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Meditation is an umbrella term for a number of mental training practices designed
to improve the monitoring and regulation of attention and emotion. Some forms of
meditation are now being used for clinical intervention. To accompany the increased
clinical interest in meditation, research investigating the neural basis of these practices
is needed. A central hypothesis of contemplative neuroscience is that meditative
states, which are unique on a phenomenological level, differ on a neurophysiological
level. To identify the electrophysiological correlates of meditation practice, the electrical
brain activity of highly skilled meditators engaging in one of six meditation styles
(shamatha, vipassana, zazen, dzogchen, tonglen, and visualization) was recorded.
A mind-wandering task served as a control. Lempel–Ziv complexity showed differences
in nonlinear brain dynamics (entropy) during meditation compared with mind wandering,
suggesting that meditation, regardless of practice, affects neural complexity. In contrast,
there were no differences in power spectra at six different frequency bands, likely due to
the fact that participants engaged in different meditation practices. Finally, exploratory
analyses suggest neurological differences among meditation practices. These findings
highlight the importance of studying the electroencephalography (EEG) correlates of
different meditative practices.

Keywords: meditation, electroencephalography, oscillations, power spectra, entropy, Lempel–Ziv

INTRODUCTION

Meditation is a catch-all term referring to a diverse collection of mental exercises (Cahn and Polich,
2006; Fox et al., 2016). Generally, meditation practices involve the intentional monitoring and
regulation of attention and emotion, which may be improved with regular practice (Lutz et al.,
2008, 2009; Slagter et al., 2011; Tang et al., 2015). Meditation practices are now being effectively
employed in a number of therapeutic domains (Rubia, 2009; Vøllestad et al., 2012, Simkin and
Black, 2014; Eisendrath, 2016).

In recent years, there has been an increase in studies examining the neural basis for these
practices (Van Dam et al., 2018). Scientific interest in meditation grew in the late seventies, with
researchers examining the psychological and cognitive correlates, creating theories, proposing
clinical applications, and beginning neurological study (Andresen, 2000). The earliest studies
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exploring the neurological correlates of meditation were
conducted in Asia with advanced yogic meditators in India and
Zen meditators in Japan using electroencephalography (EEG;
Lutz et al., 2007).

Recently, there has been a movement within the field of
contemplative neuroscience to address the methodological and
theoretical issues facing the field (Cahn and Polich, 2006; Tang,
2012; Thomas and Cohen, 2014; Davidson and Kaszniak, 2015).
However, few studies have made direct comparisons between the
neurological correlates of different meditation practices. Instead,
they almost exclusively studied one technique (Lutz et al., 2004;
Hölzel et al., 2011; Nolfe, 2012; Davidson and Kaszniak, 2015;
Fox et al., 2016). Emerging research suggests that meditation
practices that differ on a psychological level also differ on a
neurophysiological scale (Lutz et al., 2008; Travis and Shear,
2010; Tomasino et al., 2013; Fox et al., 2014, 2016; Lomas
et al., 2015). However, most comparative research on meditation
has been conducted through meta-analysis. This method is
limited because it compares studies with different methodologies,
inclusion criteria, and measurement tools. Additionally, a meta-
analysis of many small studies does not necessarily predict
the results of a single large study (Slavin, 1986). Furthermore,
meta-analysis allows researchers to cherry-pick studies and
disregard others, where possible (Stegenga, 2011). Therefore, an
experiment designed to differentiate multiple styles with the same
procedure would allow for a direct exploration of the potential
neurological signatures of different practices.

Despite the methodological issues in research investigating
the neurological correlates of meditation, preliminary findings
are already being used in products marketed toward consumers.
Some companies are marketing neurofeedback devices for EEG-
assisted meditation. Proponents of EEG-assisted meditation
assert that, if reproducible, EEG markers can be linked to specific
meditation practices; learning to generate similar signals could
aid in meditation practice (Brandmeyer and Delorme, 2013).
However, there have been no large-scale studies investigating
the neurological correlates of meditation styles. Moreover, the
increase in EEG-assisted meditation is concerning because
neurofeedback has been shown to have adverse effects when used
improperly (Hammond and Kirk, 2008).

While meditation, in general, has become the object of
increased scientific attention, this work is limited to a small
number of meditation practices while ignoring others (Lutz et al.,
2007; Fox et al., 2014; Matko and Sedlmeier, 2019). Practices that
involve visualization, compassion, and non-dual awareness are
rarely studied (Josipovic, 2014). The issues caused by the lack of
study and differentiation of disparate meditation practices are not
limited to scientific inquiry. Popular press articles also tout the
benefits of “meditation” without providing specifics on what type
of practices were used.

Meditation is an umbrella term encompassing a large number
of distinct mental exercises, which differ in phenomenological
character (Hölzel et al., 2011; Vago and David, 2012; Nash and
Newberg, 2013; Dahl et al., 2015; Matko and Sedlmeier, 2019).
A concrete definition of meditation remains elusive because of
the vast number of cognitive processes it describes. For example,
reciting a word or phrase (mantra meditation), the progressive

relaxation of muscles (relaxation response), paying attention
to a specific object (concentration), paying attention to many
aspects of the present moment nonjudgmentally (mindfulness),
and movement-based practices (yoga, tai chi, and qi cong) are
all considered meditation in the scientific literature. Additionally,
some of these practices are single techniques, while others are
broad categories that include multiple practices (Ospina, 2007).
Additionally, meditation styles from disparate spiritual, religions,
and secular traditions have been conflated in the literature and
popular press (Awasthi, 2013).

