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Temporal Binding in Multisensory
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Our senses receive a manifold of sensory signals at any given moment in our daily lives.

For a coherent and unified representation of information and precise motor control,

our brain needs to temporally bind the signals emanating from a common causal

event and segregate others. Traditionally, different mechanisms were proposed for the

temporal binding phenomenon in multisensory and motor-sensory contexts. This paper

reviews the literature on the temporal binding phenomenon in both multisensory and

motor-sensory contexts and suggests future research directions for advancing the field.

Moreover, by critically evaluating the recent literature, this paper suggests that common

computational principles are responsible for the temporal binding in multisensory and

motor-sensory contexts. These computational principles are grounded in the Bayesian

framework of uncertainty reduction rooted in the Helmholtzian idea of unconscious

causal inference.
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INTRODUCTION

We receive sensory information from the environment and the body through several distinct
senses. For a coherent and unified representation of information, our brain needs to group the
multisensory features emanating from an object or event (Calvert et al., 2004). For instance, imagine
that you are applauding the musical performance of your friend by rhythmic hand clapping. The
multiple sensory features (such as tactile, auditory, and visual) from hand-clapping are grouped and
experienced as coming from a single causal event rather than separate events. Several challenges
that the brain needs to overcome for grouping or often called “binding” the multisensory features
of an event (Vroomen and Keetels, 2010; Vilares and Kording, 2011; Burwick, 2014; Spence and
Frings, 2020). This paper focuses on two non-trivial and inter-related challenges that the brain
must account for in binding the multisensory and motor-sensory features in the time domain.

The first challenge is causal determination. Our senses are bombarded with multiple sensory
features that are either received passively or generated as a consequence of our motor actions. How
does our brain deal with the ambiguity in matching sensory features that belong to one causal
event and segregate others? Or how does our brain determine whether the sensory features are
causal outcomes of our voluntary motor actions or not? The second challenge is with regard to
the lack of precision in the temporal estimates of sensory features across the senses. This lack of
precision in temporal estimates is assumed to be due to the noisy or uncertain sensory information
and differential temporal resolution in the encoding of the temporal information across the
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senses (Kersten et al., 2004; Faisal et al., 2008; Vroomen
and Keetels, 2010). How does our brain account for this
sensory noise and differential precision in encoding the
temporal information across the senses for coherent and robust
perceptual binding of sensory signals coming from a common
cause? Previous studies have proposed different mechanisms
for the temporal binding phenomenon in multisensory and
motor-sensory contexts (Haggard et al., 2002; Chen and
Vroomen, 2013). This paper reviews the recent literature on
the temporal binding phenomenon in multisensory and motor-
sensory contexts. Moreover, this review suggests the existence
of common computational principles grounded in the Bayesian
framework for temporal binding in multisensory and motor-
sensory contexts. The following section briefly describes various
behavioral manifestations of the temporal binding and its
constraints across the multisensory and motor-sensory contexts.
After describing the basic temporal binding phenomenon, the
author discusses the Bayesian inference models and the extent to
which these models explain the temporal binding phenomenon
in the multisensory and motor-sensory contexts.

TEMPORAL BINDING AND TEMPORAL

BINDING WINDOW

The term “temporal binding” refers to the subjective experience
of mutual attraction between two or more events in the
time domain. For example, in the audio-visual perception, the
temporal aspect of a visual event, such as onset time, can be
perceptually shifted and binds with a slightly asynchronous
auditory event (Vroomen and Keetels, 2010; Chen and Vroomen,
2013). Similarly, in the motor-sensory contexts, the perceived
onset times of self-generated motor action and its sensory
outcome (e.g., visual or auditory event) are shown to be mutually
attracted to each other (Haggard et al., 2002; Wolpe et al., 2013).
The temporal binding phenomenon was also observed for other
aspects of the time domain, such as frequency and duration.
For instance, in the double-flash illusion, a single visual flash
is perceived as multiple flashes when accompanied by multiple
auditory beeps (Shams et al., 2000, 2005). With regard to the
duration perception, studies have shown that visual events are
perceived to be longer or shorter during the concurrent auditory
event or motor action (Burr et al., 2009; Press et al., 2014; Anobile
et al., 2019). Importantly, however, these temporal illusions are
preserved over a time window known as “temporal binding
window (TBW)” or “temporal integration window” (Diederich
and Colonius, 2004; Wassenhove et al., 2007; Vroomen and
Keetels, 2010). From the literature, it appears that there is a
large variability in the extent of temporal binding windows
across different combinations of paired multisensory stimuli,
experimental paradigms, and stimulus (such as spatiotemporal,
stimulus complexity) or cognitive factors (Andersen et al., 2004;
Vroomen and Keetels, 2010; Stevenson andWallace, 2013). Also,
from the developmental perspective, studies have shown that the
extent of multisensory temporal binding windows follows a U-
shaped function with children and older age groups having larger
binding windows compared to the young adults (Wallace et al.,

