newly formed time courses under the 1-s stimulus condition was
31 × 12 = 372 s, and the frequency of the 10th FFT component
was 10 cycle / 372 s = 0.0269 Hz, which would be applied to
remove the low-frequency noise. After the temporal filtering
procedure, the measured BOLD responses of the six conditions
were calculated for every voxel by averaging the time courses of
the 12 trials. To unify the time length of the measured responses
across all conditions, the first 25 volumes (corresponding to 25 s)
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FIGURE 2 | The typical BOLD time course for the contrast adaptation experiment (data from one representative selected voxel). (A) The BOLD time course for a
single run. The green vertical line indicates the appearance of adaptation stimulus. All other colored vertical lines indicate the beginning of each trial, and the colors of
vertical lines indicate the contrast level and duration of test stimuli. The time course displays positive and negative deflections following the contrast level increments
and decrements in most trials. A low-pass filter (low-pass frequency = 0.2 Hz) was applied to the original time course for a clearer demonstration. (B) The averaged
BOLD responses under each condition for all trials within three runs. The BOLD responses increased or decreased immediately after the contrast level increments or
decrements, respectively. The colors of BOLD responses indicate the contrast level and duration of test stimuli.

of the measured responses were used in the linearity analysis,
signal-to-noise ratio (SNR) analysis, and for calculating r2 of
the contrast adaptation experiment (see “Linearity Analysis,”
“Signal-to-noise Ratio (SNR) Analysis,” and “Activated Voxels
Selection” sections).

Finally, the functional images were registered to the high-
resolution structural images using the mrAlign tool in mrTools
(Gardner et al., 2018). The first volume for the functional images
of the localizer experiment was registered to the structural images
for the corresponding slices, where these structural images were
further registered to the whole brain structural images.

In addition, all other pre-processing procedures were
conducted by custom programs written in MATLAB R2016b
(Mathworks, Natick, MA, United States). The programs (i.e.,
cbiReadNifti.m and cbiWriteNifti.m) in mrTools (Gardner et al.,
2018) were used to read and write NIfTI files.

Activated Voxels Selection
To choose voxels that were significantly activated by the visual
stimuli within V1, the activated voxels were selected following
three steps for each participant (Gardner et al., 2005b): (1) the
boundaries of V1 were drawn based on a separate retinotopy
experiment; (2) the voxels that were significantly activated by the
visual stimuli were determined using the BOLD time courses of
a block design localizer experiment (see “Experimental Design”
section for the procedure of localizer experiment); (3) combining

the results of the previous two steps, clusters of significantly
activated voxels were chosen within V1. The result of the contrast
adaptation experiment was not involved in the selection of
activated voxels, avoiding the interaction between activated voxel
selection and linearity analysis.

The boundaries of V1 in each participant were determined in a
separate retinotopy experiment using the traveling-wave method
(Engel et al., 1994, 1997; Wandell et al., 2007). Six runs of rotating
wedge stimuli were presented to map retinotopic organization
with respect to visual polar angle, and four runs of moving
ring stimuli were presented to map retinotopic organization
with respect to visual eccentricity. Each run took 252 s and
contained 10.5 cycles. After removing the imaging data for the
first 0.5 cycles of each run, the BOLD time courses for the
runs with the wedge stimuli and ring stimuli presented were
averaged separately. Subsequently, the averaged time courses in
each voxel were fitted to the sinusoids at the stimulus frequency.
A high correlation between the actual and fitted time courses
suggested that the voxel was more likely to be within the visual
cortex. In addition, the fitted sinusoids for some voxels with high
correlation reached their peak value when the visual stimulus
appeared at vertical meridians, and the boundaries of V1 were
drawn on these voxels on the flattened cortical surfaces. The
data analysis was conducted with mrTools, and the detailed data
analysis procedures are available online2. The flattened cortical

2http://gru.stanford.edu/doku.php/mrTools/tutorialsRetinotopy
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surfaces were created by mrTools based on the segmentation
done by FreeSurfer3 (Fischl, 2012).