Defining meditation practices is not straightforward. Many of
these practices developed within religious, spiritual, and ethical
contexts, and they have been appropriated for use in secular
or clinical settings. Scientific descriptions of meditation arising
in cognitive neuroscience or clinical psychology often omit the
context of meditation including beliefs, philosophical positions,
rules or guidelines for ethical behavior, cultural background,
and other factors considered necessary for effective meditation
practice (Dahl et al., 2015; Lutz et al., 2015). Additionally,
the procedure for a given meditation practice can differ
between traditions or within traditions across different teachers.
Furthermore, diverse meditation practices can lead to distinct
effects or states of consciousness. A meditative state describes
an altered sense of perception, cognitive process, or sense of self
that occurs during the course of meditation practice (Cahn and
Polich, 2006). It is possible that the same meditation technique
could lead to multiple states of consciousness or that different
meditation practices could lead to the same meditative states.
For example, a meditator attempting to reach a state without
discursive thinking might fail to do so during a given meditation
session, be successful for only part of a session, or fail to disrupt
discursive thinking entirely. Additionally, a meditator could use a
variety of techniques to reach this state of nonthinking that might
involve distinct cognitive and neural mechanisms. Complicating
matters further, meditators can develop altered traits, long-term
changes in cognition, or brain dynamics that persist outside
of meditation (Lutz et al., 2004). It is possible that meditative
states experienced during meditation are mitigated by the altered
traits of meditators. Thus, two meditators practicing the same
meditation technique might have very different experiences
because of their individual traits. It is also possible that a
meditator might achieve a state of consciousness without the
intentional use of a specific technique because of sustained
practice. The interaction between the context of meditation, the
specific meditation practices engaged in, and the trait effects of
each individual likely play a role in what state of consciousness
meditation produces. This logic is true of each of the meditation
practices described and outlined below.

In response to the issues outlined above, several classification
systems for meditation have been proposed (Nash and Newberg,
2013; Dahl et al., 2015; Lutz et al., 2015; Matko and Sedlmeier,
2019). One classification scheme dichotomizes meditation as
focused attention (FA) or open monitoring (OM). FA meditation
is used to increase the ability of a meditator to keep their mind
fixed on one object (e.g., a visible object, physical sensation,
or mental image) for increasing periods of time. This requires
the monitoring of external stimuli or thoughts that might
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take attention away from the target, disengaging from the
distraction, and returning attention to the intended target (Fox
et al., 2016). Contemplative traditions assert that engaging in
a curriculum that incorporates FA meditation reduces mind
wandering, increases the stability of attention, and reduces the
need to regulate attention through executive skills (Gyatso, 1995).
FA meditation is contrasted with OM, which involves turning
attention to the present moment and observing all aspects of
experiences with an attitude of equanimity (Fox et al., 2016).
The FA/OM dichotomy does not fully characterize differences
among practices, as illustrated by our descriptions below and in
the literature (e.g., Dahl et al., 2015; Lutz et al., 2015).

In the present study, participants engaged in one of six
meditation practices: shamatha, vipassana, zazen, dzogchen,
tonglen, and deity visualization. All of these practices meet the
minimum criteria for contemplative practices outlined by Bond
et al. (2009): they involve a defined technique, they include logic
relaxation, and they are in a self-induced state. In addition, they
meet many of the additional, but not required, features that
meditation practices may include, as outlined by Bond et al.
(2009). We take a scientific approach to the study of meditation,
and we use the FA/OM classification below to illustrate
differences among the practices, where possible; however, full
explication of the different classification schemes and how the
traditions differ from religious or cultural perspectives is beyond
the scope of this manuscript. The descriptions below give a
general overview of each meditation practice and contain sources
from both the scientific and traditional perspectives.

Shamatha is a set of practices used by nearly every school of
Buddhism. Shamatha is often translated as “calm abiding.” The
literal translation for shama is “peace.” Tha translates as “abide”
or “remain” (Ray, 2004). The term is used to describe a state
of mind rather than a practice of meditation. There are various
methods designed to achieve calm abiding, with most involving
focusing the mind on a single object of attention such as the
sensations of the breath or a specific object. This style requires the
meditator to develop two faculties: (a) the ability to pay attention
to the chosen object and (b) the capacity to notice when the
mind has disengaged from the attentional subject unconsciously
(Elliott et al., 2014). Generally, shamatha is classified as an FA
meditation because most of the time it involves focusing on a
single object (Zeidan et al., 2012). However, in some meditation
practices, chiefly those originating in Tibet, shamatha can be
used in a way that is more similar to OM than FA (Wallace,
1999). In the present study, practitioners of shamatha meditation
reported attention to the sensations of the breath as the object
of attention, also known as Ānāpānasati (Nanamoli, 2010). If
their mind wandered from the task, they brought attention
back to the breath.

Vipassana is a Pali word. Vi is an adjective suggesting intensity,
and “passana” translates to “seeing.” Taken together, the word
is often translated to “special seeing” (Perdue, 2014). Vipassana
meditation was the precursor to the modern mindfulness
movement in western countries. It involves purposeful paying
attention to the present moment without judgment (Kabat-
Zinn, 2003). There are multiple traditions that practice vipassana
meditation, all employing a unique style. In the present study,

Vipassana meditators practiced in the style of S.N. Goenka. They
reported observing the sensations of the body nonjudgmentally
by systematically moving attention from head to feet (Hart, 2011;
Zeng et al., 2014).

Zazen literally translates to “seated meditation” (Brown and
Roshi, 1996). Therefore, as zazen refers to a posture, it is possible
that a Zen practitioner could be engaging in either maintaining
attention on the breath (FA) or open-awareness (OM) practice
during a zazen session. However, in its common usage, zazen
refers to the practices of Shikantaza during which a meditator
attempts to remain in the present moment (Fischer-Schreiber and
Schuhmacher, 1989). In the present study, all zazen participants
reported engaging in shikantaza, which means “nothing but
sitting” (Fischer-Schreiber and Schuhmacher, 1989). During
shikantaza practice, meditators attempted to pay attention to
every aspect of experience and view every phenomenon that
appears in consciousness as one totality.

