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Increasing student involvement in classes has always been a challenge for teachers

and school managers. In online learning, some interactivity mechanisms like quizzes are

increasingly used to engage students during classes and tasks. However, there is a high

demand for tools that evaluate the efficiency of these mechanisms. In order to distinguish

between high and low levels of engagement in tasks, it is possible to monitor brain

activity through functional near-infrared spectroscopy (fNIRS). The main advantages of

this technique are portability, low cost, and a comfortable way for students to concentrate

and perform their tasks. This setup provides more natural conditions for the experiments

if compared to the other acquisition tools. In this study, we investigated levels of task

involvement through the identification of correct and wrong answers of typical quizzes

used in virtual environments. We collected data from the prefrontal cortex region (PFC)

of 18 students while watching a video lecture. This data was modeled with supervised

learning algorithms. We used random forests and penalized logistic regression to classify

correct answers as a function of oxyhemoglobin and deoxyhemoglobin concentration.

These models identify which regions best predict student performance. The random

forest and penalized logistic regression (GLMNET with LASSO) obtained, respectively,

0.67 and 0.65 area of the ROC curve. Both models indicate that channels F4-F6

and AF3-AFz are the most relevant for the prediction. The statistical significance of

these models was confirmed through cross-validation (leave-one-subject-out) and a

permutation test. This methodology can be useful to better understand the teaching

and learning processes in a video lecture and also provide improvements in the

methodologies used in order to better adapt the presentation content.

Keywords: neuroscience, fNIRS, education, prefrontal cortex, machine learning, logistic regression, random forest

1. INTRODUCTION

The interactivity in a virtual teaching environment can increase student engagement and, therefore,
reinforces learned concepts and provide on-demand learning capacity (Jonassen et al., 1995).
Empirical assessments have emerged in recent research, such as studies by Wachtler et al.
(2018), which show that video lectures with quizzes can be used to increase knowledge, intensify
engagement, and raise attention.

Although it is possible to measure student performance through the results of quizzes in
class, a relevant factor to be studied is the involvement of students in the execution of tasks
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through the mapping of brain states during the task. Usually,
cognitive neuroscience experiments study psychological
processes through controlled manipulations, reducing the
behavior of one of its components. However, this framework is
not suitable when one wishes to generalize the characteristics
of new situations from full descriptions of the behavior
(Varoquaux and Poldrack, 2018). For instance, Barreto et al.
(2020)and Noah et al. (2015) indicate the importance that
studies involving music an dance be carried out under
natural conditions. Similarly, Lamb et al. (2018) performs
experiments under naturalistic conditions for the evaluation of
science education.

We address this issue by performing an experiment in
a more realistic setting. Specifically, we collected brain data
with a fNIRS (functional near-infrared spectroscopy) device
from students while they were watching a video lecture and
answering questions. The fNIRS device was chosen due to its
acquisition systems that collect data of hemodynamic states
in several brain regions in a naturalistic, comfortable, and
safe manner for participants (Noah et al., 2015). Safe levels
of light (with wavelengths between 650 and 1,000 nm) were
used to infer the variation in the level of oxygenation of
brain tissue in a non-invasive way, which penetrates the
biological tissue and reaches the cortex, allowing the analysis
of oxygenation. hemoglobin (HbO2), deoxyhemoglobin (HHb)
and total hemoglobin (tHb; tHb = (HbO2) + HHb) from
cerebral blood (Delpy and Cope, 1997). The fNIRS technical
limitations include superficial depth cortical evaluation (Ferrari
et al., 2004). Specifically, we collected fNIRS data from the
Prefrontal cortex (PFC).

The PFC has a central role in cognitive control. It
has interconnections with brain areas that process external
information (with all the sensory systems and structures of
the cortical and subcortical motor system) and with internal
information (limbic and midbrain structures involved in
affection, memory, and reward). It has access and the means
to influence processing in all major forebrain systems and
can provide a means of synthesizing the various sources of
information related to a given objective (Miller et al., 2002).
McGuire and Botvinick (2010) shows there are indications
that prefrontal cortex neurons appear to have a crucial ability
for cognitive control, transmitting knowledge about a specific
goal-directed task. Furthermore, Lamb et al. (2018) shows
that fNIRS imaging of the prefrontal cortex can be useful
to educators, since this region is responsible for problem
solving, memory, and social behavior. However, this study
also shows that tasks involving large amounts of unstructured
processing, such as video lectures, can be challenging, since they
generate less dynamic response within the prefrontal cortex than
structured tasks.

