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Opioid use disorder (OUD) rarely presents as a unitary psychiatric condition, and the
comorbid symptoms likely depend upon the diverse risk factors and mechanisms
by which OUD can arise. These factors are heterogeneous and include genetic
predisposition, exposure to prescription opioids, and environmental risks. Crucially,
one key environmental risk factor for OUD is early life adversity (ELA). OUD and
other substance use disorders are widely considered to derive in part from abnormal
reward circuit function, which is likely also implicated in comorbid mental illnesses such
as depression, bipolar disorder, and schizophrenia. ELA may disrupt reward circuit
development and function in a manner predisposing to these disorders. Here, we
describe new findings addressing the effects of ELA on reward circuitry that lead to
OUD and comorbid disorders, potentially via shared neural mechanisms. We discuss
some of these OUD-related problems in both humans and animals. We also highlight
the increasingly apparent, crucial contribution of biological sex in mediating the range of
ELA-induced disruptions of reward circuitry which may confer risk for the development
of OUD and comorbid neuropsychiatric disorders.
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INTRODUCTION

Opioid use disorder (OUD) is a growing epidemic in the United States and globally. To mitigate
the rise in opioid-related morbidity and mortality, effective strategies are urgently needed to
prevent the onset of opioid addiction by identifying individuals at high risk for developing OUD.
Notably, OUD often occurs with psychiatric comorbidities such as depression, bipolar disorder,
and schizophrenia (Brooner et al., 1997), all of which involve dysfunctional reward processing.
Therefore, studying the basis for this disruption will provide greater understanding and insight
into treating both OUD and its comorbidities.

The risk factors for OUD are numerous and complex, and genetics (Kreek et al., 2012; Crist
et al., 2019; Jiang et al., 2019), drug availability (Volkow et al., 2011; Wright et al., 2014), and
environmental factors such as early life adversity (ELA; Dube et al., 2003; Sinha, 2008; Kreek et al.,
2012) all play a role. ELA related to poverty, trauma and chaotic environment affects over 30%
of children in the U.S. (American Psychological Association, 2018). ELA is linked to numerous
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long-term negative health consequences including obesity, heart
disease, respiratory illnesses, as well as cognitive and emotional
problems (Felitti et al., 1998), and it is associated with several
affective problems that indicate dysfunction of the brain’s reward
circuitry (Kessler et al., 1997, 2010; Anda et al., 2006; Green
et al., 2010; Pechtel and Pizzagalli, 2011; Novick et al., 2018).
While a variety of the physical and mental health outcomes
following ELA may lead to enhanced risk for OUD and its
many comorbidities, here we focus on the effects of ELA on
reward-related behaviors and underlying circuitry and propose
that disrupted reward processing is a common developmental
mechanism by which OUD and its comorbidities may arise
following ELA. We also highlight the contribution of biological
sex to the range of outcomes related to ELA-induced aberrations
in reward circuitry.

NORMAL REWARD CIRCUIT
DEVELOPMENT INVOLVES AN EARLY-LIFE
SENSITIVE PERIOD

Reward circuitry in the brain is a network comprised of cortical
and subcortical forebrain structures that regulate reward seeking.
This circuitry is evolutionarily adapted to drive the acquisition
of natural rewards, such as food, water, and reproduction.
However, the maladaptive function of this circuitry can also
lead to psychiatric manifestations such as mood disorders
and addiction.

Whereas the reward circuitry has been extensively studied in
the adolescent and mature brain, its function and developmental
trajectory in infancy and early childhood are less well-known.
The ventral tegmental area (VTA), nucleus accumbens (NAc),
and amygdala, major nodes of the reward circuit, begin to
appear in the first trimester in humans and around the
second week of gestation in rodents, and continue to undergo
significant maturation postnatally (Birnie et al., 2020). Behavioral
manifestations of the reward function, such as responsivity to
sucrose (Desor et al., 1973; Vigorito and Sclafani, 1988) and
appetitive learning (Johanson and Hall, 1979; Hayne et al.,
1986), emerge within the first months of life in humans and
within the first postnatal days in rodents. These developmental
timelines suggest that reward circuitry in a rodent in its first
week of life might approximate that of a human neonate
(Birnie et al., 2020).