To determine significantly activated voxels, an index (r2)
was calculated for each voxel’s time course that was acquired
from the localizer experiment, indicating what percentage of the
variance in the time course was accounted for by the visual
stimuli (Gardner et al., 2005b). To calculate r2, an HRF was
first estimated for each voxel’s time course using a deconvolution
method (also called the finite impulse response model) (Dale,
1999; Hinrichs et al., 2000). Based on our previous study
(Gardner et al., 2005b), the deconvolution method was chosen
instead of the generally used GLM method as it does not presume
any particular shape for the time course of the HRF. The
goodness-of-fit (r2 in this study) was then estimated, which is
equal to the percentage of variance in the original time course
that is accounted for by the estimated time course. The estimated
time course was the convolution of the estimated HRF and the
time course of the visual stimuli. The value of r2 ranges from 0 to
1. The higher the value of r2, the more variance was accounted
for by the estimated time course. The value of r2 is equal to
0 if the estimated time course does not account for any of the
variance, and the value of r2 is equal to 1 if the estimated time
course accounts for all the variance. The calculation of r2 was
implemented by mrTools4. To determine the significance level
of a certain r2 value, the r2 distributions of randomized time
courses were constructed. For each participant, the BOLD time
courses for all voxels in retinotopically defined V1 were extracted
after the head-motion-correction procedure. This was followed
by random shuffling of the time points in each BOLD time
course, creating 100000 randomized time courses in total. After
these randomized time courses went through the pre-processing
procedures (i.e., removing the linear trend, filtering), the values
of r2 were computed for each time course, and these values
were used to form the randomized distribution of r2. The false
positive rate for the value of r2 for each voxel was determined
based on the randomized distribution. For example, if the value
of r2 was ranked as the 99.9% highest in the randomized
distribution, then its false positive rate would be equal to 0.001.
The voxels that had a false positive rate below 0.001 were shown
for one of the participants in Supplementary Figure 2. The
false positive rates for the voxels in V1 were corrected using the
false discovery rate (FDR) approach (Benjamini and Hochberg,
1995). A voxel was considered significantly activated when its
corrected false positive rate was smaller than 0.001. Another
randomized distribution using simulated time courses with
temporal autocorrelation was generated to verify the reliability
of this result (see Supplementary Material). When computing
the randomized distributions, programs (i.e., cbiReadNifti.m and
cbiWriteNifti.m) in mrTools were applied to read and write
NIfTI files, while all other processes were conducted by custom
programs written in MATLAB R2016b.

Clusters of significantly activated voxels were selected within
V1 of each participant. The size of clusters was defined based
on the size of the visual stimuli according to previous studies

3http://www.freesurfer.net/
4http://gru.stanford.edu/doku.php/mrTools/tutorialsEventRelated

(Horton and Hoyt, 1991; Sereno et al., 1995). In addition, the
visual stimuli in the localizer experiment elicited a BOLD signal
increment in all selected voxels. Furthermore, the r2 values for
every selected voxel were calculated using the time courses of the
contrast adaptation experiment to verify that the selected voxels
were responding to the visual stimuli in the contrast adaptation
experiment. The result showed that 98.7% of the selected
voxels had their r2 value above the chance level (false positive
rate = 0.001), suggesting that most selected voxels responded to
the visual stimuli in the contrast adaptation experiment.

Linearity Analysis
To obtain a voxel-wise test of linearity, the similarity between
measured BOLD responses and their linear predictions was
assessed in every selected voxel by calculating the value of
a similarity index, the Dice index (Dice, 1945; Cha, 2007).
The linear predictions for the measured BOLD responses were
calculated by adding the BOLD responses to the shorter stimuli
with their temporally shifted copies (Boynton et al., 1996).
For instance, to predict the BOLD signal increment to the 6-
s stimulus, the BOLD signal increment to the 3-s stimulus was
summed up with the copy of its shifted self by 3 s. In the
present study, the linear predictions of responses to the 3-s
stimulus were made by responses to the 1-s stimulus, and the
linear predictions of responses to the 6-s stimulus were made
by responses to the 1-s stimulus and 3-s stimulus, respectively.
It is important to underline that the linear prediction should
approximate measured BOLD response when the linearity holds,
whereas deviations should occur when the BOLD responses
behave in a non-linear manner. Therefore, the more the BOLD
response behaved in a linear way, the higher the degree of
similarity between the measured BOLD response and its linear
prediction. Previous studies suggested that the difference in the
amplitude of BOLD time courses was the major indicator of
non-linearity (Birn et al., 2001; Soltysik et al., 2004). Hence,
the Dice index was chosen as the suitable indicator as it is
sensitive to the difference in the amplitude between time courses.
Other similarity indices (e.g., the correlation coefficient) tend to
describe the similarity in the direction of vectors, thus they can
only describe the similarity in the shape but not the amplitude
between time courses, making them unsuitable for the present
study. Assuming a measured BOLD response (M) and its linear
prediction (P) with n time points, their Dice index was calculated
using the formula below (the subscript t refers to the tth time
point):

sDice =
2
∑n

t=1 PtMt∑n
t=1 P2

t +
∑n

t=1 M2
t

(1)

The value of the Dice index ranges from−1 to 1: the value is equal
to 1 if and only if P = M, and the value is equal to −1 if and only
if P = −M. The value increases if the similarity between P and M
increases. Wilcoxon signed ranks tests were performed to assess
whether there was a difference in the value of the Dice index
across the BOLD response types and stimulus durations. In these
tests, one data point referred to the Dice index of one selected
voxel. These tests were implemented by the “signrank” function
in MATLAB R2016b. To assess how many voxels behaved in a
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linear manner, the percentages of voxels that had their Dice index
above chance level (false positive rate = 0.05) were calculated
under each condition. The Dice thresholds for chance level
were calculated based on the randomized distributions that
were established by computing the Dice index for randomly
shuffled time courses (see “Activated Voxels Selection” section for
randomly shuffled time courses).