In this paper, the fNIRS data from the PFC was used to
create predictors for a student’s answers. These predictors were
obtained by applying machine learning algorithms to the data.
In particular, we used random forests and penalized logistic
regression algorithms. These algorithms allow one to understand
the structure of existing data and generate prediction rules for
new observations.

2. MATERIALS AND METHODS

2.1. Participants
A total of 21 participants were recruited for participation but
3 of them were excluded (one for low signal quality and two
for not meeting the health requirements). All 18 participants
(10 female, 8 male) were right-handed, had normal vision and
hearing, and mean age 25.6 ± 4.6 (range 18–40 years). No
subject had an history of neurological or psychiatric disorders.
Participants were recruited among undergraduate and graduate
students in fields of Science. All participants alleged to have
little or no prior knowledge in Astronomy. Signed consent was
obtained from all members prior to participation. The Federal
University of ABC - Ethics Committee approved the experiment.
The experiment was performed in accordance with all local
relevant guidelines and regulations. All subjects participated
voluntarily and without any financial compensation, as required
by federal laws.

2.2. Experiment
The experiment’s tasks consisted of watching the first class
in an Astronomy course while answering several multiple
choice questions. The class was entitled “Astronomy: A general
introduction”, and was chosen from a publicly available e-
learning course from the Virtual University of São Paulo State
(UNIVESP). The video’s content usually does not belong to the
basic education curriculum and requires reasoning and attention
for understanding calculations and order of events. It was chosen
since it brings new content to most students and does not require
a large amount of previous knowledge.

Before running the main experiment, we tested the hypothesis
that answering correctly depended on watching the video. This
hypothesis was tested by applying the a quiz with multiple choice
questions to a control group with 116 participants who did not
watch the video lecture. The probability of a correct answer
without watching the video was found based on a binomial test.
The test did not reject the hypothesis that, without answering the
video, participants answer correctly no better than by chance.

The main experiment was performed using Edpuzzle (http://
edpuzzle.com/), an American platform for online learning. This
platform was validated by Abou Afach et al. (2018) and is used
by colleges, open courses, and universities. It was also validated
in Brazil by researchers in education, which signaled it could be
used successfully by local students (Lombardi and Gitahy, 2017).

We collected data of functional near-infrared spectroscopy
(fNIRS) placed over the PFC (responsible for planning complex
cognitive behavior, decision making, and moderating social
behavior) of 18 undergraduate and graduate students using
NIRSport equipment (company NIRx Medical Technologies). In
the experiment, subjects were seated in a comfortable chair in a
quiet and ventilated room.

The subjects were asked to relax and to remain still during
the experiment. They watched a free recorded lecture (27 min)
with 10 multiple-choice exercises (Figure 1). As in real classroom
situations, there was no indication of the times that they would be
asked future questions.
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FIGURE 1 | The questions are based on content exposed at earlier times throughout the video (indicated in blue). The red dots show the exact timing of the questions.

FIGURE 2 | Montage layout: The position of the optodes follows the universal configuration of the 10-10.
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FIGURE 3 | Double cross-validation implemented: In the outer (external) loop of double cross-validation, each interaction excludes one subject and all remaining data

subjects are divided into two subsets referred to as training and test sets. The training set used in the inner (internal) loop, while the test set was exclusively used for

model assessment.

2.3. Data Acquisition
The position of the optodes follows the universal configuration
of the 10-10 electroencephalogram (EEG) system (Koessler et al.,
2009). The 8 emitters and 7 detectors are positioned in the form:
Sources in F3, AF7, AF3, Fz, Fpz, AF4, AF8, F4 and the Detectors
in F5, F1, Fp1, AFz, F2, Fp2, F6 under an approximate distance
of 3 cm between the optodes and resulting in the collection
of oxyhemoglobin and deoxyhemoglobin from 20 channels, as
Figure 2.

The recording of the PFC region was conducted on a multi-
channel continuous wave system using NIRSport equipment
(company NIRx Medical Technologies). This system consists
of 8 illumination sources and 8 detection sensors with two
wavelengths of 760–850 nm. The sampling rate of NIRSport
is 62.5 Hz, as the device implements time multiplexing, which
means that only one LED is turned on at each time, the sampling
rate for each data channel is 7.81 Hz. The data were recorded
by a computer during the measurements using NIRStar software
(NIRx Medizintechnik GmbH, Berlin, Germany)

2.4. Data Preprocessing
Raw data from the NIRStar were processed using the NIRSLab-
2014 (NIRx Medizintechnik GmbH,Berlin, Germany) via the
Matlab 2007b (Mathworks, Natick, MA, USA) (Xu et al.,
2014) software using a 0.01–0.2 Hz bandpass filter to reduce

TABLE 1 | Confusion matrix—random forest.