The development of these circuits that occurs early in
postnatal life suggests a possible sensitive period during which
time aberrant environmental signals, such as parental abuse
or neglect, may shape their developmental trajectories (Baram
et al., 2012; Glynn and Baram, 2019; Luby et al., 2020).
Analogous influences of critical environmental signals on
network maturation are known for other circuits, including the
visual and auditory (Zhang et al., 2001; Li et al., 2006). Just as
these systems require predictable sensory inputs at specific times
during development to mature properly, parental signals may
provide important stimuli for the maturing reward system (Hane
and Fox, 2016; Davis et al., 2017; Andersen, 2018; Glynn and
Baram, 2019). Thus, understanding how the early environment

alters reward circuitry will be critical for developing future
interventions against OUD and other mental health problems.

DYSFUNCTION OF REWARD CIRCUITS: A
COMMON THREAD FOR OUD AND ITS
COMORBIDITIES?

The high prevalence of multiple diagnoses in patients with
OUD (Kessler, 2004) supports shared or overlapping underlying
processes and has led to searches for common genetic
mechanisms (Carey et al., 2016). OUD is often diagnosed in
patients who have other mental health problems (Brooner et al.,
1997; Conway et al., 2006; Farrugia et al., 2011; Danovitch,
2016). Dysfunction of reward circuitry has been implicated in
many of these other mental health diagnoses, such as depression
and bipolar disorder (Russo and Nestler, 2013; Pizzagalli, 2014;
Whitton et al., 2015), post-traumatic stress disorder (PTSD;
Nawijn et al., 2015), personality disorders (Lawrence et al., 2010;
Murray et al., 2018), and schizophrenia or psychosis (Kapur
et al., 2005; Radua et al., 2015; Whitton et al., 2015). The specific
comorbidities present with OUD also appear to be mediated by
gender (Brooner et al., 1997; Conway et al., 2006). While women
with OUD are more likely to also have a diagnosis of mood,
anxiety, and eating disorders, men are more likely to have a
diagnosed personality disorder (Brooner et al., 1997).

Notably, the prevalence of dual diagnoses is particularly high
among patients who have experienced ELA, suggesting that
ELA may impact a shared substrate involved in OUD and its
comorbidities. In a study of patients admitted for chemical
dependency treatment, those who reported a history of childhood
abuse were also more likely to show symptoms of other reward-
related comorbidities such as depression, bipolar, and anxiety
disorders (Ellason et al., 1996). Another study found a very
high co-incidence of PTSD and opioid abuse among women
that was explained by a history of childhood trauma (Najavits
et al., 1997). The risk for schizophrenia and psychosis is also
increased by ELA (van Os et al., 2010; Bentall et al., 2014),
which are highly comorbid with substance use disorder (Schmidt
L. M. et al., 2011; Li et al., 2020). Palatable food cravings and
disordered eating are strongly associated with ELA (Halmi, 2009;
Dallman, 2014; Osadchiy et al., 2019), and these cravings are
commonly observed in individuals with OUD (Morabia et al.,
1989; Pelchat, 2002; Mysels and Sullivan, 2010; Canan et al.,
2017; McDonald and Laurent, 2019; Nolan, 2019). This high
co-incidence of multiple reward-related problems suggests a
common underlying mechanism by which disruption of reward
circuitry may lead to a variety of poor mental health outcomes.