The voxel-wise overestimation and underestimation patterns
were examined by estimating the contrast index for the amplitude
of the HRFs in each selected voxel (Birn et al., 2001; Soltysik et al.,
2004). HRFs were fitted to the measured BOLD responses under
each condition, then the contrast index for the amplitude of
the HRFs was calculated across stimulus durations of the BOLD
signal increments and decrements, respectively. Firstly, a two-
gamma HRF was fitted to the measured BOLD responses under
each of the six conditions (see “Data Pre-processing” section
for measured BOLD responses). The measured BOLD responses
were either increment (for the 100% contrast condition) or
decrement (for the 6.25% contrast condition), thus the HRF was
either a positive HRF or a negative HRF. The positive HRF was
modeled by a canonical HRF, and the negative HRF was modeled
by zero minus canonical HRF. The formula for canonical HRF is
given below (Lindquist et al., 2009):

h (t) =
A
(

(t−tonset)
α1−1β

α1
1 e−β1(t−tonset)

0(α1)
− c (t−tonset)

α2−1β
α2
2 e−β2(t−tonset)

0(α2)

)
,

t ≥ tonset
0, t < tonset

(2)

The two α parameters were replaced by µβ + 1 in practice,
where µ is the time each Gamma function reaches its peak. The
formula has seven free parameters with ranges restricted to obtain
a reasonable fit: µ1 (from 0.5 to 8), µ2 (from 4 to 16), β1 (from 0
to 5), β2 (from 0 to 5), c (from 0 to 1), tonset (from 0 to 5), and
A (from 0 to 20). After convolving the HRF with the time course
of the visual stimuli (which was modeled as a boxcar function),
the time course was fitted to the measured response using the
trust-region-reflective algorithm (via “lsqcurvefit” function in
MATLAB R2016b). An HRF with more flexible parameters was
also applied to prove that the deviation patterns did not result
from the restricted parameters. The ranges of parameters for
the flexible HRF are µ1 (from 0 to 24), µ2 (from 0 to 24), β1
(from 0 to positive infinity), β2 (from 0 to positive infinity), c
(from 0 to 1), tonset (from 0 to 24), and A (from 0 to positive
infinity). Secondly, the amplitude of HRF was estimated as the
maximum of positive HRF or the minimum of negative HRF
(note that both the maximum and minimum represent the peak
of HRFs, thus the undershoot or overshoot after the peak was
not considered). Thirdly, the contrast index for the amplitude
of HRFs across stimulus durations was calculated for the BOLD
signal increments and decrements separately. The formula for the
contrast index is given below:

Contrast =
Ampshort−Amplong

Ampshort + Amplong
(3)

The amplitude of the HRFs for the short stimulus (Ampshort) was
compared with the amplitude of HRFs for the longer stimulus
(Amplong). To be precise, the amplitude of the HRFs for the 3-s
stimulus condition was compared with the amplitude of the HRFs
for the 6-s stimulus condition, and the amplitude of the HRFs
for the 1-s stimulus condition was compared with the amplitude
of the HRFs for the 3-s and 6-s condition. The HRF for the
short stimulus corresponded to the linear prediction, whereas
HRF for the longer stimulus corresponded to the measured
BOLD responses. Note that in the event when the BOLD
response behaved in a linear manner, the linear prediction should
approximate the measured BOLD responses, which yielded
similar HRFs, and the contrast index should be close to 0.
On the contrary, when an overestimation (or underestimation)
pattern occurred, the contrast index should be above (or below)
0. The percentage of voxels that had a contrast index above 0
was calculated under each condition. For each distribution of
the contrast index, a Kolmogorov–Smirnov one-sample test was
performed to assess if the distribution significantly deviated from
a normal distribution with its mean equaled to 0 and with the
same standard deviation as the distribution for the contrast index.
This test was implemented by the “kstest” function in MATLAB
R2016b, and one data point in this test referred to the contrast
index of one selected voxel. Like previous studies that used the
ratio for the amplitudes of the BOLD responses to assess the
linearity (Birn et al., 2001; Birn and Bandettini, 2005), the HRF
amplitude ratios across stimulus durations were also calculated
for the BOLD signal increments and decrements separately. To
calculate the HRF amplitude ratio, the amplitude of the HRFs for
the short stimulus was divided by the amplitude of HRFs for the
longer stimulus. It should be noted that the distribution of the
HRF amplitude ratio is asymmetric and unbounded for positive
values, while the distribution of the contrast index is symmetric
and ranges from −1 to 1, making the contrast index more
appropriate for the statistical analysis. Therefore, the contrast
index was used as the main indicator of the deviation pattern in
the present study.

