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In cognitive science, Theory of Mind (ToM) is the mental faculty of assessing intentions
and beliefs of others and requires, in part, to distinguish incoming sensorimotor (SM)
signals and, accordingly, attribute these to either the self-model, the model of the
other, or one pertaining to the external world, including inanimate objects. To gain
an understanding of this mechanism, we perform a computational analysis of SM
interactions in a dual-arm robotic setup. Our main contribution is that, under the common
fate principle, a correlation analysis of the velocities of visual pivots is shown to be
sufficient to characterize "the self" (including proximo-distal arm-joint dependencies)
and to assess motor to sensory influences, and "the other" by computing clusters in
the correlation dependency graph. A correlational analysis, however, is not sufficient
to assess the non-symmetric/directed dependencies required to infer autonomy, the
ability of entities to move by themselves. We subsequently validate 3 measures that
can potentially quantify a metric for autonomy: Granger causality (GC), transfer entropy
(TE), as well as a novel “Acceleration Transfer” (AT) measure, which is an instantaneous
measure that computes the estimated instantaneous transfer of acceleration between
visual features, from which one can compute a directed SM graph. Subsequently,
autonomy is characterized by the sink nodes in this directed graph. This study results
show that although TE can capture the directional dependencies, a rectified subtraction
operation denoted, in this study, as AT is both sufficient and computationally cheaper.

Keywords: theory of mind, cognitive development, autonomy, attention, agency, sensorimotor learning,
developmental psychology, computational cognition

1. INTRODUCTION

We are just beginning to uncover the mysteries of how the brain makes sense of the surrounding
world and learns to perform social interactions during development. Babies are very sensitive
to motion and use it to organize visual scenes into higher-order structures and seem to rely on
instantaneous, immediate motion co-occurrences (Gelman, 2003; Luo et al., 2009). Babies learn to
recognize themselves and other agents (Gelman, 2003) and develop a notion of autonomous entities
that can actively function by themselves (like persons or animals), or need to be actuated by others
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(like objects and toys). That is to say, babies learn to distinguish
animate from inanimate entities early on Luo et al. (2009) and
Opfer and Gelman (2011) (thus we can also say that babies learn
to assess whether an entity is autonomous or not). In addition,
there is evidence that the brains of vertebrates have ancient
neural mechanisms susceptible to the detection of animacy, as
they call it in Mascalzoni et al. (2010) study. Learning these
distinctions is a basic prerequisite of how babies acquire social
cognition (Baillargeon et al., 2015), which is closely tied to the
acquisition of a Theory of Mind (ToM), that is, learning to
assess and predict beliefs, intentions, and goals of others. Recent
developments in AI (based on Bayesian probabilistic inference
Baker etal., 2011 and Deep Learning Rabinowitz et al., 2018) have
attempted to address the challenge of learning to acquire a ToM,
that is assessing and predicting the beliefs, intentions and goals
of other agents (refer to also Freire et al., 2018, 2019 for a control
theoretic perspective). ToM can be assessed at many levels,
but a reliable ultimate test should be able to answer questions
about states of the environment of the agent (including other
agents), as in Nematzadeh et al. (2018), in which neural models
augmented with external memory structures are evaluated in
question answering. Indeed, the underlying question is whether
cognitive mechanisms underlying action and perception in the
physical world can somehow be generalized to the social setting,
involving beliefs and intentions of other agents (Arsiwalla et al.,
2016, 2017a,b; Verschure, 2016). The long-term goal of this
research agenda is to provide a computational basis for how
ToM abilities could arise from low-level sensorimotor (SM)
interactions, that is, bottom-up from agent interaction behaviors
(Freire etal., 2018,2019). In this sense, we differ from multi-agent
approaches like (Marsella et al., 2004), where beliefs are symbols
added as logical facts and inference is performed through rule
systems. We also distinguish this minimal correlational/temporal
low-level SM approach from learning complex parameterized
neural nets like (Rabinowitz et al., 2018). Presumably, in a later
phase of learning and development, and via building up from
the bottom up interactions, ToM abilities may be refined via
top-down optimization of social behavior and cooperation.
Acquiring ToM abilities requires labeling and clustering the
SM data stream of the interaction of the agent in terms of which
visual features belong to its own body, which ones belong to other
entities, which ones can be controlled by its actuators, and which
ones can be controlled by themselves or are passive and need
others to move. The problem of deciphering self from others in
robotics and AI has been addressed by several computational
models in studies such as Brody et al. (2017), Thomas et al.
(2017), Sanchez-Fibla et al. (2017b), Rybkin et al. (2018), and
Pertsch et al. (2018). We approach the labeling problem from the
perspective of identifying what are the minimal requirements to
distinguish self, other, and autonomous or passive entities from
visual feedback alone. Under the Gestalt principle of common
fate: “what moves together, clusters together,” we show that
a simple correlational analysis of visual pivots’ velocities, can
suffice to distinguish “self” and “other” (refer to sections 2.4, 3.1).
This happens in the long term, as in the short term, the different
parts of the same body may not move together as they may be
actuated by different joints moving in different directions.

We subsequently introduce an Acceleration Transfer (AT)
measure (Sections 2.6, 3.2) targeting the extraction of directional
dependencies between visual pivots for the detection of
autonomy defined as the capacity of entities to move themselves.
Pairwise directional dependencies cannot be captured by
correlation analysis. Addressing the detection of autonomy or
animacy (as named by Mascalzoni et al., 2010 and widely
addressed by the Developmental Psychology literature Luo et al.,
2009; Opfer and Gelman, 2011; Baillargeon et al., 2015) can be
considered a novelty and a contribution from a computational
modeling perspective (refer to section 2.7). To the best of our
knowledge, we are not aware of any other research that state
what are the minimal computational requirements for detecting
autonomy, which we postulate could be the AT among visual
motion pivots (our SIPs). Acceleration is directly linked to force
(through Newton’s 2nd law), and it reflects shorter events in
time, compared to velocity. In addition, there are connections
to studies providing neurophysiological evidence of acceleration
responsive neurons as in Schlack et al. (2007).