DEVELOPMENTAL ORIGINS: ELA LEADS
TO POOR NEUROPSYCHIATRIC HEALTH
OUTCOMES

Numerous studies have linked ELA to poor cognitive (Lupien
et al., 2009; Pechtel and Pizzagalli, 2011; Chen and Baram,
2016; Short and Baram, 2019) and emotional health (Heim and
Nemeroff, 2001; Anda et al., 2006; Smyke et al., 2007; Maccari
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et al., 2014; Callaghan and Tottenham, 2016; Hane and Fox, 2016;
Krugers et al., 2016; Strathearn et al., 2020). For example, ELA is
associated with lower educational achievement (Shonkoff et al.,
2012) and poorer executive functioning abilities (McDermott
et al., 2012). Evidence from clinical and epidemiological literature
demonstrate links between adverse childhood experiences and
increased risk for depression, anxiety, PTSD, eating disorders,
and psychosis (Felitti et al., 1998; Chapman et al., 2004;
Whitfield et al., 2005; Anda et al., 2006; Bale et al., 2010). The
specific psychiatric outcomes resulting from ELA also vary by
gender (Humphreys et al., 2015), with women more frequently
diagnosed with anxiety and depression (Hammen et al., 2000;
Heim and Nemeroff, 2001; Davis and Pfaff, 2014), whereas men
are more likely to be diagnosed with personality disorders after
ELA (Anda et al., 2006), the same pattern seen among those with
comorbid OUD (Brooner et al., 1997).

Adverse childhood experiences are also robustly associated
with later-life substance addiction (Nurco et al., 1996; Simpson
and Miller, 2002; Dube et al., 2003; Widom et al., 2006;
Gershon et al., 2008; Sinha, 2008; Enoch, 2011; Shand et al.,
2011; Stein et al., 2017; Marsh et al., 2018). Results from
the Adverse Childhood Experiences study show that ELA can
increase the risk for injection drug use up to 11-fold (Anda
et al., 2006) and that ELA increases the likelihood of early
initiation of drug use independent of availability or changes in
social attitudes towards drugs (Dube et al., 2003), suggesting
a specific effect of adverse experiences on addiction liability.
Additionally, individuals with a history of ELA are more likely
to be prescribed opioid pain medications (Anda et al., 2008).
This effect was mediated by an increased likelihood to experience
other health and psychosocial problems, which highlights the
interplay among the numerous physical and mental health
problems associated with ELA, and the challenges in discerning
causal mechanisms.

Interestingly, women appear to be particularly predisposed to
OUD following ELA (Gershon et al., 2008; Lansford et al., 2010;
Shand et al., 2011; Marsh et al., 2018). For example, although men
have higher rates of overall substance dependence diagnoses,
women who have experienced ELA are overrepresented among
heroin and nonmedical prescription opioid users (Shand et al.,
2011; Marsh et al., 2018). Women diagnosed with OUD are
also two to three times more likely to have a history of PTSD
related to ELA than men with OUD (Najavits et al., 1997).
While this could be accounted for by the fact that girls tend to
experience more childhood trauma than boys (Felitti et al., 1998),
the magnitude of difference suggests a mediating role of sex. The
type of adversity experienced may also interact with biological sex
to affect outcomes. For example, Shand et al. (2011) found that
emotional neglect during childhood predicted drug dependence
in women, whereas PTSD predicted drug-related diagnoses for
men. Again, the presence of other comorbidities varied by sex;
men were more likely to display antisocial behaviors, whereas
women were more likely to be diagnosed with anxiety and
depression. These differences suggest divergent mechanisms
by which ELA may alter reward circuit development between
sexes, resulting in psychiatric outcomes that differ between men
and women.