2019). The increased temporal binding windows in children,
older adults, and in certain neurodevelopmental disorders (e.g.,
autism) lead to the disruption of various cognitive abilities and
reduced behavioral performance (Barutchu et al., 2010; Downing
et al., 2015; Wallace et al., 2019).

BAYESIAN INFERENCE

In recent decades, studies from neuroscientific, behavioral,
and computational approaches have indicated that the brain
generates various mental events by “predictive-processing” of
information (Rao and Ballard, 1999; Feldman and Friston, 2010;
Clark, 2013; Hohwy, 2013; Hutchinson and Barrett, 2019). The
core assumption of the “predictive-processing” framework is
that the brain constantly runs an internal mental model of
the world and uses it to predict the causes of the sensory
effect. The internal model is assumed to be continuously
updated based on the discrepancy between predicted and actual
sensory input which is often referred to as prediction error
(Raichle, 2015). The essential role of the brain is to minimize
the prediction error for the best possible causal inference of
sensory information. Although formal computational models of
predictive processing frameworks have been developed recently,
the core assumptions have roots in the Helmholtzian idea
that the brain makes unconscious perceptual inference based
on prior knowledge or prior learning (Von Helmholtz, 1867).
One of the worrying problems for the perceptual inference
is that there is no perfect one–one mapping between cause
and sensory effect. Sensory information is corrupted with noise
from the external world, noise in the nervous system, and
variable precision of sensory encoding across the senses (Ernst
and Bülthoff, 2004; Ernst, 2006). This variability in sensory
information necessitates the brain to perform probabilistic
(Bayesian) inference when computing predictions and prediction
errors (Vilares and Kording, 2011). The main purpose of
probabilistic processing is to update the internal models with
precise prediction-error signals and ignore (or less prioritize)
relatively less precise prediction-error signals. According to
Bayesian probabilistic predictive processing models, perception
arises from the precision-weighted probabilistic combination of
prior belief or knowledge (or prior in Bayesian terms) of the
world and the current sensory evidence (or likelihood in Bayesian
terms). In other words, perception is determined by the trade-off
between the precision of prior and likelihood.

In parallel lines, the characterization of cause-and-effect
temporal relationships by Hume inspired numerous empirical
studies to understand the predictive processing of the brain
(Hume, 1739; Pearl, 1988, 2000; Hohwy, 2013). Hume has
suggested that the inference of the relationship between cause
and effect developed through statistical regularities in nature. He
has proposed three fundamental cues that may support causal
learning, such as temporal priority, contingency, and contiguity.
Temporal priority refers to the idea that there must be an
existence of cause before the sensory effect. This cause(s) and
its effect(s) or causally related events are typically co-occurring
together repeatedly and reliably (i.e., contingent) and co-occur
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close in space and time (i.e., contiguous). Numerous studies
have experimentally manipulated the rules of causal learning
to understand the causal learning and predictive processing of
the brain and provided empirical evidence (Alais et al., 2010;
Buehner, 2014).

Recent studies have suggested that the human temporal
perception is consistent with Bayesian inference models
across different time scales and temporal aspects (Shi
et al., 2013; Rhodes, 2018). For example, a well-known
perceptual phenomenon in the temporal dimension called
“central-tendency effect” has been demonstrated to be
quantitatively predicted by Bayesian inference models
(Jazayeri and Shadlen, 2010).