The underlying principle of AT measure to detect autonomy
is that inanimate entities can only receive acceleration and can
never create it by themselves; so, passive entities can accelerate
but only through others. It would seem like we are not strictly
required to look at pairwise dependencies, but the acceleration
of an inanimate object may have been caused by another entity
several steps before; so, we need to assess the dependencies of all
pairwise interactions. To make fewer assumptions, we face the
autonomy identification problem without relying on haptics or
filtering by the proximity of visual pivots. Thus, we switch to an
alternative underlying principle: inanimate objects will always be
a sink in the directional graph of pairwise interactions defined
in section 2.8. The so-called, SM graph can be computed from
the AT and other standard measures, such as Granger causality
(GC) or transfer entropy, although we show that AT has some
advantages as discussed in section 3.3. We evaluate and validate
both the velocity correlation and AT analysis (with the estimation
of directed SM graphs) in a bi-manual, multi-agent, the ball
sliding task (freely available!, refer to Figure 1 and section 2.2
for details).

2. METHODS

We define the components that are going to constitute
the sensory space and the motor actuators via a simulated
environment that will emulate a newborn in the presence of
passive objects and another agent. We will describe which
sensory and motor signals we will consider and we will build
a methodology to address how one can minimally extract, and
make sense, the SM stream of data. The particularity of this
method is that we address this problem solely from the visual
modality. But we do not follow a typical deep learning approach
(Mnih et al., 2015), instead, we identify the minimal elements

'The simulation can be downloaded from https://github.com/santmarti/
PythonRobot2DSim. A video TwoArmSetup.mp4 is also available under the folder
videos in the same github repository. Notebooks for the generation of figures of
the paper will also be made available.
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object increases as well.

FIGURE 1 | Sally-Anne robot setup. (A) Two 3DOF robotic arms face each other and, in the middle, an object is constrained to move in a horizontal axis and cannot
be seen when under the boxes (indicated by the green and red squares). The agents perceive the sensory interest points (SIPs) s, ..., S placed in the arms and
object. Agents also receive tactile feedback when contacts occur (indicated as red circles). We also annotate the different motors (mg, m+, mz for the lower arm and
msg, ma, ms for the upper arm) placed in each join. The haptic signal of every SIP (that we denote h;) is simulated and computed from proximity to the real contact point
(which may be between SIPs). The h; intensity is depicted with a red circle centered at the corresponding SIP position. (B) Sensorimotor time series in a moment of
contact of SIPs s1 and ss. The haptic signal hy (green dashed line) increases suddenly at the moment of contact (at 40 time steps). At this point the velocity of the

time (steps)

from which we can start reasoning about visual motion cues,
through visual pivots reminiscent of the biological motion (BM)
pivot dots (which are in turn related to social cognition (Pavlova,
2011).

2.1. Notation

The visual modality is reduced to a set of relevant sensory interest
points (SIPs), as we formalize in this study based on Sdnchez-
Fibla et al. (2019). Reducing the visual input to a set of SIPs does
not seem to be a limiting assumption, as humans and animals, in
general, have the ability to understand and recognize action from
the observation of a few dots attached to relevant parts of a body
in motion, also called BM. BM is also related to social cognition as
patients with deficits in social interaction are also compromised
in visual body motion processing (Pavlova, 2011).

A SIP is attached to a relevant feature of the visual field
(i.e., the end point effector, at the junction between two arm
links, at the corner of a square object, etc.). Refer for example
the prototypical SIPs that we chose for this setup in Figure 1.
SIPs can be computed from a stream of images via different
methods (including deep learning techniques), but a method that
would provide direct mapping is the so-called Scale Invariant
Feature Transform (SIFT) points, which provides local feature
pivot points (Lowe, 1999).

A sensory state s consists of a set of SIPs: s = {sg,- -+ , i, -}
each s; being {p; = {x;,yi}, hi} where p; corresponds to its 2D
Cartesian coordinates and h; a real value haptic signal normalized
from 0 to 1. The changing signal information for each SIP can be
extracted from the temporal SM data: As; = {v; = (v}, v}, d@; =
{a?’ a{ }> Ahl}

Where v; and g; denotes the velocity and acceleration vector
of s;, respectively. We are going to assume that vectors are

normalized, ||v;|| € [0.1], ||@;|| € [0.1]. Ah; is the haptic
signal change. In continuation we will consider and refer to
time series of positional information of SIPS (x, y coordinates),
velocities of SIPs (v velocity vector with v*,v components and
magnitude ||v||), and accelerations (@ acceleration vector with
a*, @ components and magnitude ||a||).

The motor apparatus of a newborn includes over 650 skeletal
muscle actuators. We restrict this study to a small number of
actuators. A motor state m = {my, ..., m,—1} corresponds to the
angles of every joint m; € [0...27r]. The motor space is denoted by
M. A delta motor state Am = {Amy, ..., Am,_1} is the velocities
of each joint, n being the total number of DOFs.

2.2. Implementation of the Sally-Anne

Paradigm

The so-called Sally-Anne setup is a robotics implementation
(depicted in Figure 1A) inspired from the psychological
experiment with the same name, designed to probe attribution of
beliefs and was first studied in relation to autism (Baron-Cohen
et al., 1985) (although the result stating that autistic subjects
fail at the “Sally-Anne test” is still under debate Tager-Flusberg,
2007). Let us briefly summarize the experiment. The participant
is presented with two boxes and an object and an imaginary
character, Sally, places the object in box A and leaves the room.
Another imaginary character, Anne, puts the object in the other
box B. Sally comes back and the participant is asked, in which
box will Sally look for the object? The test is passed if box A is
chosen, as, although we know that the object is in box B, Sally
cannot know it because she did not see Anne transferring the
object to the other box. This paradigm thus probes the ability of
the participant to model belief states of the other.
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This setup here, inspired by the Sally-Anne experiment, is
a synthetic computational implementation of the Sally-Anne
paradigm. It consists of two agents (two robot arms), an object
and two colored boxes or areas that only occlude the entities
underneath (refer to Figure 1A). The two-arm robots face each
other so that there is a region in the space where both interact,
thereby affecting each other’s actions. Depending on the current
state, each agent can move freely, interact with the object alone,
interact with the other agent, or interact with the other agent
using the object. The object is a sliding ball that is constrained to
move in an horizontal line between the two boxes. Each entity in
the setup has associated sensory points (attached to joints in the
robot arms and the object). In total, seven SIPs are considered:
three in each arm of the robots and one in the object. End effector
SIPs are denoted by s = so and ;g = s3. A SIP is added at the
object: s,5; = s5 at the center. Each agent perceives the totality of
the visual cues of the scene (all SIPs, from sy to se, the object) and
their haptic signals. Each robot arm has three joints that can be
actuated independently by each agent.