Predicted \Actual Incorrect Correct

Incorrect 34 44

Correct 18 84

TABLE 2 | Confusion matrix—GLMNET.

Predicted \Actual Incorrect Correct

Incorrect 32 46

Correct 20 82

physiological signal artifacts at the cutoff frequencies of the
global deviations (< 0.01 Hz), systemic interferences such as
respiration rate (> 0.2Hz) and cardiac cycles (> 0.5Hz). We
used the modified Beer-Lambert law (Mesquita and Covolan,
2008), to find the variations in oxygenated hemoglobin (HbO2)
and deoxygenated hemoglobin (HHb) cited by Delpy and Cope
(1997). We removed some motion artifacts manually (spikes)
where HbO2 and HHb increased or decreased in unison based
on visual inspection of the record (Lloyd-Fox et al., 2010).
Afterward, we used the mean of the entire timeline as a baseline
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FIGURE 4 | The ROC curve is created by plotting the true positive rate (sensitivity) against the false positive rate (specificity) at various threshold settings.

and differential path length factor (DPF) of 7.25 for the 760 nm
and 6 wave, 38 for 850 nm lengths.

After computing the states of oxyhemoglobin (HbO2) and
deoxyhemoglobin (HHb), the signal was averaged and grouped
according to 10 exercises and 18 students, totaling 180
observations over 20 channels. The signal’s standard deviation
was also computed in each of these groups. However, since this
feature did not improve the statistical analysis, it was not used in
the final model.

2.5. Statistical Analysis
All learning algorithms were implemented in the R language
(4.0.3 version). The “magrittr” and “tidyverse” packages were
used in building the final database. The packages “randomForest”

and “GLMNET” were used for fitting the Random Forest
and Penalized Logistic Regression classifiers. Also, the “ROCR”
package was used for performance analysis.

Logistic regression performs binary classification
(dichotomous output labels), returning the probability that
the object belongs to each class. In this way, the cost function can
be the difference between the predicted probability and label 0 or
1. This cost can be estimated by calculating the average loss over
all objects in a test set, similarly as done in linear regression.

Simple logistic regression can cause overfitting when dealing
with many covariates. To mitigate this problem, we applied
LASSO (least absolute shrinkage and selection operator) to
our data. This is a regularization method that penalizes large
parameter values and usually yields solutions in which the
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FIGURE 5 | In this map, the red dots represent the sources and the yellow dots the detectors. We identified the most important channels from the total iterations in

training the model. The frequency of the main covariables identified were: deoxyhemoglobin (blue circles) in channel 18 (highly relevant in all subjects) and

oxyhemoglobin (green circles) in channel 3 (present in 60% of the subjects).

estimates of several of the parameters are zero (sparse solutions).
This method is done bymaximizing the log-likelihood added by a
penalty factor. More details about LASSO can be found in section
A.1 of the Appendix.

2.6. Cross Validation
Both our algorithms (Random Forest and GLMNET with
LASSO) involved training 180-response BD (10 video ranges for
each of the 18 subjects). Each of these has 40 covariates for
prediction [mean (HbO2) and mean (HHb) for each of the 20
channels obtained in each video snippet].

Using a small database to learn the parameters of a prediction
function and testing it on the same data can find a perfect score

but would fail to predict yet-unseen data. This situation is called
overfitting and can be overcome by cross-validation.

The performance of Random Forest and LASSO logistic
regression was evaluated using different types of cross-validation.
The Random Forest was evaluated using simple leave-one-
subject-out cross-validation. Also, we assessed the performance
of LASSO logistic regression using double cross-validation
(leave-one-subject-out) as illustrated in Figure 3. The double
cross-validation process implemented comprises two nested
cross-validation loops which are referred to as internal and
external cross-validation loops. In the outer (external) loop of
double cross-validation, each interaction excludes one subject
and all remaining data subjects are divided into two subsets
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FIGURE 6 | Random forest outputs: level of importance of each covariate with a detailed zoom at the top-5 ones.

referred to as training and test sets. The training set used in
the inner (internal) loop of double cross-validation for model
building and model selection, while the test set was exclusively
used for model assessment.