Bayesian Casual Inference in Multisensory

Temporal Binding
Appropriate binding of multisensory features of an event
and segregating others necessary for a coherent and unified
perceptual representation lead to enhanced behavioral
performance. For instance, previous researchers have
demonstrated that the binding of multisensory information
enhances the speed and accuracy of detection performance and
increases the precision of sensory estimates that enhanced the
discrimination performance (Ernst and Banks, 2002; Diederich
and Colonius, 2004; Ernst and Bülthoff, 2004; Ernst, 2006).

The first challenge that our brain needs to account for in
binding multisensory features of an event is solving the causal
inference problem—determining whether sensory signals are
coming from a common causal event or different events. That
is, our perceptual system needs to infer the causal structure
of the world from noisy sensory data for which we do not
have direct access (Körding et al., 2007; Stein, 2012). Bayesian
causal inference models explain how an observer might infer
the causal structure for determining the probabilistic estimation
of whether sensory signals are coming from a common causal
event or different events (Körding et al., 2007; Wozny et al.,
2010; Noppeney, 2020). The estimation or inference of causal
structure is thought to be derived by the probabilistic averaging
of the common cause prior (or prior knowledge that the
signals are coming from a common source) and current sensory
evidence according to the Bayesian models (Ernst, 2006, 2012;
Körding et al., 2007). Therefore, the extent of binding or
integration of multisensory signals depends on the strength of
the inferred causal structure. For instance, forced fusion might
happen only if an observer infers that the multiple signals
are coming from a common cause with absolute certainty, or
complete segregation of signals could happen if the observer
infers signals are coming from separate sources. However, due
to the inherent uncertainty of the sensory data and uncertainty
in causal inference, the integration of multisensory signals can
arbitrate between forced fusion and segregation (Körding et al.,
2007; Shams and Beierholm, 2010; Ernst, 2012).

Previous research has indicated numerous cues that are
suggested to act as common cause priors (e.g., spatial and
temporal mapping or correlation between sensory signals)
for solving the causal inference problem (Ernst and Bülthoff,

2004; Doehrmann and Naumer, 2008; Vroomen and Keetels,
2010; Buehner, 2014; Debats et al., 2017). For example, a
typical multisensory event in the natural environment, a ball
hitting a glass window, produces multiple sensory stimuli
that are spatiotemporally proximal. These spatial and temporal
regularities are utilized by our perceptual system to decide
whether sensory cues are coming from the same or different
causal events (Vroomen and Keetels, 2010; Chen and Vroomen,
2013). Moreover, the extant literature has indicated several
higher-order cognitive factors such as semantic (Doehrmann
and Naumer, 2008), metaphoric (Parise and Spence, 2009),
or experimentally learned matching (Ernst, 2007) of paired
multisensory cues involved in causal determination. This
evidence also indicated that the causally related (e.g., congruent)
multisensory features have a larger TBW than non-causally
related (or unrelated) features. In other words, the larger TBW
indicates that the casually related pairs of multisensory stimuli
are more often perceived to occur together in time than the pairs
of unrelated stimuli that have the same amount of asynchrony
between them. Moreover, the strength of prior belief that the pair
of events is causally related is shown to be positively correlated
with the tendency to perceive events as co-occurring together in
time (Faro et al., 2005).