The haptic signals in this setup are simulated and are
computed considering their distance to the closest contact point
(in Figure 1A haptic signals are represented by red circles
centered at its SIP). The haptic signal hy seems to increase
inconsistently, but, as shown in Figure 1A, hy is faint on
initiation of contact and increases slowly because it gets closer to
the contact point between the two shapes (rectangle and circle).
On the other hand, h; is closer to the real contact point so it
increases rapidly, as shown in Figure 1B.

2.3. Data Generation

Sensorimotor data is generated from a mixture of behaviors:
motor babbling and goal-directed movements targeting the
object. Motor babbling assigns random velocities to the motor
joints of the arms (Am; for i € 0,1,2 for the bottom agent
and i € 3,4,5 for the top one) at different moments. We need
independent motor babbling to not cause an artificial correlation
between the agents due to the synchronous randomly generated
behavior. We sustain, for different time steps, the assigned
motor torque to each joint m;. We need to sustain the torque
applied to generate a consistent movement with a consistent
effect during a certain time. Because of the characteristics of the
setup, we needed to set certain rules on top of the independent
random signals sent to the motor joints to generate a rich and
representative dataset. For example, when the object reached an
end-point under one of the two boxes, the object was reset in the
middle again, and the two arms were positioned at their initial
positions. As an example, in Figure 1B, we show the time series
of s; and s SIPs before and during an object contact.

Generating the behavior of agents in this way, we acquire a
dataset of all SIP data streams (position, velocities, accelerations,
and haptic contacts) and we are thus ready to apply the
corresponding statistical tools to determine the nature of
every SIP.

2.4. Correlational Analysis
We start by presenting a minimal method to assess which
elements of the visual sensory scene correspond to the self

and the rest (other entities, objects, or other agents). We
do so by a correlational analysis of the different streams of
data from the generated dataset. The Pearson’s correlation (or
simply correlation) coefficient accounts for the linear relationship
between a set of points with (x, y) coordinates. In general, these
coordinates are the outcome of two random variables. In this
case, we look at the correlation between SIP measures, like x
coordinates, velocities, accelerations, and we also consider their
haptic feedback values. The correlation between two random
variables X and Y is then defined by:

cov(X,Y) _ E[(X — pux)(Y — uy)]

0x0y

pxy = corr(X,Y) =

0X0y

where px, 1y are the respective variable means and oy, oy are
the SD or variances. Correlation is undefined when either one of
the variances is 0 (division by zero). This happens, for example,
when one variable is a constant value. This can happen in this
case when looking for correlations of the end-point of an arm s
and the object s, in the case where the object remains static and
untouched.

We aim to stick with the simplest methods possible to extract
self/other/object characteristics from SM data. But, of course,
correlation comes with its limitations. First, Pearson’s correlation
captures the amount of linear relationship between two variables
and can have some trouble in detecting dependencies that are not
strictly linear, like the ones between motor signals ; and sensory
point coordinates of SIPs s;. Second, correlation does not allow us
to infer temporal or causal relationships between sensory events.
A correlational analysis does not provide directional information
as the Pearson correlation coeflicient is symmetric: corr(X,Y) =
corr(Y, X).

2.5. Temporal Dependencies

In the context of correlational analysis, the one obtained by
computing corr(X,Y), from data time series extracted from
SIPs, the temporal structure of data is completely discarded.
The sampled values of variables X and Y have no temporal
relationship and they are only inspected in pairs at the same time
point t. There are many ways of considering temporal (and order)
information. The main principle used when doing this is to assess
what a second-time series adds to the prediction of another one.
What is the added prediction value of time series x%" to time
series y-"? Consider the sample at time ¢, y'. How the samples
%'~ help to predict y* in addition to y' .

Let x* and y*" be stationary time series. x*" is said to
Granger cause %" if it has an added value in the prediction of
%1 If values of x%/~! add explanatory power to y' (in addition
to y0+1=1), x% is said to Granger cause y*".

Granger causality is based on a linear correlation test between
past and current values, implemented with a statistical ¢-test.
We based all our previous analysis on correlations, which only
capture linear relationships, and these were sufficient to extract
the proximo-distal and motor to sensory relations. It seems
a perfectly logical approach to use GC to capture directional
relationships.

0...n
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Transfer Entropy (Vicente et al., 2011) can deal with non-
linear relationships, and many indicate that it is more suitable
for quantifying causality (Razak and Jensen, 2014). TE comes
with its drawbacks: taking into account just a small-time history,
necessary for its computation, it becomes inefficient to compute
and demands a lot of data to have maximum exposure to all
history combinations.

Both measures, GC and TE, have an additional parameter
which is the lag or history time steps that the computation takes
into consideration. The lag is an additional parameter that in the
case of TE is problematic as it demands an increasing exponential
number of samples to be accurate (as the history increases).

Granger causality and TE are based on distribution of the
sampled data, and we need a measure to operate on a trial-
by-trial basis. Thus, we cannot ensure stationarity of the time
series when dealing with isolated trials. Refer to Figure5 for
example, in which we show a single approach and contact
trial of one arm and the object. Although we can make linear
piece-wise relations (using the modulus/magnitude of velocity
and acceleration vectors), the effect detection mechanism that
we are looking for is not linear as a whole. When two SIPs
enter in contact, there is first an anti-coupling followed by a
progressive coupling after contact (we explain this in more detail
in continuation).