Dzogchen translates as the “great perfection,” and it is a
collection of meditation techniques practiced by the Nyingma
school of Tibetan Buddhism (Van Schaik, 2004). Great perfection
refers to a state of recognizing the underlying nature of
the mind, the element of experience that is ever-present
and unchanging. Dzogchen is often referred to as non-
meditation because it can be completed instantaneously by
noticing the characteristics of consciousness itself (Van Schaik,
2004). Thus, dzogchen is categorized as a non-dual meditation,
falling outside the FA–OM classification structure. During
normal waking consciousness or FA/OM meditation, there is
a sense self (the subject of subjective experience). Dzogchen
practitioners assert that, on both philosophical and experiential
levels, there is no difference between subject and object, as
both appear inside a field of unbounded awareness. Non-
dual awareness, recognized by dzogchen practitioners during
non-meditation, is, therefore, awareness itself. To use the
often-cited analogy, awareness is like a mirror on which
everything appears (Gyatso, 2004). However, in the case of
consciousness, there is no separation between awareness and
the objects of awareness. In the current study, participants
engaged in Trekchö, often translated as “thoroughly cutting
through” (Trungpa, 2013). They reported looking at the
nature of their minds.

Tonglen is a visualization practice designed to increase one’s
capacity for compassion. In Tibetan, tong translates to “giving or
sending,” and len means “receiving or taking” (Drolma, 2019).
The practice involves visualizing a specific person, group of
people, or geographical area. Upon inhalation, one breathes in
his/her suffering while maintaining the aspiration that his/her
suffering will decrease. Upon exhalation, one imagines breathing
out and sending forth that which might reduce the suffering of
those visualized. In the present study, participants who engaged
in tonglen practice visualized a person who is suffering and
recognized that they wanted this individual to be happy. They
then wished the subject to be free of suffering and imagined
this suffering turning into a black smoke. The imagined smoke
was inhaled by the meditator who visualized its transformation
into white light that was exhaled. Upon exhaling, the meditator
wished the subject to find happiness (McKnight, 2012).
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Deity visualization involves visualizing oneself as a particular
being, with particular qualities such as compassion and wisdom
that the meditator hopes to embody. The purpose of the
practice is to see that these qualities are already intrinsic to
every person (Gyatrul, 1969). For example, Tara practitioners
visualize themselves as the female Tara deity while reciting a
mantra believed to embody the characteristics of compassion and
emptiness. The practice is divided into two stages—generation
and completion. During the generation stage, meditators imagine
themselves as a particular deity while noticing that the image
appearing in their minds is like a mirage (Ray, 2002). There are
two variations of the completion stage: the path of method and
the path of liberation (Kongtrul, 2002). Here, we focus on the
path of liberation because that was the method used in the current
study. In the path of liberation, meditators attempt to realize the
empty nature of reality by experiencing the dissolution of the
image they have been visualizing. The goal of the practice is to
see how everything is similar to an illusion and that all things
have a sense of solidity only by virtue of our having labeled them.
During visualization, meditators completed both the perfection
stage and the compilation stages, and all visualized the deity Tara
(Chodron, 2013).

A goal of many meditation practices is to reduce distraction
and mind wandering, and there are neurological correlates
suggesting this might be achieved. Research utilizing functional
MRI (fMRI) shows distinct forms of meditation activating
different brain regions, many of which are implicated in
attentional control. For example, compared with OM, FA
meditation is correlated with increased activity and connectivity
in the anterior cingulate cortex (Lazar et al., 2000; Manna
et al., 2010). Both FA and OM result in increased activity
in the insula during introspection compared with controls
(Farb et al., 2007). Researchers have also noted reductions in
default mode network (DMN) activity during both FA and OM
meditation, with less activation in the ventral medial prefrontal
cortex, precuneus, medial temporal lobe, and posterior cingulate
gyrus (Hölzel et al., 2007; Brewer et al., 2011; Simon and
Engström, 2015; Lee et al., 2018). Thus, there is a growing
body of literature to suggest that different styles of meditation
are associated with distinct patterns of neuronal activation
and connectivity.

Many studies investigating the neural correlates of meditation
use EEG. EEG is a technique that monitors the activity of neurons
with an array of highly conductive sensors placed over the scalp.
These sensors measure the voltage produced by neurons (Henry,
2006). EEG oscillatory activity occurs when a large number of
postsynaptic potentials occur simultaneously (Kirschstein and
Köhling, 2009). A growing body of evidence suggests oscillations,
quantified as power spectra, are important for coordinating
information exchange between brain regions and promoting
neural plasticity (Engel et al., 2001; Varela et al., 2001; Buzsáki and
Draguhn, 2004; Fries, 2005). Oscillatory activity changes based on
states of consciousness (Davidson, 1976; Dietrich, 2003). During
meditative states achieved by highly experienced meditators,
changes in EEG oscillatory signatures have been reported (Lutz
et al., 2004). While the neuroelectric correlates of meditation
have not been fully explored, earlier research suggests that, in

general, meditative states produce increases in the power of theta
and alpha (for reviews, see Delmonte, 1984; Andresen, 2000;
Dietrich, 2003; Cahn and Polich, 2006; Fell et al., 2010; Lomas
et al., 2015).

Together, the previous findings on the neural correlates of
meditative states from EEG and fMRI studies provide converging
evidence that some meditative states are significantly different
from other states of consciousness at the level of the brain
(Davidson, 1976; Dunn et al., 1999; Dietrich, 2003; Lutz et al.,
2007). Additionally, there is a growing body of evidence
suggesting that different styles have unique effects on the EEG
signal (Dunn et al., 1999; Lutz et al., 2008; Travis and Shear,
2010; Tomasino et al., 2013; Fox et al., 2014, 2016; Lomas et al.,
2015). Dunn et al. (1999) examined the effects of concentration
meditation with the breath as the object (shamatha) compared
with a resting state. During meditation, they found a decrease in
average theta and increases in posterior alpha and posterior beta.
The researchers found significant differences between the EEG
signal produced by concentration meditation and mindfulness
meditation. However, this study used student volunteers who,
after training, had fewer than 100 h of lifetime practice. Saggar
et al. (2012), using a longitudinal design of 3 months with
waitlist controls, found that observing the sensations of the
breadth in shamatha meditation resulted in reduced alpha and
beta band power.