ANHEDONIA AND OUD, EACH
MANIFESTATIONS OF REWARD CIRCUIT
DYSFUNCTION, ARISE AFTER ELA

The paragraphs above suggest a strong association between ELA
and malfunction of the reward circuit, which can manifest as
OUD or other problems in reward-related behaviors. Many of
these are common across several mental illnesses and may share
common biological substrates. Anhedonia defined broadly as
an inability to experience pleasure is a feature of substance use
disorder in some individuals (Ahmed and Koob, 1998; Koob
and Moal, 2001; Janiri et al., 2005; Hatzigiakoumis et al., 2011;
Sussman and Leventhal, 2014; Kiluk et al., 2019; Brenner et al.,
2020) and of other psychiatric diagnoses that are comorbid
with addiction (Gorwood, 2008), such as depression (Loas, 1996;
Blanchard et al., 2001; Pizzagalli et al., 2008; Martinotti et al.,
2012), schizophrenia and psychosis (Andreasen and Olsen, 1982;
Blanchard et al., 2001; Martinotti et al., 2012), PTSD (Risbrough
et al., 2018), eating disorders (Davis and Woodside, 2002; Halmi,
2009), and other ‘‘high-risk’’ behaviors (Franken et al., 2006).

Indeed, the concept of anhedonia serves as a distinct useful
transdiagnostic construct for understanding the role of altered
reward processing in the etiology of psychiatric conditions
(Bedwell et al., 2014; Lake et al., 2017). In line with the
Research Domain Criteria (RDoC) framework put forth by the
NIH, the ability to define a neurobiological basis of anhedonia,
along with empirical behavioral measures both in humans and
animal models, makes anhedonia a useful translational construct
for studying reward circuit dysfunction and related behavioral
disorders such as those seen after ELA (Cuthbert and Insel,
2013). Furthermore, the ubiquity of anhedonia as a feature of
many of the psychiatric outcomes of ELA provides evidence
that a mechanism by which ELA may impact cognitive and
emotional health outcomes is through disruption of reward
circuit development (Birnie et al., 2020). There are multiple
domains of anhedonic behaviors that can be measured in
humans and animal models which may have distinct neural
processes (Der-Avakian and Markou, 2012; Shankman et al.,
2014; Zald and Treadway, 2017). For example, anhedonia may
represent a deficit in either anticipatory or consummatory
reward, motivation, can be manifest for some reinforcers but not
others (e.g., social vs. food rewards), and is also described as a
feature of flat affect (for review, see Shankman et al., 2014). The
neural substrates that govern these different forms of anhedonia
have been explored (Gorwood, 2008; Der-Avakian and Markou,
2012; Treadway and Zald, 2013; Pizzagalli, 2014), and the specific
effects of ELA on distinct types of anhedonic behaviors as well as
their potentially dissociable neural substrates is an important area
of continued investigation.

HOW DOES ELA PROVOKE ANHEDONIA,
OUD, AND COMORBIDITIES? A NEED FOR
ANIMAL STUDIES

While studies in humans offer important insights into the
effects of ELA on reward circuitry, one cannot dissociate the
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influence of early-life experiences on reward circuitry function
from other genetic and environmental variables that may mediate
the links between ELA, OUD, and other comorbidities. Animal
models provide a method for investigating the effects of these
environmental factors in isolation.

In animal studies, several different models of ELA have been
used to isolate the effects of adversity on brain development from
other genetic and environmental variables. These methods, such
as maternal separation (MS), limited bedding and nesting (LBN),
fostering by abusive caregivers, and others, have been extensively
described elsewhere (Molet et al., 2014; Doherty et al., 2017;
Walker et al., 2017; Wakeford et al., 2018; Brenhouse and Bath,
2019). In rodents and non-human primates, numerous studies
have demonstrated that ELA results in behavioral phenotypes
that suggest underlying dysfunction in reward-related brain
regions (Molet et al., 2014; Andersen, 2015, 2018; Wakeford
et al., 2018; Bonapersona et al., 2019; Birnie et al., 2020). The
particular behavioral outcomes of ELA in animal models can vary
depending on the type, timing, and duration of the paradigm,
the species and strain of animal, and the timing and type of
behavioral assays (Schmidt M. V. et al., 2011; Molet et al.,
2014; Andersen, 2015; Walker et al., 2017; Brenhouse and Bath,
2019; Demaestri et al., 2020; Lundberg et al., 2020), as well
as sex (Kundakovic et al., 2013; Bath, 2020). While this poses
a challenge for interpreting this vast literature, the variability
also mirrors human experience; indeed, ELA in humans can
take many different forms, such as poverty, trauma, physical
or sexual abuse, and neglect, and these, in combination with
other environmental and biological factors, likely contribute
to individual differences in clinical outcomes (Shand et al.,
2011; Daskalakis et al., 2013; Sheridan and McLaughlin, 2014;
Strathearn et al., 2020), highlighting the sensitivity of the brain to
different types of stressors during these developmental periods.