2.6. Acceleration Transfer Measure

To overcome some of the drawbacks of GC and TE (as discussed
in previous section 2.5) which also hold for other measures,
such as Copula-Based measure (Junker et al., 2019), we define
an alternative instantaneous AT measure. By instantaneous and
not temporally dependant we mean that the AT measure does
not have a lag/history parameter because it can be computed at
a single time step. The AT measure is computed according to
an instantaneous positive subtraction of accelerations between
two SIPs. Its computation follows the intuition that if a SIP is
losing acceleration it can be because it is being transferred to
another SIP. As Newton’s law states (F = m.a), acceleration is
proportional to force, meaning that AT can be seen as a form of
force transferred or being applied to.

Consider a?"'t"'”,af"'t"'” to be the sampled accelerations of
SIPs i and j from time step O to n. Then, the AT transfer from
SIP i to j at time ¢ will simply be the subtraction of accelerations
at time £: T(aﬁ,a}) = al — af. We could then consider the AT
between the two SIPs Ayy(a;, a;) to be the sum over all the time
steps Ayo(ai, aj) = 25{20 T(af?, a]l‘). We are going to consider A,
to be the simplest version 0 of the measure. We are then going
to add three filters that will target the AT events that we want
and will constitute versions 1, 2, and 3. The final AT measure will
contain all filters and will be considered version 4.

e Version 1. We are going to filter the instantaneous transfer
by the minimum of the two signal values, that is, the transfer
cannot be bigger than the minimum of the two signals. The
intuition behind this filter is that if signals are very different in
magnitude we should be careful not to allow a too big transfer
also because the signals may not be related.

min{a} — af, min{|af], a} })
k

i

ek k

ifay —a¥ >0
T(ak,a¥) = . o
max{aj —a

—min{|aff|,|a]’F|}} otherwise

e Version 2. If one signal is close or equal to 0, then, the
instantaneous transfer is also set to 0. This filter can be
enforced by adding a multiplying factor to the instantaneous
transfer T(aé‘, a}‘) = (a]].C — af.‘) * min{1, |af.‘||ajl.‘|}

e Version 3. Signals should have opposite signs. We consider
only transfers in which one signal is losing acceleration while
the other is gaining it. This is because we are interested in
collisions and moments of energy exchange. We enforce this
filter with the following inequality that needs a small epsilon
(i.e., € = 0.01) to filter out signals of the same sign:

k ko k k k k
T(ak ak) — a — 1f|ai|+|aj|z|ai+aj|+e
(apaj)— .
0 otherwise

The AT measure that we use (version 4) includes all filters. We
analyze the effects of the three filters in the Results section 3.2
applied to different synthetic generated signals.

The AT measure can be refined further using filters of visual
proximity or haptic signals from SIPs h;, with the additional
assumptions that there can not be a transfer of acceleration
between two SIPs that are not touching or that are not in
close visual proximity of each other. We prefer to address the
more general setting by limiting the number of underlying
assumptions, and focusing on showing the viability of this
measure as a computationally cheaper and sufficient alternative
rather than a specific implementation. Haptic signals as well
as visual proximity are neverthesless strong canditates for
additional assumptions in developmental settings and can be the
basis of further research.

2.7. Detecting Autonomy

We define the autonomy (of an entity) as the ability to
move by itself. In the setup that we present, two autonomous
entities constitute the lower (with associated SIPs s, s1,s2) and
upper (associated SIPs s3,s4,55) arms and both are controlled
by independent motor signals (mg,my,my, and ms3, my, ms
respectively). The object and its associated SIP s¢ is a passive
entity, non-autonomous, it cannot move by itself but at certain
moments it can appear to be moving without any contact
(in a low friction environment for example). Thus, the main
characterizing property of a passive entity is that it never starts
moving without a previous contact, in other words, it never
accelerates by itself: an active entity must inject kinetic energy
into it. To assess autonomy we need to go beyond correlation and
distinguish which SIPs would be dead-ends in the path of directed
relations.

2.8. The Sensorimotor Graph

Sensorimotor graphs can be constructed in different ways. For
instance, in the context of the Distributed Adaptive Control
(DAC) (Duff et al,, 2011), a directed-graph network stores a
compacted version of past sequences of experiences. In the graph,
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nodes are SM couplets including the reward of the experience
of the agent and edges are reinforced when experiences have
co-occurred. Other approaches consider SM graphs as memory
structures: Toussaint (2006) presents a similar SM directed-graph
network approach.

In this study, we consider a SM graph of a different kind.
The visual features accessed through the so-called Sensory
Interest Point data (SIP coordinates, velocities, accelerations,
haptic signals) are considered random variables, and the graph
corresponds to the dependencies between these variables. Nodes
of the graph are SIP-related variables and edges are extracted
dependencies between them (correlations for instance). Indeed,
the matrix of pairwise correlations can be binarized using
a threshold, thus obtaining an adjacency matrix defining an
undirected graph as correlation is symmetric. Using AT, we
can produce an asymmetric matrix thus leading to a directed
graph. The same is true for any other measure like GC and TE.
From their matrices of pairwise dependencies (that we explain in
section 3.3), one can extract a directed SM graph.

The directed SM graph can be the fingerprint of autonomy
as an inanimate entity should not be capable of transferring
acceleration to other entities; thus a non-Autonomous entity
will always appear as the sink of a directed SM graph. An
inanimate/non autonomous/passive entity is characterized as
being the end node in the directed SM graph of the SIP AT
measure. There might be rare occasions where this assumption
is violated, such as in the case of a billiard ball, where we transfer
acceleration to the white ball, which in turn transfers acceleration
to other balls, but always losing energy, never gaining it.

3. RESULTS

In the current section we present numerical results obtained
from the SM data set that we extracted from the Sally and
Anne setup (explained in section 2.3). We first present a

descriptive interpretation of the correlation analysis of the
Sensory Interest Point (SIP) interactions (refer to section 3.1
as seen previously in Sdnchez-Fibla et al. (2017b). From the
correlation limitations described, we provide results (section 3.2)
of the newly introduced AT measure (Methods section 2.6) along
with a comparison of the measure with GC and TE measures.
The SM Graphs are alternative ways of visualizing the pairwise
interactions between SIPs according to the different measures
considered.