Signal-to-Noise Ratio (SNR) Analysis
To support the validity of linearity analysis, the deviation pattern
across the high SNR group and low SNR group were compared
for the BOLD signal increments and decrements separately. For
each selected voxel, the pre-processed time courses of all trials
for the BOLD signal increments and decrements of three runs
were recombined separately, and the SNR was calculated for
each of the recombined time courses. The time course of each
trial was unified to the first 25 volumes (seconds) starting from
stimulus presentation, which yielded a task frequency of 25 s per
cycle. The SNR was calculated by dividing the magnitude of the
BOLD signal at task frequency (0.04 Hz) to the mean magnitude
of the BOLD signal at 0.33–0.50 Hz, which represented the
frequency range for high-frequency noise (Sun et al., 2013; Kuriki
et al., 2015). A Wilcoxon signed ranks test was performed to
compare SNR across BOLD signal increments and decrements.
To explore the effect of SNR, the selected voxels were divided
into a low and a high SNR group by the median SNR (two
different divisions were created for the BOLD signal increments
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FIGURE 3 | The comparison between measured BOLD responses and their linear predictions for one representative voxel. The voxel is the same as the one
presented in Figure 2. The BOLD responses and their temporally shifted copies were added up linearly to predict the BOLD responses to longer stimuli. As the
measured BOLD responses and their linear prediction have high similarity, the performances of BOLD responses to longer stimuli were close to linear. The Dice index
is a similarity index that ranges from –1 to 1 in which, higher Dice index indicates higher similarity between measured BOLD response and its linear prediction.

and decrements separately). Kolmogorov–Smirnov tests were
performed to assess if the distributions of the contrast index
differed across high SNR and low SNR groups using the “kstest2”
function in MATLAB R2016b. In these tests, one data point
referred to the contrast index of one selected voxel. Other noise
bands (e.g., all frequencies except the task frequency) were also
applied to prove that the choice of noise bands did not affect the
deviation patterns in two SNR groups.

RESULTS

A total of 223 voxels were selected from 12 healthy participants.
The number of voxels selected from each participant varies from
12 to 26. The response accuracy of the button-pressing task was
99.4% ± 1.0% and 98.4% ± 1.7% (mean accuracy ± standard
deviation across participants) for the localizer experiment
and contrast adaptation experiment, respectively, confirming
that the participants maintained fixation throughout the
whole experiment.

The BOLD time course of one representative selected voxel
is shown in Figure 2. The BOLD time course was relatively
stable during the initial 30 s of each run. Then, a rapid
increase occurred immediately after the adaptation stimulus was
presented (Figure 2A). During the 60-s adaptation phase, the
time course slowly decayed to a lower level, showing a similar
trend to the typical time course for adaptation as observed in
previous studies (Gardner et al., 2005b). After the adaptation
phase, the time course displayed transient peaks and dips

corresponding to the increments and decrements of contrast
level respectively in most trials. To combine the fMRI data
from three runs, the mean BOLD signal level for each run was
calculated after removing the first 90 volumes (duration = 90 s,
see “Data Pre-processing” section for details), and the percent
signal changes were calculated relative to the mean BOLD signal
level. The measured BOLD responses were then computed by
averaging the time course of percent signal changes for all trials
under the same condition of three runs. As shown in Figure 2B,
immediately after the contrast level increments or decrements,
the measured BOLD responses in a representative selected voxel
increased or decreased, respectively, indicating that the BOLD
signal increments and decrements were successfully elicited using
the contrast adaptation paradigm.

We examined the linearity of BOLD responses via assessing
the similarity between measured BOLD responses and their
linear predictions (see “Linearity Analysis” section for detailed
methods). Take the representative voxel for example, the
performances of BOLD responses to longer stimuli were closer
to linear: the linear predictions made by BOLD responses to
3-s stimuli approximated the BOLD responses to 6-s stimuli,
whereas the linear predictions made by BOLD responses to 1-
s stimuli deviated more from the BOLD responses to longer
stimuli (Figure 3). To demonstrate a more typical pattern, the
mean measured BOLD responses for all selected voxels from all
participants were also calculated and compared with their linear
predictions (Supplementary Figure 3).