3. RESULTS

The Random Forest and the GLMNET obtained satisfactory
results with, respectively, areas of 0.67 and 0.65 under the
ROC curve in Figure 4. Also, We represented through the
confusion matrix of both algorithms (Tables 1, 2) the instances
of the predicted classes: Each row represents the instances
of the predicted model while the column represents the real
results of the students’ performance. Both models obtained a
good fit on identifying actual right answers (correct/correct)
and wrong answers (incorrect/incorrect). The GLMNET LASSO
had an accuracy of 0.63 ± 0.036, a sensitivity of 0.62 ±

0.067, a specificity of 0.64 ± 0.042, and a Cohen’s kappa
coefficient of 0.22 (fair on the Kappa scale). The random
forest had a slightly better result, with an accuracy of 0.66 ±

0.035, a sensitivity of 0.63 ± 0.066, a specificity of 0.66 ±

0.042, and a Cohen’s kappa coefficient of 0.26 (fair on the
Kappa scale).

We also showed that the models are in fact better than chance
through a permutation test, which evaluates whether the model is
uninformative. This test can be easily applied to a wide range of
statistical learning methods, including some in which a measure
of variability is difficult to obtain and is not automatically
produced by the statistical software (Friedman et al., 2001).

We repeated the same procedure of adjusting the models with
the shuffled response variables and calculated the AUC (area

under the ROC curve) for each one of the 1, 000 iterations.The
total number of cases that resulted in a better model than the
original was 3 cases for the Random Forest, thus obtaining a
p-value of 0.003 (thus rejecting the null hypothesis) and the
total number of cases that resulted in a better model than the
original was 1 inGLMNET, thus obtaining a p-value of 0.001 (also
rejecting the null hypothesis).

The output of the models identified which channels resulted
in better predictors for the exercises.

3.1. Main Predictors—Penalized Logistic
Regression
For the GLMNET model, we calculated the frequency
of the selected channels in each iteration of the outer
loop of the cross-validation, as displayed in Figure 5.
We verified that the covariates (HHb) in channel 18
(referring to regions F4-F6 in the 10-10 system) and the
(HbO2) in channel 3 (F5-AF7) had greater weight in the
prediction, being used in, respectively, 100 and 59% of
the subjects.

The relevant channels according to this model are the areas
of channel 4 (AF7- F5), and channel 18, regions F4-F6, both
corresponding to middle frontal cortex (Koessler et al., 2009;
Balconi and Fronda, 2020). The region belongs to the dorsolateral
prefrontal cortex (Bandeira et al., 2019) which is associated
with the cognitive process, workingmemory, cognitive flexibility,
planning, inhibition, and abstract reasoning (Zgaljardic et al.,
2010).

As for the most important channels for each of the models,
it is worth mentioning that the penalty of the channels in
the GLMNET with LASSO does not imply that they are not
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FIGURE 7 | Boxplots show differences between the groups: 1, certainly right exercise; 0.5, not sure/next idea; 0, probably wrong/random guess.

explanatory for the response variable, but rather, there may
be a correlation with another channel that is explanatory and
therefore suffered a penalty.

3.2. Main Predictors—Random Forest
The Random Forest Model indicated high predictive power from
the covariates (HHb) in channel 18 (Figure 6). Besides this
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FIGURE 8 | In these maps, the red dots represent the sources and the yellow dots the detectors. Panel (A) refers to the GLMNET Model output and strongly indicates

channel 18 HHb (F4-F6) and channel 4 O2Hb (AF7-FP1). Panel (B) refers to the Random Forest Model output and indicates greater relevance for channel 18 HHb

(F4-F6) and channel 7 HHb (AF3- AFz). The channel 18 region is the dorsolateral prefrontal region, associated with attention and working memory.

channel, the following were the most relevant: 7 (AF3-AFz), 20
(AF8-F6), 1 (F3 and F5), and 16 (AF4 and Fp2). In addition to
working memory, they also show semantic aspects of language.

3.3. Hits Expectations vs. Prediction
In addition to identifying which channels are more explanatory
for identifying the errors in the questions per individual, it
was also possible to evaluate the levels of student involvement
in interactive classes. We analyzed which types of questions
are more difficult to answer by comparing the error
rate with moments when the students declared to have
lost concentration.

We compared the results of the random forest prediction with
what the volunteers believed they had got right and mentioned
at the end of the experiment. The Figure 7 shows how the model
differentiates hits and errors using only signals of oxyhemoglobin
and deoxyhemoglobin in each question.

The Random Forest model indicates a slightly higher
probability of correct answers among the cases in which the
subjects believe they have hit the exercise. Also, it indicates a
low probability of correct answers for the cases in which the
subjects declared to have felt indecisive or believed to have
mistaken the question (in this case, with low differentiation
between them).

For the training of the models, it was necessary to identify the
hemodynamic signs linked to the questions. We conducted tests
to assure that the questions alone were not enough to predict
student successes and errors (which would show an error in the
design of the experiment).