3.1. Correlational Analysis

We found that patterns of correlations arise between velocities of
SIPs (Figure 2A). A signature of the proximo-distal organization
of the arm of each agent is present. The closer the two joints
are, the greater their correlation is: corr(vy,v}) is less than
corr(v{,v3) for the bottom agent and corr(vy,v}) is less than
corr(vy, vz). This inter agent correlation (proximo-distal) pattern
is nearly identical between the two agents. Both include the
same chessboard pattern as observed in Figure 2A top-left and
bottom-right (excluding v¢ row and column which corresponds
to the SIP in the object). By matching their own joint velocity
correlation pattern with the one observed from another agent,
this could provide a first level of mirroring between agents, where
each one is able to match its kinematic structure with that of the
other.

We also observed a correlation of the object velocity v;
with both arms having different intensities following the same
proximo-distal pattern under different conditions: (i) when not
in contact (Figure2B), (ii) when in contact with the lower
arm (Figure 2C), (iii) when in contact with the upper arm
(Figure 2D), and (iv) when in contact with either one arm or the
other (Figure 2E). This pattern may also provide a second level
of mirroring, where agents can discover that similar movements
of the other provide similar effects on the objects, paving the way
to a notion of shared affordances, useful for joint action planning.
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FIGURE 2 | Velocity correlation matrices of SIPs.. (A) Velocity correlation matrix of all the SIPs generated from 50,000 random SM interactions. (B) Correlation
between SIP velocities, object velocity vi and arms vj, ..., vi, when there is no contact (no haptic signal active). (C) Correlation between object and arms SIP velocities
when there is contact between the lower arm and the object. (D) Correlation between object and arms SIP velocities when there is contact between the upper arm
and the object. (E) Correlation object and arms SIP velocities when there is contact between the object and either arm.
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FIGURE 3 | Motor and sensory correlations. (A) Correlations matrix between motor activation (mg...ms signals) and SIP velocities vo, ...,vs, generated from 50,000
random SM interactions. (B) Correlation column of all motor activations with the object SIP velocity v for SM data when there is no contact (no haptic signals active)
(C) Correlation of motors with object SIP velocity when there is contact between the lower (bottom) arm and the object. (D) Correlation of motors with object SIP
velocity when there is contact between the upper arm and the object. (E) Correlation between motor and object SIP when there is contact between the object and
either arm. (F-H) All data points and linear fit for m2 and SIP velocities v§, v}, vi. The r-values correspond to the equivalent correlation matrix color values.

We found motor signals to be correlated with velocities of
SIPs (Figure 3A). The bottom joint of the bottom agent (m;) is
strongly negatively correlated with the x velocity components of
sensory points sp, 51, and s;, because this joint moves the whole
arm. The same happens with the top agent. This matrix can assess
controllability characteristics and potentially restricts the forward
model to be learned for the relevant SIP signals: i.e., the agents
could filter out SIPs that are not correlated to its available motor
signals.

The object x velocity component vy does not appear to
correlate with any motor signals (Figure 3A) because, in this
study, we consider the totality of the interaction (with and
without contact). For this reason, in Figure 2 we distinguish the
different conditions with regard to haptic signals: (i) when no
contact is made (Figure 3B), (ii) when contact with the lower
arm is made (Figure 3C), (iii) when contact with the upper arm
is made (Figure 3D), and (iv) when contact with either arm is
made (Figure 3E). This motor to object correlation (when in
contact with each arm) is reminiscent of the notion of affordance
(Sanchez-Fibla et al., 2011), as it characterizes the effect of a
motor action into a movement characteristic of the object.

In addition, the correlations change sign in the x coordinate
for the top and bottom arms. This is because the arms are
initialized to different positions and one has a tendency to touch
the object in one direction and the other in the opposite one.

Summarizing the correlational velocity analysis captures well
the principle of “'what moves together clusters together” on the
long term and is capable of distinguishing self/other (proximo-
distal relations) and motor to sensory dependencies.

3.2. Acceleration Transfer

We present results of the AT measure introduced in section
2.6, which computes an integration in time of instantaneous
acceleration transfers, that is a subtraction of accelerations at
a given time step plus a series of filters explained in section
2.6. We plot in Figure 4 an evaluation of all versions of the AT
measure (columns) for different generated signals (rows), which
all include a small normally distributed noise. In the first row,
we plot two signals that include a Gaussian of opposite signs.
The physical interpretation of these signals could be the end-
point of an arm making contact with the object. The object
would then gain acceleration (y signal in the figure) and the end-
point of the arm would lose it (x signal). These signals can be
considered a crude approximation of AT from an animate object
to an inanimate object (refer to Figure 5 explained below). In
the second row, we add some lag to one of the signals emulating
some sort of compliance or delayed actuation. We observe that
the transfer starts to fade away with a greater lag. In the third
row, we plot two Gaussians of the same sign. A possible physical
interpretation is that two SIPs are hit by a third one providing
energy to both. It makes sense to filter out this situation as it
does not correspond to an exchange of acceleration (done by the
filter introduced in Version 3). The fourth row shows a variation
of the previous situation where there is a lag between the two
same signed signals. Fifth row depicts two random signals of the
same sign. The last row of Figure 4 reveals a weakness of the
AT measure as it may detect continuous false-positive transfers
from random signals of opposite signs. These random oscillations
are not typical of the minimal jerk movement trajectories of
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FIGURE 4 | Acceleration Transfer (AT) measure versions evaluated on different synthetic generated signals. The rows correspond to different generated signals: 1) two
Gaussians of opposite signs, 2) two Gaussians of opposite signs with a lag, 3) two Gaussians of the same sign, 4) two Gaussians of the same sign with a lag, 5)
random smoothed signals, 6) random smoothed signals of opposite signs. The columns correspond to the different versions of the AT (refer to text for further details):
V0) signal subtraction, V1) filter by minimum value, V2) filter by closeness to 0, V3) filter by value sign, and V4) all Filters included. In the legend at each row, we show
the AT value, the Granger Causality (GC) p-value, and transfer entropy (TE) for each signal. A GC p < 0.05 means x signal Granger causes y. TE is in bits.

human behavior or the ones that one can program in a robot
arm.