The style of vipassana as taught by S.N. Goenka has also
received some attention from neuroscience researchers. A group
of high-level meditators showed no difference in theta, alpha, or
beta bands but reported increases in occipital gamma (Cahn et al.,
2010). In contrast, vipassana meditators showed increases in the
delta, theta, and alpha bands (Kakumanu et al., 2018).

Zen meditation was the focus of early meditation research.
Kasamatsu and Hirai (1966) conducted a large study with Zen
priests. They found increased alpha amplitude during meditation
compared with a rest control condition. Murata et al. (1994)
reported increased frontal midline theta in advanced meditators
engaging in zazen, and a more recent study found decreased EEG
theta and beta power in the frontal region during Zen meditation
(Hauswald et al., 2015).

To our knowledge, the electrophysiological correlates of
dzogchen and visualization have each been explored in only
one study. Schoenberg et al. (2018) reported increased gamma-
band current density within brain regions associated with self-
referential processing such as the anterior cingulate cortex,
precuneus, and superior parietal lobule during essence-of-mind
practice. An increase in beta-band activity in the insula was
also reported. Amihai and Kozhevnikov (2014) demonstrated
reduced beta power during visualization compared with a rest
condition. To date, there has been no research on the neurological
correlates of tonglen.

Another way to explore neurological signatures of different
tasks is the use of nonlinear data analysis tools. New research in
brain dynamics suggests that the modulations in the variability of
neural signals are important for healthy cognition (Armbruster-
Genç et al., 2016). In other words “complexity lies between order
and disorder” (Erra et al., 2016). Early evidence suggests that,
counterintuitively, variability is necessary for stable cognitive and
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behavioral outputs of the brains (Pinneo, 1966; Pakhomov and
Sudin, 2013).

A popular subset of these methods centers on entropy, “a
dimensionless quantity that is used for measuring uncertainty
about the state of a system but it can also imply physical qualities,
where high entropy is synonymous with high disorder” (Carhart-
Harris et al., 2014). Measures of entropy are becoming more
common in neuroscience including research with altered states
of consciousness such as sleep, anesthesia, and psychedelic states
(Cavanna et al., 2018).

The use of entropy in the current study was informed
by Robin Carhart-Harris’s entropic brain theory based on
neuroimaging work with psychedelic drugs (Carhart-Harris et al.,
2014; Carhart-Harris, 2018). Carhart-Harris argues that measures
of brain entropy are useful because they allow researchers to
make qualitative observations based on the quantitative measure
of randomness as measured by neuroimaging techniques. For
example, a low-entropy brain signal is reported when the content
of consciousness is reduced [non-rapid eye movement (NREM)
sleep, anesthesia, or coma], and high-entropy brain signals have
been reported as phenomenologically rich (psychedelic drugs).
Lempel–Ziv complexity (LZc) is one approximation of entropy
(Lempel and Ziv, 1976). LZc provides a measure of entropy
by “counting the number of distinct patterns of activity in
the data. It can be thought of as being proportional to the
size of a computer file containing the data, after applying
a compression algorithm” (Schartner et al., 2015). We chose
this method because it has been used research on altered
states of consciousness such as awake, general anesthesia,
psychedelics, and mental health disorders including depression,
anxiety, and schizophrenia (Radhakrishnan and Gangadhar,
1998; Thomasson and Pezard, 1999; Gómez et al., 2006;
Fernández et al., 2011, 2013; Méndez et al., 2012; Bachmann et al.,
2015; Hudetz et al., 2016; Schartner et al., 2017a; Timmermann
et al., 2019).

In the present study, we compared EEG of highly skilled
meditators while meditating and engaging in a mind-wandering
task. We used a mind-wandering task as a baseline control
because expert meditators have trained their minds to remain
in a meditative state at all times, making it difficult to achieve
a non-meditative baseline without an active task (Lutz et al.,
2004). Using a 16-channel system, we captured delta, theta,
alpha, beta1, beta2, and beta3 across the two conditions within
the same participants during the initial 600 s of meditation.
We calculated entropy during the meditation and the mind-
wandering tasks using the LZc approximation (Lempel and
Ziv, 1976). We also compared power spectra at six different
frequency bands across the two tasks. For the entropy measure,
we predicted lower values during meditation compared with
mind wandering, similar to findings with other altered states.
Power spectrum differences, both global and local, are a standard
measure of EEG activity; however, which bands are activated
during meditation varies across studies; thus, we have no a priori
predictions for these measures (Cahn and Polich, 2006; Lomas
et al., 2015; Schoenberg et al., 2018). Finally, exploratory analyses
investigated how the six practices of meditation compared with
each other neurophysiologically.

MATERIALS AND METHODS

Participants
Meditative communities were contacted in India, Nepal, and
the United States to assess interest in participating in the
study. Meditation instructors within the community selected
participants who had a high level of experience. Each community
provided a space to conduct the recordings, usually in the
area designated for meditation practice. Participants were not
compensated for their time. The study was approved by the
Colby College Institutional Review Board, and participants
provided written informed consent. Forty-two participants were
recruited. Fourteen participants were excluded due to a history
of traumatic brain injury, unusable recordings, or lack of
meditation experience or because they described their meditation
style as phenomenologically different from that of other
participants. Participants studied at least one of six practices—
zazen, dzogchen, shamatha, visualization, vipassana, and tonglen.
Participants in each meditative group had undergone instruction
in the same school of meditation. In some cases, participants
completed multiple recording sessions for different practices.
For these participants, we analyzed only their first meditation
recording. The resulting sample size was 28 participants
(seven shamatha, six zazen, six vipassana, five dzogchen, three
visualization, and one tonglen).