Given that anhedonia has been associated clinically with
many of the psychiatric outcomes of ELA, establishing whether
ELA can actually cause anhedonia seems useful for determining
neurobiological mechanisms that may ultimately underlie
ELA-associated OUD and its comorbidities. Thus, we will
highlight some animal studies that have focused specifically
on anhedonia. The expression of anhedonia in animal models
appears to be mediated by interactions between the ELA
paradigm, biological sex, and testing parameters (Matthews and
Robbins, 2003; Rüedi-Bettschen et al., 2005; Der-Avakian and
Markou, 2010; Leussis et al., 2012; Lukkes et al., 2017; Di
Segni et al., 2019). For example, in male rodents, ELA imposed
via rearing for 1 week (P2-P9) in cages with limited bedding
and nesting materials (LBN) leads to enduring anhedonia for
both natural and drug rewards. This includes blunted sucrose
and palatable food preference, reduced interest in social play,
and decreased low-effort cocaine consumption (Molet et al.,
2016; Bolton et al., 2018a,b). In contrast, such anhedonia is not
observed in female rats after LBN (Levis et al., 2019). Yet, others
have identified an age-dependent reduction of sucrose preference
and depressive-like behaviors in female mice (Goodwill et al.,
2019). Using a MS model of ELA, both male and female rats have
reduced sucrose preference later in life (Matthews et al., 1996;
Leventopoulos et al., 2009; Coccurello et al., 2014). Anhedonia

has been reported also in nonhuman primates exposed to
maternal deprivation and maltreatment (Rosenblum and Paully,
1987; Paul et al., 2000; Pryce et al., 2004; Kaufman et al., 2007;
Glynn and Baram, 2019), such as reduced sucrose preference
(Paul et al., 2000) or interest in social interaction (Coplan et al.,
1996). However, others have found increased sucrose drinking in
juvenile males (Nelson et al., 2009).

In contrast to natural reward anhedonia, other studies
have demonstrated increased sensitivity to drug-related rewards
(Andersen, 2018) as well as addiction-related behavioral traits
(Hynes et al., 2018) after ELA. Although this may appear
contradictory, these findings support the notion that the
behavioral expression of altered reward circuitry by ELA depends
on reward type and testing paradigm; thus, anhedonia and
reward-seeking are not necessarily mutually exclusive.