We continue with a prototypical example of an arm
approaching and making contact with the object. Figure 5 shows
an example of the AT measure and how it captures the transfer
of acceleration from the lower arm (SIP s¢) to the object (SIP sg).
At the moment of contact, SIPs from the arm (acceleration time
series ag) and the object (acceleration ag) anti-correlate, giving
rise to the moment of acceleration transfer, and then synchronize
just afterward, both tending to O after the force of the initial
contact is exhausted and they continue to move at a constant
velocity. AT is 0 in this last part because of the filter applied in
version 3 that discards transfers of the same sign. AT is 0 before
contact and at the end because of the filter applied at version 2

that sets to 0 the transfer if one of the two signals is close to 0.
The different version filters of the AT measure are explained in
section 2.6.

We also computed the pairwise AT measure (defined in
section 2.6) between all acceleration a; signals. The results
are shown as a matrix in Figure 6A. The matrix is computed
from 200 repetitions of a random moving arm (with sustained
movements for a random number of steps) and the other arm
performing a goal-directed approach to the object. Each trial,
the arm that moves is chosen randomly with a 0.5 probability.
The AT measure with its filters (refer to section 2.6) becomes
very specific, and it is able to catch the events we are interested
in, which are the object interactions. AT does not detect any
interactions between the arms SIPs.
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FIGURE 5 | Acceleration Transfer measure. We plot an example of the AT measure (shaded area in red) due to a contact of the lower arm (sensory point so, with

corresponding acceleration af) with the object (sensory point sg, with corresponding acceleration ag). At the beginning of the contact, the arm loses acceleration
rapidly which is transferred to the object. After some time steps (after time step 10), both start to couple and synchronize.

A B
xr ag ay
aj .
o 7
ajy . .
X
gy
T
K . ; af % 2
a L]
T L
as 1
X
« Il
6
&Xr X &Xr Xz Z Xz &Xr
Gy a1 Gy a3 Gy G5 Qg € e

FIGURE 6 | Acceleration Transfer results (A) Matrix of pairwise AT measure values between all SIPs for all SM interaction data. (B) Directed graph of SIP accelerations
ag, ....as, generated from 200 repetitions of sensorimotor interactions. The edge colors show the correlation strength between the nodes (extracted from the velocity
correlation analysis, refer to section 3.1), while the arrows show the direction of AT (refer to section 3.2). Only arrows with a significant AT are plotted. Take note that

the node &j is the only terminal node, as it can not accelerate by itself and depends on the AT from other SIPs.

When the AT is applied to the SM data, that is gathered
with motor babbling, it usually happens that two SIPs
accelerate and decelerate synchronously, and, thus, AT detects
lots of false positives. In addition, if random movements
are not sustained in time (jerky movements), the AT
measure detects lots of false positive transfers as predicted
by the random synthetic signals analysis of the last row
in Figure 4.

The results are also shown in Figure 6B as a directed
graph: the strength of the arrows comes from the previous
correlation results (as AT detects no specificity between arms).
The direction of the arrows comes from the AT measure. No
arrows are plotted for inter-arm relations as AT is not able
to capture them. The object appears as the end node (the
sink) of the directed graph, proving that it always receives
acceleration and never produces it: the signature for a measure
of autonomy.

3.3. Granger Causality and TE

As discussed in section 2.5, GC requires stationarity, i.e., the
mean and variance of each time series do not change over
time), and that it can be adequately described by a linear
model. We did the Dickey-Fuller test to check for stationary,
and it affirmed that all signals (motor activation, velocities,
accelerations) are stationary, but not all are linear, especially
velocities and accelerations (as both have x and y components).
Although GC itself is a linear measure, other non linear versions
of causality have also been introduced (Marinazzo et al., 2008).
Like standard (linear) GC, non-linear Granger measures are also
potentially prone to overfitting and finding false positives. The
kernel-based non-linear GC measure in a study by Marinazzo
et al. (2008) argues that it solves these two issues and may
potentially be a useful measure for this analysis. Similarly,
quantum probability methods have been used for cognitive
modeling, making extensive use of techniques similar to the
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FIGURE 7 | Alternative measures: GC and TE. (A) Matrix of pairwise GC measure values among all SIPs for all SM interaction data. The matrix is computed
considering the proportion of GC tests passed (refer to text for further details, section 3.3). (B) Matrix of pairwise TE measure values among all SIPs for all SM data.
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kernel-based GC method (see Pothos and Busemeyer, 2013 for
a general overview). However, besides the linear/non linear
issue, GC also has another problem, that it is inadequate for
situations where there are instantaneous effects, as is the case for
our experiment here. This is further elaborated on pages 207-
208 by Peters et al. (2017): “Knowing that a system contains
instantaneous effects may suggest modifying GC by regressing
not only on the past, but adding the current value, possibly
leading to wrong bidirectional casual influences.” This is in line
with our observations.

With respect to TE (Vicente et al., 2011), it is advantageous
when the model assumption of GC does not hold, for example,
analysis of non linear signals. Thus, it makes sense as a logical
next step from GC; however, TE still requires a lot of data and
is not suitable for real-time inference. There are suggestions for
significantly faster measures of TE based on permutation entropy
(Bandt and Pompe, 2002). Although this method may improve
over TE, it is not immediately clear whether it can outperform
the AT measure, as it requires performing permutation analysis
and comparison which is computationally expensive.

Two different sets of experiments were carried out to compare
AT, Granger Causality (GC) and TE. In the following paragraphs,
the results of the comparison experiments using the acceleration
values of the SIPs are summarized?. In the first set of experiments,
both GC and TE values were calculated on the generated signals
explained in section 3.2. In the second set of experiments, all
three measures were treated as binary classifiers of directional
causality, and their performance tested on the experimental setup
described in section 2.2 with increasingly more complex arm
policy combinations.