To evaluate the similarity quantitatively, the Dice index
was calculated (Dice, 1945; Cha, 2007) for each pair of the
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FIGURE 4 | The distributions of the Dice index for different BOLD response types and stimulus durations. The Dice index describes the similarity between measured
BOLD response and its linear prediction. The vertical dashed lines indicate the upper thresholds for chance levels (false positive rate = 0.05, one-tailed, corrected),
and having a Dice index above chance level suggests that the response to the short stimulus can predict response to the longer stimulus in a linear way. Each data
point refers to the Dice index of one selected voxel. Each distribution includes all selected voxels from all participants (same for the figures below).

measured BOLD response and its linear prediction. The Dice
index describes the similarity between two vectors, in which the
value of the Dice index increases when the similarity increases
(thus more similar time courses tend to have a higher Dice
index, see Figure 3). The distribution of the Dice index of all
selected voxels from all participants (n = 223) varied across
the BOLD response types and stimulus durations (Figure 4).
The value of the Dice index for the BOLD signal increments
was higher than that for the BOLD signal decrements under
all stimulus durations (Wilcoxon signed ranks test, Z > 7.4,
p < 0.001, two-tailed, corrected, Supplementary Table 1). For
both BOLD signal increments and decrements, the responses to
the 3-s stimuli predicted measured responses in a more linear
way in comparison to responses to the 1-s stimuli, showing a
higher value of Dice index (Wilcoxon signed ranks test, Z > 11.5,
p < 0.001, two-tailed, corrected, Supplementary Table 2) and
having more voxels with the Dice index above chance level
(Figure 4 and Supplementary Table 3; the thresholds for
chance levels were defined using the Dice index distributions for
randomly shuffled time courses, corresponding to false positive
rate = 0.05, one-tailed, corrected).

As the Dice index merely describes the similarity between the
predicted and the measured BOLD responses without knowing
the deviation patterns (i.e., underestimation or overestimation),
the contrast index for the amplitude of HRFs was computed
across all stimulus durations to depict the deviation patterns

under each condition in all selected voxels (see “Linearity
Analysis” section for detailed methods). The contrast index
should be close to 0 if the linear prediction and measured
response have similar amplitudes, larger than 0 if the linear
prediction overestimates the measured response, and smaller
than 0 if underestimation exists. As shown in Figure 5, the
distributions of the contrast index for all selected voxels from
participants (n = 223) varied across conditions. The distributions
of the contrast index were compared with normal distributions
with their mean values equaling 0 and the same standard
deviation as the distributions of the contrast index in every
condition. Except for the contrast index for the BOLD signal
decrements to 1-s stimulus and decrements to 3-s stimulus
(Kolmogorov–Smirnov one-sample test, D = 0.048, p = 0.999,
unequal, corrected), the distributions of the contrast index were
significantly different from the normal distributions in every
condition (Kolmogorov–Smirnov one-sample test, D > 0.173,
p < 0.001, unequal, corrected, Supplementary Table 4). The
BOLD responses to the 3-s stimuli predicted measured responses
in a nearly linear manner, showing slight overestimation
and underestimation tendencies corresponding to the BOLD
signal increments and decrements, respectively (Figure 5 and
Supplementary Table 5). While the signal increments to a 1-
s stimulus demonstrated a consistent overestimation pattern,
the pattern of signal decrements ranged from underestimation
to overestimation (Figure 5 and Supplementary Table 5). The
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FIGURE 5 | The distributions of the contrast index for different BOLD response types and stimulus durations. The contrast index is close to 0 when linear prediction
and measured response have similar amplitudes and is larger (or smaller) than 0 when linear prediction overestimates (or underestimates) measured response. The
vertical dashed lines indicate that the contrast index equals 0. Each data point refers to the contrast index of one selected voxel.

distributions of the HRF amplitude ratio also demonstrated
similar deviation patterns (Supplementary Figure 4). In
addition, the distributions of the contrast index for the selected
voxels in each participant were computed, showing similar
deviation patterns that were observed in all selected voxels
(Supplementary Figures 5, 6). To verify that the deviation
patterns did not result from the restricted parameters in the
HRF, time courses were fitted with a more flexible HRF. The
resulting deviation patterns were found to be similar to the
distributions presented in Figure 5 (Supplementary Figure 7),
suggesting that the range of the parameters for the HRF did
not affect the deviation patterns. Moreover, as the adaptation
stimulus might affect the baseline of the BOLD responses to the
test stimuli, the linearity analysis was conducted after subtracting
the fMRI signal of the last volume before each trial in the pre-
processing stage to ensure there was no influence from the
adaptation stimulus on the results of linearity analysis. The results
of this analysis were similar to the result of the original analysis
(Supplementary Figure 8), which supported the idea that the
results of the linearity analysis were not influenced by the effect of
the adaptation stimulus. Furthermore, the eccentricity and SNR
were plotted versus the amplitude of HRF to test if there was
systematic large-scale bias in the responses (see Supplementary
Figure 9 for details).