The analyzed regions of the experiment are only suitable for
exercises with the fixation of theoretical content. Mathematical
reasoning, calculation, and perception have not been validated.

4. DISCUSSION

In this research, we fit a predictive model for a students’
correctness of answers in an interactive class based on PFC
activity. These models allowed the identification of which regions
are most relevant and influence results the most.

Both models (Figure 8) indicated that the information from
channels F4-F6 (based on the EEG 10-10 system) had the
greatest impact on the predictive model (Figure 4), suggesting a
significant contribution to language understanding and semantic
decision tasks.

Our models are consistent with other articles in the literature.
For instance, (Liu and Ayaz, 2018) shows that perceived speech
can be identified from the listeners’ brain signals measured
with fNIRS and (Herff et al., 2014) shows that measuring
hemodynamic responses in the PFC with fNIRS, they showed
the degree of workload a subject was experiencing, instead of
only identify if there was an engagement during the tasks.
Furthermore, MacDonald et al. (2000) and Dosenbach et al.
(2006) use fNIRS data to show that brain activity can distinguish
between high and low levels of task engagement. Specifically,
they detected differences in the brain activity in the dorsolateral
prefrontal cortex (dorsolateral prefrontal cortex—DLPFC) while
participants alternated between performing and not performing
a cognitive task.
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With error rates in the models below 30%, our work can
be suggested to assess levels of student involvement in tasks
to validate new teaching content through videos, allowing
us to evaluate whether students can assimilate content from
fNIRS signals.

Despite the results obtained, the study has some limitations.
For instance, the model considers the NIRS signal related to a
single video lesson. Further studies are needed to have more
information about students’ behavior and performance during
the task. Also, in the collection of fNIRS data in this experiment,
we did not use short distance detectors, which could assist in the
exclusion of extracerebral signals around the sources (Tachtsidis
and Scholkmann, 2016).

An unexpected result was the high importance of HHb
in both predictive models. Usually fNIRS studies indicate a
high influence of HHbO2 on results, with higher signal-to-
noise ratio SNR than HHb. Fishburn et al. (2014) shows the
fNIRS sensitivity to detect linear changes in activation and
functional connectivity in response to cognitive load, using
HHbO2 and HHb had low correspondence. Also, Fishburn et al.
(2014), Leon-Dominguez et al. (2014), and Barreto et al. (2020)
show significant results for HHb. The sensitivity and SNR are
core parameters during the fNIRS measurement and from the
results obtained, further investigation is needed regarding the
importance of HHb data in the models and new systematic
analysis of SNR.

Since our primary goal was limited to investigating the PFC,
we did not acquire signals from other brain regions. Although
this assembly of optodes provides favorable conditions for
more realistic situations, complementary studies with Functional
Magnetic Resonance Imaging (fMRI) could perform to accurately
identify other brain regions and also identify a precise location of
Brodmann’s areas involved during the task.

This study opens perspectives for a better understanding of
the PFC during the execution of tasks and experiments in real
situations. For further studies, we understand that it is important

to continue assessing the level of sustained attention of students
from hemodynamic states through models for classifying the
involvement in the task rather than subtasking specific tasks.
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A. APPENDIX

A.1. LASSO
Logistic regression is a supervised learning method that is used
for binary response variables. Let Yi ∈ {0, 1} be a response
variable and Xi be a vector of covariates. In logistic regression,
the logit of P(Yi = 1|Xi) follows a linear equation, that is,

log

(

Pβ (Yi = 1|Xi)

1− Pβ (Yi = 1|Xi)

)

= β t
Xi , where β are

unknown coefficients. (A1)

Using Equation (A1), it is possible to compute the log-likelihood
of coefficients, l(β), for the observed sample.

l(β0) =
n

∑

i=1

log(Pβ0(Yi = yi|Xi)) (A2)

The value of l(β0) is a measure of how likely it is that β = β0.
Based on this interpretation, a common choice of estimator for

β is the one which maximizes l(β0), the maximum likelihood
estimator. However, this estimator can lead to overfitting when
the sample size is small relatively to the number of covariates.
In this case, it is common to use regularized maximum
likelihood estimators.

LASSO is one alternative for performing regularized logistic
regression. In this framework, one estimates β by maximizing

s(β0) = l(β0)− λ

d
∑

i=1

|βi|. (A3)

Equation A3 leads to a trade-off between how likely is β and how
small are its values. This trade-off often avoids overfitting and
leads to better estimators. Furthermore, in LASSO one uses a l1
penalty,

∑d
i=1 |βi|. This penalty often leads to estimates for β that

have many zeroes. That is, LASSO estimation often automatically
performs feature selection.
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