Figure 4 summarizes the results of the first set of experiments,

third signals, where the signals are not lagged, but does find a
small entropy transfer for the lagged second and fourth signals
regardless of the signal signs. TE finds strong effects in the last
two signals, where the signals are random noises. The last version
of the proposed AT measure only finds an effect on signals with
opposite signs, Signal 1, 2, and 6, effect size decreasing with the
lag amount.

Before executing the second set of experiments, we tested
GC and TE on the experimental setup explained in Section 2.2
using a random policy for both arms. In Figure 7 we plot the
GC and Transfer Entropy matrices of all pairwise acceleration
signals. Both are computed from the same SM data as in Figure 6
extracted from 200 repetitions of a combined random behavior
(as discussed in previous section 3.2). The GC matrix that we
call, in this study, GC™* (Figure 7A) is computed considering
the proportion of passed GC tests (whenever GC(a7, aj‘) returned
a p < 0.05). Part of the pattern present in the last column of
the AT matrix is maintained in the GC matrix. Also the within
arm dependencies are well captured, but we are not interested
on those as they are already captured by the correlation analysis.
In addition, we can also look at the directional dependencies by
comparing GC"* (a?, aj‘) to GC’”“t(aj‘, a¥), but here again, we got
inconsistent results. TE matrix (Figure 7B) consistently gives a
higher transfer in the direction from the arms to the object, with
strong effects for the inter-arm dependencies.

Only considering the case with two random policy arms did
not give enough information to make a fair comparison between
the measures, leading to the second set of experiments. To assess
the performance and limitations of each measure, seven scenarios
with increasingly complex policy combinations were prepared:

comparing the results of each measure for each signal set. For  ® Scenar}o 1: Constant push and static
the first four signals, GC returns a p-value below 0, indicating x ~ ® Scenario 2: Staggered push and static
is Granger causing y, while for the last two signals GC did not Scenar}o 3: Random push an'd static
find an effect. TE measure did not find an effect for the firstand ~ ® Scenario 4: Random and static
e Scenario 5: Random and constant push
For GC we used the “statsmodels” Python module and for Transfer Entropy the ° Scenar%o 6: Random push and constant push
Python interface to the Java Information Dynamics Toolkit. e Scenario 7: Random and random
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The constant push policy consists of the arm pushing toward the
ball with a constant motor activation, while the staggered push
policy consists of the arm either moving with a constant motor
activation or no motor activation with 0.5 probability each. The
random push policy means the arm moves with variable motor
activations sampled from a uniform distribution between 0 and
1. The random policy is the arm moving with motor activations
sampled from a uniform distribution between -1 and 1. The
static policy means that the motors are not activated at all and
the arm does not move by itself. These policy combinations,
although not exhaustive, represent a variety of different scenarios
an agent can face in this setting. Haptic signals are used as
the ground truth to determine which arms push the ball in
each trial. Each scenario was executed for 100 trials, with the
policies alternating between the arms each trial. The reports
of each measure between the six SIPs of the arms and the
SIP of the object were recorded and compared to the ground
truth. As the accuracy score does not take into account false
positives, and the previous set of experiments on the synthetic
signals show that all the measures tend to report false positives
in random signals, the F1 scores are used for the assessment.
The F1 scores of the measures for each scenario are presented
in Table 1.

The F1 scores in Table 1 show that GC fails to correctly
identify the direction of the causal relationships, especially with
complex policies, reliably. This result is in line with expectations,
as the setting pushes the limitations of the GC measure, explained
at the beginning of the current section. TE and the AT measure
successfully capture the directional causal relationships between
the SIPs of the arms and the ball. AT keeping a stable performance
across the first four scenarios where one arm is static, while the
TE has decreased performance as the policy of the pushing arm
gets more complex. Both measures have decreased performance
in Scenarios 5 and 7, the only two scenarios where the arm that is
not pushing the ball can have positive and negative acceleration
and thus lead the measures to false positives as shown in the last
signal in Figure 4.

In conclusion, correlational analysis of the SIPs can be used
to characterize the self vs. the other and capture proximo-distal
arm-joint dependencies and motor-sensory influences but is not
sufficient to infer autonomy. TE, and the novel AT measure, but
not GC, can reliably capture directional causalities between SIPs
in this setting.

TABLE 1 | F1 scores of Acceleration Transfer (AT), Granger Causality (GC), and
Transfer Entropy (TE) measures on seven mixed policy scenarios.

Scenario Scenario Scenario Scenario Scenario Scenario Scenario
1 2 3 4 5 6 7

AT F1 0.91 0.91 0.9 0.89 0.78 0.91 0.77
Score

GC F1 0.67 0.41 0.16 0.27 0.56 0.21 0.17
Score

TE F1 0.91 0.84 0.48 0.8 0.68 0.82 0.69
Score

4. DISCUSSION

We discuss, in this study, the minimal requirements for self/other
distinction that lead to simpler methods in comparison with
the approaches that require a multitude of parameters (such
as deep recurrent neural networks Rabinowitz et al, 2018)
or rely on the predictive coding hypothesis which requires a
forward model to operate (Fairhurst et al., 2019). The typical
approach to address the problem of self vs. other distinctions is
based on the mismatch of the predicted perceptual state (given
the precedent executed action) and the actual perceived state.
A smaller mismatch of the (feedforward) prediction with the
actually perceived state (feedback) would imply an increased
degree of agency as stated by the Comparator Model (Wolpert
and Flanagan, 2001; Farrer and Frith, 2002; Fairhurst et al.,
2019).

We argue for the assumption that the ideal time for the
distinction of self and other in early development to occur is
prior to the acquisition of forward models, to be able to focus
the learning and reduce the input dimensionality of the forward
models to be learned. Following this assumption, we address the
self and other distinction with the simplest method possible, a
simple correlational analysis of visual movement features and in
the absence of a forward model (Wolpert and Flanagan, 2001),
or one could say that it is a forward model of purely visual
features (as the introduced sensory to sensory predictions Maffei
et al., 2017) and in a preliminary stage of learning to control.
This preliminary learning phase is important as it can guide and
reduce the dimensionality of the inputs to the more complex
forward models (including motor signals) that subsequently need
to be learned.