While effects of ELA on increased alcohol and cocaine-
seeking have been extensively studied and reviewed (Andersen,
2018), considerably less work has been done to model the
effects of ELA specifically on opioid addiction vulnerability.
Some evidence exists that MS increases morphine seeking
in both male and female adult rats (Abad et al., 2016;
Mohammadian et al., 2019) while others observed morphine
preference only in MS males (Kalinichev et al., 2002; Vazquez
et al., 2005, 2006; Michaels and Holtzman, 2008; Vey et al.,
2016). Holtzman and colleagues show that male rats that
have experienced MS demonstrate a greater place preference
for morphine than their control counterparts (Michaels and
Holtzman, 2008) and increased locomotor sensitization to
repeated morphine, a measure of the psychoactive properties of
the drug (Kalinichev et al., 2002). However, others have found
attenuated sensitivity to the rewarding properties of heroin in
MS females (Matthews and Robbins, 2003). Using the LBN
model of ELA, we have demonstrated that, while males develop
anhedonia for natural rewards like social play, palatable food,
and sucrose (Molet et al., 2016; Bolton et al., 2018a,b), females
developed a strikingly different phenotype (Figure 1). LBN
females exhibit a marked increase in addiction-like seeking
for opioid drugs (Levis et al., 2019). These rats were resistant
to the extinction of opioid-seeking behavior, had stronger
cue-induced and heroin-primed reinstatement responses, and
increased motivation to self-administer the opioid remifentanil
in a translationally relevant task measuring economic demand
(Treadway et al., 2009; Bentzley et al., 2013; Bickel et al., 2014),
demonstrating a motivation to obtain the drug even at a very
high cost. Motivation for consuming palatable food was also
significantly higher in LBN females, concurrent with the marked
increase in addiction-like seeking for opioid drugs. Notably, this
same phenomenon has been observed among patients seeking
treatment for OUD (McDonald and Laurent, 2019).

Together, the findings in rodents and non-human primates
suggest that ELA disrupts the maturation of reward circuits, and
the resulting behavioral manifestations may vary by the timing,
duration, and nature of the ELA and be further modulated by
sex. Whereas deficits in reward-seeking behaviors are observed in
males, such deficits are not commonly found in females. Rather,
in females, the prevailing phenotype includes the enhanced
consumption of opioids (and other drugs of abuse) and palatable
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FIGURE 1 | Early life adversity (ELA) augments opioid-seeking behaviors and increases the demand for opioid drugs and highly palatable food. Adapted from
Figures 1, 2 in Levis et al. (2019). (A) Female LBN-experienced (ELA) rats trained to self-administer intravenous heroin engage in more persistent heroin-seeking
behavior after the withdrawal of the drug and (B) augmented relapse induced by heroin-associated cues than their control (CTL) counterparts. (C,D) On an economic
task measuring sensitivity to increasing cost to obtain the desired reward, ELA rats are willing to exert more effort to access both opioid drug and food rewards at a
higher cost than controls. This indicates increased demand for opioids and highly palatable food that is relatively insensitive to high costs. *p < 0.05; ***p < 0.001.

food. The mechanisms underlying this phenotype are poorly
understood and may involve ELA-induced changes in both
reward and stress circuits. Support for this notion is provided
by studies showing that female rats that have experienced stress
tend to engage in more pro-hedonic consumption of palatable
food (Dallman et al., 2003, 2005; Pecoraro et al., 2004; Jahng,
2011, 2014; Tomiyama et al., 2011; Machado et al., 2013; Kim
et al., 2015), and that this may be specifically associated with
anhedonia (Jahng et al., 2012; Jahng, 2014). Much information
is needed to gain insight into the bases of palatable food craving
as sex-dependent comorbidity of OUD.

Furthermore, the variable consequences of ELA on
distinct assays of reward-seeking behaviors in animal
models demonstrate that reward processing is not a singular
phenomenon; rather, individuals may express different and
dissociable phenotypes that suggest potentially discrete
mechanisms of reward circuit disruption. Thus, further
investigation into how ELA alters specific aspects of reward
processing and underlying neural substrates will be critical for
understanding the biological processes that contribute to the risk
for OUD and comorbid disorders.