The next question is how the brain optimally binds, in the
time domain, the causally related multisensory features which
are processed at different times due to the noise in the nervous
system. According to the Bayesian causal inference models,
the causally related multisensory features are temporally bound
together by precision-weighted probabilistic cue combination
(Vilares and Kording, 2011). In other words, the less precise
sensory feature is perceptually shifted closer to the more
precise sensory feature to maintain temporal coherence. For
example, when the audio-visual cues of an object are presented
asynchronously, the visual stimulus is perceived to occur
temporally closer to the auditory stimulus, called “temporal
ventriloquism” (Morein-Zamir et al., 2003). Since the precision
of the temporal judgment of the visual cue is lower than the
auditory cue, the Bayesian sensory cue combination predicts
that the auditory temporal judgment is given more weight
and shifts the visual stimulus perceptually closer and bound
to the auditory stimulus (Alais and Weston, 2010; Chen and
Vroomen, 2013). Similarly, Ley et al. (2009) showed that auditory
and vibrotactile stimuli are perceptually bound according to
the Bayesian cue combination. Other studies indicated that the
semantic or learned correlations (congruent) between a pair of
sensory cues induced greater temporal ventriloquism compared
to the non-congruent sensory pairs (Vatakis and Spence, 2007;
Chen and Vroomen, 2013). Concerning the double flash illusion,
since the reliability of auditory event is greater than the visual
event in the temporal domain, the temporal frequency of auditory
beeps perceptually dominated the temporal frequency of visual
flashes (Andersen et al., 2004). Moreover, researchers have
demonstrated that the double flash illusory percept follows the
principles of Bayesian causal inference models by manipulating
the relative reliabilities of auditory and visual stimuli (Shams
et al., 2005). Similarly, duration estimates of audio-tactile and
audio-visual sensory signals are found to be in accordance with
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the Bayesian causal inference models (Hartcher-O’Brien et al.,
2014; Ball et al., 2017). However, previous literature has indicated
that the individual multisensory features are either under- or
overweighted than expected by Bayesian causal inference in
binding due to the inherent limitations in the models (for the
detailed review, see Noppeney, 2020). Future studies are required
to refine the current Bayesian models to fully account for the
multisensory perception.

The Bayesian framework of the multisensory causal inference
model became an influential model by systematically explaining
the empirical evidence of multisensory perception literature.
However, the current multisensory literature indicated that
the reported multisensory binding effects are influenced by a
combination of more than one factor, and it is not clear how
they independently and interactively modulate the multisensory
temporal perception. For instance, factors such as spatial and
temporal proximity, semantic (or learned) congruency between
pairs of cues, and attentional allocation are all known to influence
temporal perception (Oever et al., 2016). Future studies are
required to orthogonally manipulate these factors within an
experimental paradigm in order to understand their independent
and interactive roles in the temporal binding phenomenon.

Bayesian Casual Inference in

Motor-Sensory Temporal Binding
The last few decades of research have focused on the temporal
processing of multisensory features that are passively received by
the study participants. However, in the real-world, multisensory
features can also occur because of our interactions with the
environment. The broader question is whether the process by
which motor-sensory cues generated by voluntary action are
bound differs from the passively received sensory cues. Previous
literature indicated temporal binding between voluntary motor
action and its causal sensory outcome (Haggard et al., 2002;
Hughes et al., 2013). For instance, Haggard et al. (2002) indicated
the perceived temporal attraction between voluntary action onset
(keypress) and its predictable sensory outcome, such as a brief
tone (Haggard et al., 2002). In their study, participants were
asked to watch a clock face and report when an action was
performed and when the sensory outcome was presented in two
conditions. In baseline conditions (single event conditions), the
study participants reported the onset times of keypress (voluntary
action), time of muscle twitch produced by Trans-cranial
Magnetic stimulation (TMS condition) on the motor cortex, time
of audible sound created by TMS without muscle twitch (TMS
sham condition), and time of a tone onset (tone condition) in
separate trials. An audible tone appeared in operant conditions
after 250 milliseconds of each voluntary keypress condition,
TMS, and sham TMS conditions. The task of the subjects was
to report the time of both events in operant condition at the
end of each trial. Their study results indicated the perceived
temporal attraction between action and its outcome (tone) when
participants intentionally performed an action rather than TMS-
induced involuntary action (Haggard et al., 2002). In other
words, action and outcome are bound together by shifting the
perceived temporal onsets toward each other when participants