The relationship between the contrast index and SNR was
examined to confirm the validity of the linearity analysis.
Results showed that the SNR for BOLD signal decrements was
significantly lower than those for the BOLD signal increments
(Z = 11.98, p < 0.001, two-tailed, Supplementary Figure 10).
To evaluate the effect of SNR on the contrast index, all
selected voxels from participants were divided into either a

low SNR group (n = 111) or a high SNR group (n = 112),
with reference to the median SNR of the corresponding BOLD
response type (Figure 6 and Supplementary Table 6). The
results reflected no significant difference in the distributions of
the contrast index across the SNR groups under all conditions
(Kolmogorov–Smirnov two-sample test, D < 0.19, p > 0.05,
unequal, corrected, Supplementary Table 7). While the BOLD
signal increments showed a consistent overestimation pattern,
the linear predictions made by signal decrements to the 1-s
stimulus showed an underestimation-to-overestimation pattern,
and the predictions made by the signal decrements to the 3-
s stimulus showed a consistent underestimation pattern. To
confirm that the choice of noise bands did not affect the
deviation patterns in two SNR groups, other noise bands (e.g.,
all frequencies except the task frequency) were also applied
for further examination. The resulting observation showed that
using other noise bands did not affect the deviation patterns
in two SNR groups (Supplementary Figure 11). As the SNR
for the BOLD signal decrements were significantly lower than
those for the BOLD signal increments, the underestimation-
to-overestimation pattern might be a result of the low SNR.
Therefore, the deviation patterns for the low SNR group for
the BOLD signal increment and the high SNR group for
the BOLD signal decrement were further examined as the
two groups had similar distributions of SNR (Kolmogorov–
Smirnov two-sample test, D = 0.13, p = 0.25). The observed
deviation patterns for the time courses of the two groups were
the same as the pattern for all selected voxels (Figure 6),
showing that the low SNR for the BOLD signal decrements
might not be the main reason for the underestimation-to-
overestimation pattern.
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FIGURE 6 | The distributions of the contrast index for the low SNR group and high SNR group. The low SNR group (n = 111) and high SNR group (n = 112) were
split by the median r2 of the corresponding BOLD response type. The vertical dashed lines indicate that the contrast index equals 0. Each data point refers to the
contrast index of one selected voxel.

DISCUSSION

The present study examined the linearity for both BOLD signal
increments and decrements at the voxel-wise level using a
contrast adaptation paradigm. Results suggested that linearity
was violated for the BOLD signal increments and decrements
to the transient visual stimuli, and different deviation patterns
were found across BOLD response types, stimulus durations,
and voxels. The deviation patterns for both low and high SNR
groups were consistent with the general patterns for all selected
voxels, suggesting that SNR was not the main cause of the present
deviation pattern.

In the present study, a contrast adaptation paradigm (Gardner
et al., 2005b) was conducted to compare the BOLD signal
increments and decrements under the same experimental
settings. Previous studies on the linearity of BOLD signal
decrements have chosen different baseline conditions for the
BOLD signal increments and decrements (Birn and Bandettini,
2005; Tang et al., 2009). In these studies, the BOLD signal
increments were elicited by the presentation of visual stimulus
with the baseline condition being a blank screen condition;
the BOLD signal decrements were elicited by the cessation
of visual stimulus with the baseline condition being a the
visual stimulus presenting condition. Therefore, factors related
to the different baseline conditions might influence the result of
linearity analysis (Ohzawa et al., 1982; Stark and Squire, 2001).
With reference to our previous study (Gardner et al., 2005b),

the contrast adaptation paradigm was used in the present
study to unify the baseline condition for both BOLD signal
increments and decrements, providing the possibility to make a
direct comparison between them. This baseline condition that
presents the visual stimulus for adaptation has been employed
in past contrast adaptation studies (Kohn, 2007), with results
proving that the BOLD signal increments and decrements could
be induced effectively using the contrast adaptation paradigm
(Gardner et al., 2005b).

The results of the linearity analysis for the BOLD signal
increments are consistent with previous studies. Concerning
prior studies for BOLD signal increments, the BOLD signal
increments to a relatively longer stimulus behaved in a linear
way, whereas a robust overestimation pattern was found when
the BOLD signal increments had stimulus durations of less than
3-s in the human visual cortex (Boynton et al., 1996; Friston
et al., 1998; Vazquez and Noll, 1998; Birn et al., 2001; Soltysik
et al., 2004; Wager et al., 2005). The present study found that
when undergoing a longer stimulus, the linear predictions made
by BOLD signal increments to the 3-s stimulus approximated
to the BOLD signal increments, whereas the linear predictions
made by the BOLD signal increments to the 1-s stimulus deviated
more from the BOLD signal increments, showing a consistent
overestimation pattern in almost all voxels.

Previous studies explained the physiological origin of the
overestimation pattern for the BOLD signal increment from
the perspective of neural activity and hemodynamic activity.