Participants had a mean age of 52.32 (SD = 15.74; 14 females),
an average of 21,934.64 h (SD = 20,186.46) of lifetime practice
with 7,308.50 (SD = 10,177.70) of those hours completed while on
retreat. A day of retreat equaled 6 h or more of practice. All but
two were right-handed. See Supplementary Materials for more
demographic information.

Meditation Practices
All of the meditation methods involved intentional monitoring
of emotion regulation or attention, but the focus during
the meditations differed. Each participant participated in a
semi-structured interview to determine the phenomenological
character of their meditation style. This interview was used
to determine if individuals using a shared label for their
meditation practice were engaging in a similar cognitive process
during meditation. The interview was guided by a questionnaire
adapted from Lutz et al. (2007) and is included in the
Supplementary Materials.

Procedure
A verbal description of the study rationale and procedures was
presented followed by a period for questions. After written
informed consent was obtained, a questionnaire assessing
meditative experience, biographical information, and screening
for past neurological abnormalities was administered. Then, a
semi-structured interview determined if the phenomenological
character of each meditator’s unique style was similar to
that of the group.

EEG activity was recorded according to the International 10–
20 System with 16 channel Ultracortex Mark IV (OpenBCI,
New York, NY, United States), sampled at 250 Hz, referenced
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with linked earlobe sensors. A digital notch filter was applied to
the data at 50 Hz for data collected in India and Nepal and 60 Hz
for data in the United States to remove alternating current line
noise. Sixteen electrodes were placed (Fp1, Fp2, F3, F4, F7, F8, C3,
C4, T3, T4, T5, T6, P3, P4, O1, and O2) on the scalp. Impedances
levels were less than 10 k� before recording to ensure electrodes
were in good contact with the scalp.

Participants sat in the same posture for both meditation
and mind-wandering tasks. We first collected an initial EEG
baseline consisting of one 80-s block. While sitting in their usual
meditation posture, participants were instructed not to engage in
any meditation technique and instead to think about their day
starting when they woke up. This condition emulated a mind-
wandering state to be contrasted with the purposeful, attentional
engagement in the present moment while in a meditative state
(Christoff et al., 2009; Smallwood and Schooler, 2006).

Following the baseline, participants were instructed to begin
meditation, which was recorded for 600 s from the beginning of
their meditation session. We did not ask what state they achieved
during this time. After recordings were completed, participants
were asked if the recording equipment had interfered with their
meditation practice. No participants indicated that the device had
interfered with their meditation.

Electrophysiological Analyses
EEG preprocessing was conducted in EEGLAB (Delorme and
Makeig, 2004) using a custom script that was implemented in
MATLAB (Math Works Inc., Natick, MA, United States). The
time series of raw data were visually inspected for artifacts.
Periods with non-local artifacts involving many electrodes were
identified visually and removed. A high pass filter at 0.5 Hz and a
low pass filter at 80 Hz were applied using finite impulse response
(FIR) filters (Rabiner and Gold, 1975). Eye movement artifacts
were removed using independent component analysis (ICA; Jung
et al., 2000).

To compare changes in EEG activity between meditation
and mind-wandering conditions, we first computed the power
spectral density during each condition for each channel using
the fast Fourier transform (FFT) in EEGLAB. In EEG power
spectra, like many physical signals, power scales with frequency;
i.e., lower frequencies are present in higher power than high
frequencies. The power law scaling relationship for EEG signals is
represented by S(f) = 1/f, where S(f) is the power spectral density
and f is the frequency from 0 to ∞. It is a parameter that can
be unique to the individual and can change with age (Voytek
et al., 2015) and is influenced by external sources of noise in the
recording (Keshner, 1982). This so-called 1/f noise can distort
measurements of EEG power, especially at the lower frequencies
known to be influenced by meditative state (Demanuele et al.,
2007). For the present experiment, the varied ages of participants
and especially the varied conditions encountered recording at
the field sites led us to remove this source of variability from
our measures. To normalize the power spectra, we independently
fit the power spectrum for the meditation and mind-wandering
conditions for each participant with a polynomial of the form 1/f,
and we subtracted this trend from the raw power spectrum.

Statistical Plan
To compare measures of entropy and normalized power spectra
in the meditation and mind-wandering conditions, we used SPSS
v. 24 to conduct repeated-measures ANOVAs. Our measure of
entropy was based on LZc. We calculated the LZc in python
with a script provided by Schartner et al. (2015). For the entropy
analyses, a post-hoc statistical power analysis was conducted
for our repeated-measures ANOVAs with two groups and two
measures (alpha = 0.05 and power = 0.95). For a moderate effect
size (Cohen’s f = 0.44), a sample size of N = 14 resulted in a 0.86
actual power (using GPower 3.1.9). Cohen’s f was determined
from our obtained partial η2 (0.16; see the section “Entropy”)
using the following conversion: Cohen’s f = square root of [η2/(1 -
η2)] (with one factor partial η2 = η2). For the analyses of power
spectra, the largest obtained partial η2 = 0.10 (Cohen’s f = 0.33;
see Table 1). Power analysis using the same parameters as for the
entropy analysis revealed that a sample size of N = 22 resulted in
0.84 actual power.

RESULTS

Entropy
To test for differences in global entropy during meditation and
mind wandering as measured by LZc, we conducted a one-way
ANOVA with state (meditation, mind wandering) as a within
factor. The analyses revealed a significant main effect for state
(F (1, 27) = 5.24, p = 0.030, partial η2 = 0.16). LZc scores
were lower during meditation (M = 0.84, SD = 0.11) than
during mind wandering (M = 0.88, SD = 0.10). Neither entropy
measures were significantly correlated with age: rs = 0.23 and
0.35, ps = 0.240 and 0.068.