HOW MIGHT ELA LEAD TO OUD AND
RELATED DISORDERS? EVIDENCE FROM
CLINICAL IMAGING STUDIES

Evidence from human imaging studies suggests impaired
development of specific reward-related brain regions and circuits
after ELA that impose a risk for substance abuse and related
comorbidities. Many studies have demonstrated functional and
neuroanatomical effects of ELA on brain regions involved
with reward and reward-learning, such as the hippocampus,
amygdala, medial prefrontal cortex, and striatal areas including
nucleus accumbens (Bremner, 2003; Hackman and Farah, 2009;
Rao et al., 2010; Pechtel and Pizzagalli, 2011; Gee et al., 2013;
Boecker et al., 2014; Callaghan and Tottenham, 2016; Teicher
et al., 2016; Miguel et al., 2019; Herzberg and Gunnar, 2020).
Childhood maltreatment is associated with blunted activation
of these brain regions during reward processing tasks (Dillon
et al., 2009; Mehta et al., 2010; Goff et al., 2013; Novick et al.,
2018), a potential functional mechanism explaining the presence
of anhedonia among individuals who have experienced ELA.
Of these, the striatum appears to be especially important in
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mediating the link between reduced reward reactivity and ELA
(Dillon et al., 2009; Goff et al., 2013; Goff and Tottenham, 2015;
Egerton et al., 2016; Kamkar et al., 2017; Dennison et al., 2019).
The ventral striatum in particular seems to be a key mediator
between ELA, anhedonia, and substance abuse. Corral-Frías
et al. (2015) report that reduced reward reactivity in the ventral
striatum predicts ELA-associated anhedonia and structural
equation modeling revealed that this relationship also predicts
substance-related coping behaviors, such as self-medication. This
finding highlights a possible common mechanism by which ELA
can lead to OUD and its comorbidities. The type of adversity
experienced may also mediate the striatal response to reward
(Dennison et al., 2019; Herzberg and Gunnar, 2020), as ELA
in the form of childhood poverty, specifically, is associated
with increased reactivity to reward in the striatum (Gonzalez
et al., 2016), especially in girls (Romens et al., 2015). These sex-
and experience-dependent differences are consistent with the
observed variability of mental health outcomes in humans and
behavioral phenotypes in animals.

ELA CAUSES FUNCTIONAL AND
ANATOMICAL CHANGES IN
REWARD-RELATED BRAIN REGIONS:
EVIDENCE FROM ANIMAL MODELS

Building on clinical evidence, studies using animal models
provide tools for identifying mechanisms that underlie
disruptions in reward circuitry after ELA. In analogy to
human literature, these outcomes appear to be partially mediated
by sex. In males, our group has previously shown that anhedonia
after LBN is associated with altered functional connectivity
between the amygdala and mPFC in rats that may be mediated
by CRH expression in the amygdala (Bolton et al., 2018a).
This is supported by evidence that depressive-like behaviors
and natural reward anhedonia following LBN are associated
with disrupted amygdala-PFC and PFC-striatal functional
connectivity (Yan et al., 2017). Additionally, Walker et al.
(2017) have observed morphological and functional changes
in the basolateral amygdala (BLA) and reduced functional
connectivity between BLA and PFC in LBN-exposed male
rats (Guadagno et al., 2018a,b). MS-induced ELA alters the
development of PFC→NAc projections and dopamine (DA)
signaling within the pathway in male rats (Brenhouse et al.,
2013). In females, MS induces early maturation of the BLA-PFC
circuit (Honeycutt et al., 2020), and early life social stress alters
resting-state functional connectivity in NAc, hippocampus, and
PFC (Nephew et al., 2017). In nonhuman primates, maltreatment
during infancy leads to increased amygdala volume (Howell
et al., 2014) and altered connectivity in regions implicated
in mood disorders (Howell et al., 2013). c-Fos mapping
studies measuring neuronal activity further suggest specific
ELA-induced alterations in reward circuit function (Rincón-
Cortés and Sullivan, 2016; Bolton et al., 2018a,b; Di Segni et al.,
2019). Specifically, ELA leads to reduced NAc c-Fos activation in
response to typically-rewarding stimuli like a social interaction
(Rincón-Cortés and Sullivan, 2016), or aberrant over-activation

of other regions associated with stress and reward (Bolton et al.,
2018a,b).