Frontiers in Human Neuroscience | www.frontiersin.org 11 August 2021 | Volume 15 | Article 541314

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-541314 August 25, 2021 Time: 17:47 # 12

Lin et al. Linearity of BOLD Signal Decrements

It is generally believed that the BOLD signal increment was
elicited via two steps: the stimulus first elicits an increase in
the localized neural activity, then the increased neural activity
induced an oversupply of oxygenated blood (with changes in
the cerebral blood flow, cerebral blood volume, and cerebral
metabolic rate for oxygen), which decreased the localized ratio
of deoxyhemoglobin to oxyhemoglobin through a complicated
hemodynamic transformation (Ogawa et al., 1992; Deyoe et al.,
1994; Heeger and Ress, 2002). Therefore, the overestimation
pattern could arise from the stimulus-induced neural activity,
the hemodynamic transformation, or both. Comparing with
longer duration stimuli, the neural activity at the onset and
offset of the transient stimuli contributes more to the averaged
neuronal activity. Thus, in the case of the transient stimuli,
the relatively high neural activity at the onset and offset of the
stimuli can lead to stronger averaged neuronal activity, causing
an overestimation pattern in the linearity analysis (Boynton
et al., 1996; Birn et al., 2001; Soltysik et al., 2004). Other studies
also stated that the overestimation pattern could result from
the hemodynamic transformation from neural activity to BOLD
responses. Previous studies suggested that the non-linearity
of BOLD signal increments could be modeled by modifying
components that were related to hemodynamic changes in the
Buxton’s balloon model (Buxton et al., 1998; Glover, 1999;
Friston et al., 2000; Obata et al., 2004). Experimental results
indicated that there was a non-linear relationship between the
underlying hemodynamic changes (e.g., cerebral blood flow,
cerebral metabolic rate of oxygen) and the BOLD responses
(Rees et al., 1997; Moradi and Buxton, 2013). The macro-vascular
activity was also deemed as a potential cause of non-linearity, as
the removal of voxels from the large vessels or the suppression
of large-vessel contribution could strongly decrease the non-
linearity of the BOLD signal increments (Zhang et al., 2008,
2009). The explanations from both perspectives were supported
by experimental evidence, and it was argued that they both
contributed to the non-linearity of BOLD signal increments
(Miller et al., 2001; Buxton et al., 2004; Tuan et al., 2008).

Previous studies found an underestimation pattern in the
BOLD signal decrements and explained this pattern from
the perspective of neural activity and hemodynamics (Birn
and Bandettini, 2005; Tang et al., 2009). Birn and Bandettini
(2005) simulated the BOLD signal decrements by applying a
combination of neural adaptation, neural refractory effects, and
neural responses to stimulus offsets. The simulated BOLD signal
decrements demonstrated an underestimation pattern that was
similar to the measured BOLD signal decrements. Tang et al.
(2009) modified the balloon model, assuming that there were
different blood flow-in time constants for stimulus onsets and
offsets. The measured BOLD signal decrements could be well
modeled by applying this change, and the results of linearity
analysis for both BOLD signal increments and decrements
could be predicted.

Compared with these earlier findings, an underestimation-
to-overestimation pattern was revealed for the BOLD signal
decrements to the 1-s stimulus for the first time. Former studies
usually averaged the BOLD signal decrements from all selected
voxels in the primary visual cortex (Birn and Bandettini, 2005)

or across participants (Tang et al., 2009). In contrast, the present
study focused on the voxel-wise results and found various
deviation patterns for BOLD signal decrements. Specifically,
the BOLD signal decrements to the 3-s stimulus demonstrated
an underestimation pattern, while the deviation pattern for
the BOLD signal decrements to the 1-s stimulus varied from
underestimation to overestimation. More importantly, this voxel-
wise variation in the deviation pattern could not be observed
by the linearity analysis for averaged BOLD responses, showing
the benefit of voxel-wise analysis. Furthermore, the deviation
patterns of both BOLD signal increments and decrements did not
differ across low and high SNR groups, suggesting that the SNR
was not the main cause of the deviation pattern.

The underestimation-to-overestimation pattern found in the
signal decrements mentioned above may be attributed to the
underlying physiological processes. Previous results suggested
that the BOLD signal decrements that were elicited in the
contrast adaptation paradigm may have a neural origin (Ohzawa
et al., 1982; Gardner et al., 2005b), making it reasonable for
researchers to interpret the present results from the neural
activity perspective. Past studies revealed neural activity bursts
at the onset and offset of visual stimulus (Albrecht et al.,
1984; Maddess et al., 1988; Duysens et al., 1996), which
could increase the amplitude of BOLD signal increments and
decrease the amplitude of BOLD signal decrements (Birn and
Bandettini, 2005; Tuan et al., 2008), leading to the overestimation
pattern for BOLD signal increments and underestimation pattern
for BOLD signal decrements. Likewise, neuronal habituation
might also contribute to the deviation patterns of the BOLD
responses. More specifically, the neuronal habituation suggests
that neural activity will get closer to the baseline level as
the stimulus persists (Ohzawa et al., 1985; Logothetis et al.,
2001; Bandettini, 2014), thus the BOLD signal decrements to a
shorter stimulus possess larger amplitudes, and an overestimation
pattern is predicted. These two effects may combine and give
rise to the deviation patterns in linearity for the BOLD signal
decrements. Additionally, the physiological mechanism of BOLD
signal decrements remains unclear (Birn and Bandettini, 2005;
Tang et al., 2009), opening these complicated hemodynamic
mechanisms to all possible explanations.