Power Spectra by Frequency Band
We averaged the power spectra across all channels and created
the following frequency bands: delta (1–4 Hz), theta (4–8 Hz),
alpha (8–12.5 Hz), beta1 (12.5–16 Hz), beta2 (16.5–20 Hz), and
beta3 (20.5–28 Hz). One-way ANOVAs for each band compared
power spectra across meditation and mind-wandering sessions.
All analyses showed no significant differences (mean, standard
deviation, p-value, and effect size in Table 1). We found small
effect sizes for delta, theta, beta2, and beta3; and we found
medium effect sizes for alpha and beta1. The reason for the lack of

TABLE 1 | Mean (and standard deviation) power spectra as a function of
frequency band and state.

Band Mind wandering Meditation pa Partial η2

Delta 0.58 (0.47) 0.66 (0.34) 0.430 0.02

Theta −1.27 (1.13) −1.51 (0.87) 0.197 0.06

Alpha 0.95 (1.22) 1.25 (1.00) 0.094 0.10

Beta1 −0.30 (0.96) 0.50 (0.80) 0.095 0.10

Beta2 0.07 (0.29) 0.03 (0.26) 0.611 0.01

Beta3 −0.15 (0.23) −0.12 (0.18) 0.482 0.02

ap Values represent tests for differences between the two state conditions.
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significant differences could be due to the variability introduced
by the fact that the participants engaged in different meditative
practices. We explore the possibility that different practices show
different neurophysiological profiles in the next section.

Exploratory Analyses by Practice
Because we did not have enough participants in each practice for
sufficient statistical power, we highlight descriptive differences
across practices. First, we looked at differences between
the practices at each frequency band (Figure 1). Significant
differences in power between conditions at each site were
determined by a two-tailed t-test implemented in EEGLAB,
corrected for multiple comparisons by the false discovery rate
(FDR) procedure (Benjamini and Yekutieli, 2001; p < 0.05).
Participants who engaged in tonglen and zazen showed the
largest significant increases in alpha power across the majority of
electrodes in all regions.

The preliminary analysis also shows notable differences
between groups in the power spectrum for some meditation
practices that are not revealed in Figure 1. Figure 2 demonstrates
these differences using data not separated into the frequency
bands. Of note is the large variability present in the dzogchen
(Figure 2A), shamatha (Figure 2B), and visualization groups
(Figure 2C). In contrast, tonglen (Figure 2D), vipassana
(Figure 2E), and zazen (Figure 2F) meditators had qualitatively
lower levels of within-group variability. The findings shown in
Figure 2 may be of value to future researchers studying one or
more of these meditation styles.

DISCUSSION

The purpose of this study was to examine the neurophysiological
responses by highly skilled meditators while meditating and while
engaging in a mind-wandering task. We used two measures,
entropy and power spectra, at six different frequency bands. As
predicted, we found a difference in entropy, with lower amounts
of entropy during meditation compared with mind wandering.
This finding contrasts with that of Vivot et al. (2020), who found
increased entropy of band-specific oscillations during three styles
of meditation—Himalayan Yoga (FA), Vipassana (OM), and Isha
Shoonya Yoga (non-dual). One reason for the difference in
findings is that Vivot et al. (2020) calculated entropy based on
specific frequency bands rather across all bands, as we did here.
Reduced complexity during meditation has been reported in one
study investigating Sahaja Yoga meditation, a style characterized
by lack of thoughts (Aftanas and Golocheikine, 2002).

While complexity analysis is relatively new in the field
of contemplative neuroscience, there is a wealth of research
on entropy during other altered states of consciousness. For
example, entropy decreases during general anesthesia (Bruhn
et al., 2000; Zhang et al., 2001; Schartner et al., 2015), vegetative
state (Burioka et al., 2005; Sarà and Pistoia, 2010; Gosseries
et al., 2011; Wu et al., 2011, Schartner et al., 2017b), and sleep
in both humans and animals (Hudetz et al., 2016). In addition,
entropy increases with serotonergic psychedelics such as N,N-
dimethyltryptamine (Timmermann et al., 2019), lysergic acid

diethylamide, psilocybin, and ketamine (Tagliazucchi et al., 2014;
Schartner et al., 2017a). Finally, entropy is decreased in certain
neurological conditions such as epilepsy (Radhakrishnan and
Gangadhar, 1998), Alzheimer’s disease (Gómez et al., 2006),
attention deficit/hyperactivity disorder (ADHD; Fernández et al.,
2009, and depression (Pezard et al., 1996; Li et al., 2008; Akar
et al., 2015; Bachmann et al., 2015). The level of complexity
normalizes with pharmacological treatment (Méndez et al.,
2012), repetitive transcranial magnetic stimulation (Lebiecka
et al., 2018), and electroconvulsive therapy (Thomasson and
Pezard, 1999). Measures of complexity are also abnormally high
in patients with schizophrenia (Li et al., 2008; Fernández et al.,
2011; Fernández et al., 2013).

It is believed that low complexity in the brain reflects a smaller
number of possible configurations, or conscious awareness
with less experienced content (Schartner et al., 2017a; Vivot
et al., 2020). Similarly, high-entropy states may be rich in
phenomenological content (Tagliazucchi et al., 2014; Carhart-
Harris, 2018; Cavanna et al., 2018; Vivot et al., 2020). We
found significantly reduced complexity during meditation. Most
practices included in this study explicitly involve the reduction in
the number of sensory modalities in focus. Shamatha, tonglen,
vipassana, and visualization all involve focusing on one or
more sensory modality at the exclusion of others. Attention is
directed to specific senses in shamatha (sensation of breath),
vipassana (sensations of the full body), tonglen (imagined
imagery and emotion), and visualization (imagined imagery).
Dzogchen participants focused on the substrate of awareness
without explicitly excluding any appearances in awareness. Our
results suggest that limiting attention to sensory modalities is
associated with decreased levels of complexity in the EEG signal.