Molecular mechanisms mediating the effects of ELA on
OUD and related comorbidities may involve alterations in
neurotransmitter and neuromodulator systems. Whereas a
comprehensive discussion of this important topic is beyond the
scope of this review article, a few salient points are mentioned: A
vast literature documents the role of DA signaling in motivated
and reward-seeking behaviors. Altered DA signaling is an
important mediator of drug-seeking (Koob, 1992) as well as
other psychiatric problems associated with ELA such as mood
disorders (Diehl and Gershon, 1992) and psychosis (Kapur et al.,
2005) and has been implicated in the expression of anhedonia
(Willner et al., 1992; Pizzagalli, 2014). ELA has been extensively
linked to dysfunction of the DA system in rodents, especially
in the striatum (for a comprehensive review of this literature,
see Bonapersona et al., 2018), and this may be mediated
by alterations in other stress and reward-related transmitter
systems (Forster et al., 2018). Additionally, the effects of early
life experiences on DA signaling may be more pronounced
in females (Camp et al., 1984; Chocyk et al., 2011). It is
therefore tempting to speculate about the role of ELA-provoked
deficits in DA signaling as involved in ELA-related OUD and
its comorbidities.

Endogenous opioids play an important role in mediating
hedonic processes (Smith and Berridge, 2007; Mahler and
Berridge, 2009, 2012; Mitchell et al., 2018) as well as social
attachment early in life (Panksepp et al., 1980), so the
endogenous opioid system might also represent an important
link between ELA and reward-related outcomes later in life.
Alterations in opioid receptor mRNA have been observed
in both males and females after ELA, although differentially
between the sexes. Chang et al. (2019) show female-specific
increases in NAc mu and delta-opioid receptor mRNA levels
in mice after early life predator odor exposure. Nylander and
colleagues have found long-term alterations in endogenous
opioid peptides and opioid and DA receptor expression in
reward-associated areas that vary both by sex and by the duration
of MS (Ploj et al., 1999, 2001, 2003a,b; Ploj and Nylander,
2003; Gustafsson et al., 2008). Opioid receptors are known to
modulate striatal DA signaling (Mulder et al., 1984; Johnson
and North, 1992), an effect that may be potentiated by ELA
(Karkhanis et al., 2016). Thus, disturbances in endogenous
opioids might also mediate ELA-induced alterations of striatal
DA signaling leading to aberrant reward-related behaviors.
These ELA-induced opioids and DA-related disruptions suggest
a mechanism by which ELA may lead simultaneously or in
parallel to psychiatric disorders and enhanced consumption of
opioids (Khantzian, 1987; Dallman et al., 2005; Kim et al., 2015;
Lovallo et al., 2018).

Together with evidence from human subjects, these findings
demonstrate that ELA alters important reward-related circuit
nodes to provoke vulnerability to poor psychiatric outcomes.
Establishing causality between network- and molecular-level
changes induced by ELA and resulting reward-related deficits
remains an important area of investigation to cure OUD and its
psychiatric comorbidities.
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CONCLUSION

Evidence across species suggests that ELA during sensitive
developmental periods alters the developmental trajectory of
reward circuitry. The precise nature of ELA, the potentially
disparate consequences of different types of ELA, and the
mechanisms underlying the aberrant maturation of reward
circuits remain topics of much-needed investigation. The
resulting maladaptive reward processing is likely a mechanism
common to OUD and its comorbidities. As both animal and
human studies demonstrate, the manifestations of this aberrant
reward circuit function are varied and depend on the type and
extent of adversity, biological sex, and later life experiences.
However, functional, anatomical, and molecular disruptions in
reward-related brain regions such as the medial PFC, striatum,
and amygdala have been described across multiple paradigms
and several species, suggesting a common developmental origin.
Likewise, anhedonia may be an important behavioral biomarker

of disturbed reward processing that links ELA, OUD, and
other mental health problems. Further investigation into the
neurobiological basis for ELA-induced reward circuit disruptions
will provide key insights into the origins of OUD and its
comorbidities and may uncover new interventions that will be
successful in treating both.
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