BOLD fMRI measures neural activity through complicated
hemodynamic changes: the BOLD response is determined by the
localized changes in blood flow, blood volume, and metabolic
rate of oxygen, reflecting the impact of localized neural activity
(Ogawa et al., 1992; Deyoe et al., 1994; Heeger and Ress,
2002). The linearity of BOLD responses suggests a direct
relationship between the neural activity and BOLD responses,
making the BOLD signal a good indicator of neural activity.
Numerous studies applied BOLD fMRI to infer neural activity,
with corresponding data analysis procedures already presumed
in regard to the linearity of BOLD responses (Friston et al.,
1994a,b; Boynton et al., 2012; Poline and Brett, 2012). Therefore,
testing the linearity of BOLD responses is necessary for both
understanding the physiological nature of BOLD responses and
proving the robustness of analysis procedures. Even if the
linearity test yields a negative result, it could promote the
development of analysis that is suitable for new circumstances.
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For instance, to account for the overestimation pattern found
in BOLD signal increment to transient stimuli, new analysis
procedures were developed based on the experimental results by
applying filtering functions (Vazquez and Noll, 1998), Volterra
series (Friston et al., 1998), and other modeling tools (Wager
et al., 2005). The present study tested the linearity of BOLD signal
decrements in a voxel-wise manner, shedding new light on the
analysis of the BOLD signal decrement.

Limitations
Limited by the length of the experiment, only three contrast levels
(100, 25, and 6.25%) were chosen for the present study. The
three contrast levels were chosen based on a logarithmic scale
(Ohzawa et al., 1985), maximizing the difference between the
contrast levels. Future studies are advised to apply more contrast
levels in the experiment which can help to better understand
the relationship between the stimulus intensity and the linearity
of BOLD responses.

While previous studies used the averaged time courses for
linearity analysis (Birn and Bandettini, 2005; Tang et al., 2009),
the present study used the time course of each selected voxel.
Although the BOLD signal increment showed a consistent
overestimation pattern, the BOLD signal decrement showed
an underestimation-to-overestimation pattern across the time
courses of the selected voxels, which was different from the
underestimation that was revealed in the averaged time courses.
As the SNR of BOLD signal decrement was lower than the SNR of
BOLD signal increment, the underestimation-to-overestimation
pattern in the BOLD signal decrement could potentially be
a result of the low SNR. To control the effect of the SNR,
the deviation patterns of the time courses with similar SNR
distribution were computed, and the observed deviation patterns
for both BOLD signal increments and decrements were similar
to the pattern for all selected voxels. This result suggested
that the low SNR in the BOLD signal decrement was less
likely to be the cause of the variations in deviation pattern.
Nevertheless, the effect of SNR could not be completely excluded,
and obtaining data with a higher SNR could increase the
reliability of the results.

Apart from the BOLD signal decrement in the present study,
previous studies also demonstrated another type of stimulus-
induced BOLD signal decrease that was relative to the baseline
condition, which was named as the negative BOLD responses
(Fransson et al., 1999; Shmuel et al., 2002, 2006; Boorman
et al., 2010; Gonzalez-Castillo et al., 2012; Klingner et al.,
2015). For example, visual stimuli could elicit negative BOLD
responses around the classical positive BOLD responses in the
human visual cortex (Shmuel et al., 2002). Testing the linearity
presumptions under the experimental settings for negative BOLD
responses will help to reach a more general conclusion about
the linearity of signal decrements in the future. In addition,
dividing the BOLD responses into BOLD signal increments and
decrements only focuses on one aspect of the temporal dynamics
of BOLD responses. The BOLD responses demonstrate widely
diverging temporal signatures across brain regions (Gonzalez-
Castillo et al., 2012), thus further explorations are invited to

examine the linearity presumption beyond the scope of BOLD
signal increments and decrements.

CONCLUSION

In summary, the present study examined the linearity of
BOLD signal increments and decrements at a voxel-wise
level. Unlike the uniform overestimation pattern in the BOLD
signal increments, the BOLD signal decrements to a transient
stimulus (e.g., 1-s stimulus) showed patterns varying from
underestimation to overestimation. Further studies are required
to gain more insight into potential physiological causes.
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