In contrast to entropy, we found no difference in power
spectra between meditation and mind wandering. The findings
are mixed regarding whether differences should be found in
each band as a function of meditating or not (Delmonte, 1984;
Andresen, 2000; Dietrich, 2003; Cahn and Polich, 2006; Fell et al.,
2010; Lomas et al., 2015). For example, delta effects are rarely
reported in the meditation literature (Cahn et al., 2010), and
our small effect size is consistent with this finding. One study
reported increased 2- to 4-Hz power in response to oddball
stimuli in meditators compared with controls (Cahn et al., 2013).
Delta has been studied extensively during sleep and has been
linked to a number of processes including neuronal plasticity
(Steriade and Timofeev, 2003). Delta is involved in a wide range
of cognitive processes, many of which involve motivation and the
brain reward system (Knyazev, 2007).

Theta oscillations have been implicated in learning tasks
during event-related potential (ERP) and continuous recording
conditions. Increases in theta activity have been found in working
memory (Raghavachari et al., 2001; Jacobs et al., 2006; Hsieh
et al., 2011), recall (Grunwald et al., 1999; Sederberg et al., 2003),
and spatial memory and navigation (Kahana et al., 1999; Araújo
et al., 2002; Caplan et al., 2003; Watrous et al., 2011). Decreased
theta is associated with difficulty in episodic retrieval (Addante
et al., 2011). Increases in theta power have been reported
in the meditation literature for both FA and OM (Aftanas
and Golocheikine, 2001, 2002; Baijal and Srinivasan, 2010;
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FIGURE 1 | Mean differences in power from meditation and mind-wandering conditions for each of the six meditation groups. Fields with a white circle were
significant at the 0.05 level after false discovery rate (FDR) correction for recording sites, frequency bands, and conditions. Sh, shamatha; Va, vipassana; Ze, zazen;
Dz, dzogchen; Ta, tonglen; and Vi, visualization.

Pasquini et al., 2015; Banquet, 1973; Jacobs and Lubar, 1989; Pan
et al., 1994), and increased theta has become a key feature of
meditation (Lagopoulos et al., 2009; Fell et al., 2010; Josipovic,

2010). In some cases, increases in theta power were correlated
with meditation experience (Lee et al., 2018). In contrast to this
previous work, we found no effect of meditation on theta.
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FIGURE 2 | Continued
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FIGURE 2 | Continued
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FIGURE 2 | The difference (meditation minus mind wandering) in power across frequency bands. Thin colored lines represent a single participant, and the
bold-colored line indicates the mean. The shaded regions indicate 1 standard deviation from the mean. Vertical black lines indicate a significant difference between
conditions at the 0.05 level with bootstrap statistics and with false discovery rate (FDR) correction. (A) dzogchen; (B) shamatha; (C) visualization; (D) tonglen;
(E) vipassana; and (F) zazen.
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There is no agreed-upon explanation of the function of
alpha (Bazanova and Vernon, 2014); however, increased alpha
in frontal areas has been found in mindfulness meditation
(Takahashi et al., 2005) and in posterior regions (Lagopoulos
et al., 2009). Advanced meditators in the Satyananda Yoga
practice had higher levels of alpha than had novice practitioners
(Thomas et al., 2014). Similarly, zazen and vipassana practitioners
showed increases in alpha during meditation (Kasamatsu and
Hirai, 1966; Braboszcz et al., 2017). We too found a moderate
effect size for alpha across the meditation and mind-wandering
conditions, albeit the overall difference was not significant.

Beta oscillations have been linked to the sensorimotor
cortex, specifically when sensory motor activity is actively being
maintained (Engel et al., 2001; Brovelli et al., 2004). We chose
to separate the beta band into three distinct groups after
Hinterberger et al. (2014). Increased beta1 has been linked to
meditative states. Dunn et al. (1999) found increased beta1
in 10 of 19 recording sites across a number of brain regions
when concentration meditation was compared with a relaxation
baseline. Moreover, more mean beta1 activity was found during
mindfulness meditation in 14 of 19 recording locations as
compared with the same relaxation condition (Dunn et al., 1999).
Other studies found increased beta (defined as 13–30 Hz) during
mindfulness meditation compared with a control state (Ahani
et al., 2014; Schoenberg et al., 2018). In contrast, Amihai and
Kozhevnikov (2014) found decreased beta2 power during the
compilation stage of a visualization meditation, and a third study
found both an increase in beta2 (6 of the 19 sites) and a decrease
(4 of the 19 sites) when comparing concentration meditation
with a relaxation baseline. Beta3 activity was suppressed during
shamatha meditation with breath as the object of focus (Saggar
et al., 2012). Studies with vipassana meditation found no
change in beta-band activity (Cahn et al., 2010). Our effect
sizes show an effect for beta1 but not for beta2 and beta3,
highlighting the need for more research to understand how beta
is affected by meditation.

Given that power spectra tap different processes in different
frequency bands, it is no wonder we did not find differences in
power spectra in our sample. Our participants engaged in one
of six practices, and the variability in neurological response as a
function of practice may have precluded our ability to see any
overarching trends. In light of these findings, we engaged in
exploratory analyses to see potential areas of difference, which
may guide future research. These analyses suggest that different
meditation practices may have different neurological signatures,
particularly in terms of power spectrum bands.

Consistent with Lutz et al. (2015), we argue that providing
succinct descriptions of practices under study should always
be included in investigations. Most meditation research lacks
clear descriptions of the practice being studied (Ospina,
2007; Davidson and Kaszniak, 2015). For example, zazen
meditation is often classified as OM, ignoring the multiplicity
of psychological practices that can be used during zazen (Faber
et al., 2015). Initial zazen training includes engaging in a
concentrative practice focusing on the breath (FA), while later
training incorporates open-awareness practice (OM) during
seated meditation. Without an accurate description of the

precise practices requested of participants, it is possible that
when asked to perform zazen, participants in the same study
are engaging in different mental exercises. The same logic
is true of other practices such as shamatha, vipassana, and
visualization. In the present study, multiple participants appeared
to share practices based on survey answers, but first-person
descriptions revealed very distinct meditation methodologies.
For example, many participants listed “Burmese vipassana” as
their meditation style on the questionnaire. However, during the
interview about their practice, it was clear that this technique
could be implemented using one of two different meditation
practices. The first was in the lineage of Mahasi Sayadaw, which
involves noting ongoing changes in all sensory domains. The
second was in the lineage of Sayagyi U Ba Khin popularized
by S.N. Goenka, and meditators focused exclusively on body
sensations. Thus, if accurate phenomenological descriptions
are not included along with experimental findings, future
researchers cannot confidently make comparisons between
the results of separate studies that focus on the same
style of meditation.