intentionally performed an action. Hence, it has been called the
“intentional binding” (IB) effect. Further, their study indicated
the increased IB effect when the outcome was short delayed
after the action and temporally predictable. However, as the
delay increased between action and outcome, and the outcome
temporally became unpredictable, the IB effect was reduced. This
evidence indicates the importance of spatiotemporal factors for
causal determination and temporal binding of action and its
sensory outcome. The IB effect was attributed to the motor-
based predictive mechanisms since IB appeared for voluntary
(intentional) and not for involuntary (TMS-induced) actions
(Haggard et al., 2002; Hughes et al., 2013). Waszak et al.
(2012) proposed a pre-activation account that explains how the
sensory action–outcome binds to the action (Waszak et al.,
2012). According to the pre-activation account, predicted action–
outcomes are pre-activated and increase their baseline neural-
activity before the outcome occurs. Since the neural units of
predicted outcomes are already activated to some baseline level
by the motor-based predictive mechanisms, less strength of the
signal is required for reaching the detection threshold. Thus,
the action–outcome reaches threshold awareness faster and is
perceived temporally closer to the action.

Contrastingly, studies also indicated that IB-like effects
appeared even for non-intentional (passive) actions (Buehner,
2015; Borhani et al., 2017; Suzuki et al., 2019), machine-made
action and its causal outcome (Buehner, 2012), or observation
of other’s action and its causal outcome (Poonian et al., 2015).
This evidence casts severe doubts on the role of motor-based
(forward model) predictive mechanisms on IB and suggests
a general predictive mechanism responsible for the temporal
binding between action and its sensory outcome (Dogge et al.,
2019; Press et al., 2019).

A number of recent studies have begun to investigate IB
mechanisms from the perspective of Bayesian cue integration
(Moore and Obhi, 2012; Wolpe et al., 2013; Lush et al., 2019).
Considering the action and its sensory outcome are causally
related, and the temporal judgments of action timing and its
outcome are prone to inaccuracies due to the noise, one can
model the IB in terms of the Bayesian cue integration framework.
For example, Wolpe et al. (2013) manipulated the action
outcome’s (a brief tone) temporal precision or reliability (inverse
of the variance) by adding white noise. They found that the
perceived onset time of auditory outcome attracted more to the
action when the reliability of the tone was weak (e.g., with added
noise) compared to the high-reliability tone (e.g., with no added
noise). In another study by Lush et al. (2019), the participants
were divided into two groups based on their reliability of time
judgments of intentional action (low and high-reliability groups)
and measured the perceived temporal attractions between action
and its outcome. Their study indicated that the perceived time of
action attracted more toward the outcome in the low-reliability
group than in the high-reliability group. Legaspi and Toyoizumi
(2019) explicitly compared the results of observed IB effects in the
studies of Haggard et al. (2002) and Wolpe et al. (2013) with the
predictions of the Bayesian cue combination model (Legaspi and
Toyoizumi, 2019). Interestingly, their model reliably predicted
the intentional binding effects observed in the studies of Haggard
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et al. (2002) and Wolpe et al. (2013). Concerning the duration
aspect of the time dimension, auditory or visual perceived
durations are modulated in action contexts (Press et al., 2014;
Anobile et al., 2019). However, there is a lack of studies assessing
the Bayesian integration of duration estimates in motor-
sensory contexts. The abovementioned studies indicated that
temporal binding between motor action and its sensory outcome
follow general rules of Bayesian cue integration common to
the multisensory perceptual phenomenon and not necessarily
restricted to the motor-based predictive mechanisms. Future
studies are required to evaluate the Bayesian cue integration
model to understand how action modulates the temporal
binding of multisensory outcomes having differential temporal
precisions. This leads to a more naturalistic understanding of
the role of action on perception since our actions often produce
multiple sensory stimuli.

CONCLUSIONS

This review explored the temporal binding mechanisms
in multisensory and motor-sensory contexts. By critically
evaluating the recent empirical evidence, this paper suggests

that the common computational mechanisms grounded
in Bayesian causal inference models are responsible for
the temporal binding in multisensory and motor-sensory
contexts. Moreover, the extent of temporal binding depends
on the strength of prior and the precision of sensory
likelihoods. Future studies are required to understand the
independent and interactive roles of multiple priors and sensory
likelihoods on temporal binding across the multisensory and
motor-sensory features.
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