To clarify this simple mechanism, let us consider the following
thought experiment. When playing a video game for the first
time, we face a completely novel situation in which a forward
model is not available. However, we can quickly discern which
entities we are in control of by pressing buttons randomly,
and we can direct attention to the immediate surroundings
of those entities and reduce the state space dimensionality
of the learning. In addition, imagine after having learned to
control a character, we invert the SM mapping (pressing right
makes the agent go left and vice-versa). The forward model
that was acquired now makes wrong predictions (and needs
to be relearned) but the feeling of self and other remained
intact and has not been disrupted. Our approach, in this study,
builds on Sanchez-Fibla et al. (2017b) and addresses exactly this
preliminary stage.

We test this via a statistical and information theoretical
analysis of the SM data stream (as performed in Hoffmann,
2014). The results show that the self/other distinction can be
addressed solely by a correlational analysis of motor signals and
their sensory effects (channeled through the motion, velocities
and accelerations of the previously mentioned SIPs) prior to
the construction of a forward model. For assessing autonomy,
we need to go beyond correlation and perform a causality
analysis to be able to extract directional dependencies. A rectified
subtraction of feature accelerations, denoted in this study as AT, is
shown to be sufficient to extract directional dependencies and as a
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cheaper alternative to more computationally expensive measures
such as TE.

Autonomous motion alone is not the only information
that infants use to assess agent/object autonomy as they
check for autonomous control over the actions of entities
(Baillargeon et al., 2015). Considering the latter, there is
a need to build forward models and the aforementioned
Comparator Model applied to the assessment of control of
other entities could be an explanation behind figuring out
autonomy in its final phase. But before that, building a
hierarchical structure of visual motion cues based on velocity
correlations and AT may be a prerequisite step, as we have
shown. From a neurophysiologycal perspective, there is evidence
that there are neurons (in the brain MT area of the Macaque
monkey) that are tuned to acceleration changes (Schlack et al.,
2007).

5. CONCLUSIONS

From early development, self and other distinctions are
fundamental to the focus the learning (reduce state space
dimensionality) of forward model acquisition. From a
computational perspective, discriminating between self and
other features from visual feedback is often addressed through
models (Brody et al., 2017; Sdnchez-Fibla et al., 2017b; Thomas
et al,, 2017; Pertsch et al., 2018; Rybkin et al., 2018), which either
require a multitude of parameters (deep learning approaches
like Rabinowitz et al., 2018) or rely on the predictive coding
hypothesis, requiring a forward model to be able to check the
matching between current and predicted states (Fairhurst et al.,
2019). In this study, we have approached this problem from a
principled perspective, identifying minimum requirements to
solve the problem of deciphering which features of the visual
scene correspond to the self and which of them correspond
to other entities in the scene, via a correlation analysis of
velocity signals, that we have found to be sufficient. Thus,
self/other distinctions could be identified with minimal and
simpler methods, prior to the acquisition of the forward
models and could guide and reduce the dimensionality of their
inputs.

We do not work with images directly. Elements of the
visual scene are interpreted via the SIPs, visual features (that
we introduced in Sanchez-Fibla et al., 2017a, reminiscent
of BM pivots that can be computed by computer vision
methods like SIFT features). SIPs can be characterized
as belonging to oneself thanks to the high motor to
sensory correlations. Furthermore, from the full correlation
matrix, proximo-distal joints can be characterized and also
other entities with similar correlation patterns with their
proximo-distal structures.

We go beyond the distinction of self and other by defining
autonomy as the ability to move by oneself (animacy), and we
discuss how we can detect it from visual SM interactions, a
problem that has not been addressed yet, to our knowledge,
from a computational perspective. For detecting autonomy,
correlation comes with its limitations: it only captures linear

relationships and does not allow us to infer directed/causal
dependencies. To surpass this limitation, we looked at measures,
such as GC, Copula-Based (Junker et al., 2019) and TE (Vicente
et al, 2011), but we concluded that they were unable to capture
directional dependencies on a trial-by-trial basis. Instead, they
work better on distribution of sampled SM data. We grounded
dependency assessment on a simpler principle of energy transfer
between entities (energy in terms of acceleration). For this
purpose, we developed a novel AT measure, that is not temporally
dependent, and computed the estimated instantaneous transfer
of acceleration (note, as we have discussed, that instantaneous
effects pose problems for standard measures, such as GC)
between two moving entities (in our case SIPs). The proposed
AT measure works under the principle that an inanimate entity
is always the sink in the directed SM graph of transfers and
produces better results than the standard causality algorithms,
but further research might compare other causal inference
approaches (as discussed in section 3.3). AT would be a very
natural way to interpret interactions between visual pivots as
acceleration is proportional to force via Newton’s 2nd law.
In addition, neurophysiology findings back this hypothesis
with proof of the existence of neurons with responses that
are tuned to acceleration and deceleration (Schlack et al.,
2007).

We have identified the minimal principles that we hypothesize
are at play when making sense of embodied SM visual
experiences, and we make a concrete proposal of what is the
minimal level at which (causal) directional reasoning is needed
to understand visual motion pivot interactions [as discussed in
the challenges exposed in Pezzulo et al. (2011)]. Beyond the
self/other distinction, which we have shown can be assessed
by a correlational analysis of velocities (without the need for
directional reasoning), we show that for the assessment of
autonomy, directional inferences need to be utilized. We also
hypothesize that these findings, grounded on developmental
psychology, could also be transferred to developmental robotics
(Cangelosi and Schlesinger, 2015). We also argue that transfer
learning, that is the generalization of acquired knowledge
from one task to another cannot be achieved without this
fundamental step, by annotating the SM memory of the agent
with “who did what and when.” As proof of concept, we
refer to the results obtained in the article by Demirel and
Sanchez-Fibla (2019), where a reinforcement learning agent
speeds up its learning by having access to the features it controls
from its perceptual state. In this sense, approaches based on
cognitive architectures will require this information in SM
memory. Up until now, this has been lacking in the proposed
architectures (refer to the mentioned DAC framework Duff et al.,
2011 and the SM graph structures introduced in Toussaint,
2006).
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