Strengths
The within-participant comparison of EEG during meditation
and mind wandering across six practices is a strength of
this investigation. Because of the heterogeneity of meditation
practices, we identified that entropy is not practice specific.
In other words, during meditation, regardless of practice,
participants showed lower entropy than in the mind-wandering
task. Thus, entropy is affected by the practice of meditation
in general, and it is not tied to any specific activity, such as
FA or OM. Power spectra, in contrast, are likely affected by
the meditation practice, although our evidence is indirect and
based on null findings. The heterogeneity of practices may
have precluded our ability to identify any differences between
meditation and mind wandering across six frequency bands.

A second strength is our use of the mind-wandering task.
Participants were asked to “think about your day since the
moment you woke up this morning” to achieve baseline
conditions with less heterogeneity than the standard rest
condition and to prevent highly skilled meditators from
automatically engaging in meditation. Mind wandering is
characterized by self-directed thoughts of the past and future
(Smallwood et al., 2009; Smallwood and Schooler, 2015; Christoff
et al., 2009; Stawarczyk et al., 2011). Moreover, meditation is used
as a tool to decrease mind wandering and increase time in the
present moment. Some studies have suggested that meditation
alters the DMN (Pagnoni et al., 2008; Tei et al., 2009; Brewer
et al., 2011; Farb et al., 2007), which is implicated in mind
wandering. At the same time, any control task is open to
criticism when working with experienced meditators because
meditation has lasting effects outside of the actual session, a topic
we address below.

Limitations
One limitation of the study is sample sizes for the six practices.
Testing participants in three different countries where they
typically mediated (e.g., a monastery) still resulted in small
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number of participants per tradition. Thus, we were unable
to make cross-tradition comparisons beyond the exploratory
findings reported in the results section. We also were constrained
in our analyses by using a low-density (16-channel) electrode
array. For example, higher-density (256-channel) arrays allow
researchers to make inferences about source location of EEG
signals. Another limitation is the fact that we did not ask
participants whether they reached the targeted state during the
600 s of recording. Some studies collect EEG data only once
the participant has reached a meditative state. Our focus was on
the beginning phases of meditation, and it is possible that some
participants, but not all, reached their meditative state within
that time interval.

A challenge for this study and for the field generally
may be the fact that the majority of meditation research has
focused on power spectra. There is wide variation in the
power spectrum profile in the normal population and over
an individual’s lifetime (Haegens et al., 2014; Voytek et al.,
2015; Hashemi et al., 2016; Parameshwaran and Thiagarajan,
2017). Also, there is no agreement on the range for different
frequency bands. For example, frequencies considered for delta
could begin between 0 and 2 Hz and end between 3.5
and 6 Hz. In addition, some studies do not report findings
for all frequency bands, potentially leading to bias toward
positive results (Newson and Thiagarajan, 2019). Relatedly,
power spectrum analysis is limited due to the lack of
specificity to underlying neuronal processes. For example, using
frequency band analysis for differentiating psychiatric disorders
is ineffective because there is too much overlap between disorders
(Newson and Thiagarajan, 2019). Power spectrum analysis
of different meditation styles is similarly limited. The power
spectrum of the EEG signal alone is similar to describing a
digital image using the color spectrum. This would give a
general idea of the content (more blue in the image could
mean the photo is of the sky or ocean). However, when studies
report the global power spectrum, the EEG signal loses spatial
and temporal dimensions. Similarly, the power spectrum lacks
temporal information, which is one of the main advantages of
EEG recording compared with other neuroimaging techniques
(Newson and Thiagarajan, 2019).

Thus, more sophisticated data analytical techniques are
needed to study the EEG correlates of meditation, such as
functional connectivity measures and analyses that explore the
temporal component of the EEG signal. In addition, data
repositories and processing pipelines should be created and
implemented to allow for standardization in the field and to allow
for comparisons of results across researchers. Additionally, the
potential difficulties in differentiating meditation practices based
on the power spectrum raise questions about the efficacy of EEG-
assisted meditation. We did not find many differences using a
16-channel system. Many devices for EEG-assisted meditation
have less than four recording locations. We suggest that the
efficacy of these devices be assessed.

Finally, the study of meditation presents unique
methodological challenges. Many meditation styles are
purported to have lasting psychological effects outside of
a meditation session. The distinction between neurological

or psychological changes that occur during meditation and
changes that persist over time has been called state and trait
effects, respectively (Cahn and Polich. 2006). Some studies
show trait differences between normative resting EEG spectra
and the baseline spectral profile of meditators (Lutz et al.,
2004). Thus, a limitation of the present study is the absence
of a non-meditator control group. This limits our ability
to study the trait effects of meditation. However, finding a
matched control group for highly skilled meditators is very
difficult. People who accrue tens of thousands of hours of
meditation generally have different environmental factors
including diet, social interaction, and other psychological factors
such as lack of stress than potential non-meditator control
participants (Davidson, 2010). Because of these limiting factors,
a longitudinal study comparing the electrophysiological
and psychological correlates of meditation practices is
indispensable if we hope to increase our understanding of
both state and trait effects.

CONCLUSION

By comparing EEG activity in the same person while engaging
one of six meditation practices and while engaging in a mind-
wandering task, we found that meditation reduces neural
complexity regardless of meditation practice. In contrast, it is
likely that different practices affect power spectra in different
ways. Meditation describes a wide range of practices each with
a unique goal. Whether these different practices have distinct
effects in the brain remains an open question.
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