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CYBATHLON is an international championship where people with severe physical
disabilities compete with the aid of state-of-the-art assistive technology. In one of the
disciplines, the BCI Race, tetraplegic pilots compete in a computer game race by
controlling an avatar with a brain-computer interface (BCI). This competition offers a
perfect opportunity for BCI researchers to study long-term training effects in potential
end-users, and to evaluate BCI performance in a realistic environment. In this work,
we describe the BCI system designed by the team Mirage91 for participation in the
CYBATHLON BCI Series 2019, as well as in the CYBATHLON 2020 Global Edition.
Furthermore, we present the BCI’s interface with the game and the main methodological
strategies, along with a detailed evaluation of its performance over the course of
the training period, which lasted 14 months. The developed system was a 4-class
BCI relying on task-specific modulations of brain rhythms. We implemented inter-
session transfer learning to reduce calibration time, and to reinforce the stability of the
brain patterns. Additionally, in order to compensate for potential intra-session shifts in
the features’ distribution, normalization parameters were continuously adapted in an
unsupervised fashion. Across the aforementioned 14 months, we recorded 26 game-
based training sessions. Between the first eight sessions, and the final eight sessions
leading up to the CYBATHLON 2020 Global Edition, the runtimes significantly improved
from 255 ± 23 s (mean ± std) to 225 ± 22 s, respectively. Moreover, we observed
a significant increase in the classifier’s accuracy from 46 to 53%, driven by more
distinguishable brain patterns. Compared to conventional single session, non-adaptive
BCIs, the inter-session transfer learning and unsupervised intra-session adaptation
techniques significantly improved the performance. This long-term study demonstrates
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that regular training helped the pilot to significantly increase the distance between task-
specific patterns, which resulted in an improvement of performance, both with respect
to class separability in the calibration data, and with respect to the game. Furthermore,
it shows that our methodological approaches were beneficial in transferring the
performance across sessions, and most importantly to the CYBATHLON competitions.

Keywords: brain-computer interface, spinal cord injury, CYBATHLON, mental imagery, inter-session transfer
learning, long-term training, intra-session adaptation, rehabilitation

INTRODUCTION

Learning to control an application with a brain-computer
interface (BCI) is a tale of two learners (Pfurtscheller and Neuper,
2001; Perdikis et al., 2020). In the case of oscillatory BCIs that
detect power modulations in brain rhythms associated with
distinct mental tasks (Wolpaw et al., 2002), ideally both the
brain/user and the computer learn. Given a set or stream of
data, machine learning is applied to detect and track user-specific
patterns associated with mental tasks. The user receives feedback
about whether the computer has detected an intended mental
task, and uses this feedback to strengthen and consolidate the
brain patterns. Two factors facilitate learning in this situation.
First, the user requires knowledge about how s/he should perform
the mental tasks (Neuper et al., 2005; Friedrich et al., 2012).
Second, the computer requires a reasonable initial model of the
user’s patterns. Initial models are typically obtained from user-
and session-specific calibration data (Pfurtscheller et al., 1999;
Guger et al., 2001; Pfurtscheller and Neuper, 2001), previous
sessions (Perdikis et al., 2018), or sometimes other users (Kobler
and Scherer, 2016; Zanini et al., 2018). As highlighted in Perdikis
et al. (2020), current research trends are clearly biased toward
evaluating BCI operation within one or few sessions, while
there is relatively little BCI literature on long-term user training
(Pfurtscheller et al., 2000; Neuper et al., 2003; Wolpaw and
McFarland, 2004; Kübler et al., 2005; Saeedi et al., 2017; Müller-
Putz et al., 2019). Nevertheless, long-term user training with BCIs
can also be applied in the context of rehabilitation of stroke
patients (Ang et al., 2009; Mrachacz-Kersting et al., 2016; Mane
et al., 2020).

CYBATHLON provides an ideal platform to study long-
term training effects in end-users. It was founded as a
championship to connect people with physical disabilities and
technology providers (Riener, 2016). In six disciplines, end-
users, called pilots, use assistive technology to compete by
completing everyday tasks as fast and accurately as possible.
The championship takes place every 4 years, giving the teams
time to develop and customize assistive devices for their pilots.
In one discipline, called BCI Race, tetraplegic pilots have to
control an avatar along a virtual race track (Novak et al.,
2017). The discipline requires three discrete input commands
associated to specific sections along the race track, and a
non-command state. Correct commands are rewarded by an
acceleration of the avatar, while wrong commands result in
deceleration. The pilot’s task is to control the avatar by voluntarily
modulating his/her brain activity without relying on external
stimuli. A customized BCI translates the modulations into

discrete commands which ideally match the user’s intention
and make the vehicle pass the track quickly. In CYBATHLON,
the focus is on non-invasive technologies that are portable
and affordable. Electroencephalography (EEG) fulfills these
requirements, rendering it the single functional brain imaging
technique that was used in the last championship in 2016
(Novak et al., 2017). Since external stimuli are prohibited,
the teams relied on modulations of oscillatory brain activity
during specific mental tasks—primarily on modulations of
sensorimotor rhythms (SMRs) during motor imagery/attempt
(Novak et al., 2017).

Following the CYBATHLON 2016, a survey revealed that the
training strategies and protocols varied considerably across teams
(Perdikis et al., 2018). Some teams started training more than
a year before the competition, while others started a month
before the competition. The number of training sessions ranged
from 9 to 35. For this competition, our team employed a multi-
stage BCI calibration procedure that started approximately 12
months before the competition with one session with the pilot
per month in the early stages, and an intensification before the
competition (Statthaler et al., 2017). While other teams used
as few as two mental imagery tasks and a temporal coding
(Perdikis et al., 2018), our strategy was to implement the three
commands and the non-command state with four distinct mental
tasks. After our pilot learned to produce four patterns that could
be reasonably well-discriminated against each other, we started
training with the game. Within eight training sessions, our pilot
was able to improve the average runtime from 178 to 143 s. After
the final competition specifications with a shorter track length
were released, the average runtime converged to 120 s. In the
competition, we observed a substantial performance drop; our
system achieved a runtime of 196 s in the qualification run. The
Brain Tweakers team observed a similar drop in one of their
two pilots (Perdikis et al., 2018). While this pilot achieved the
fastest runtime in the qualification runs (90 s), in the finals, his
runtime was 190 s.

In our case, several factors introduced non-stationarities to
the EEG signals which lead to a shift in the feature distribution,
invalidating the fitted classifier (Statthaler et al., 2017). These
non-stationarities or variations could have physical or mental
origin. Physical variations include changes in the electrode scalp
interface within or across sessions. Mental variations are caused
by non-task relevant brain activity due to different mental
conditions (Ahn and Jun, 2015). For example, the arousal level
in a lab and a stadium full of spectators might differ. A common
strategy to overcome these intra-subject variations is to extract
invariant features (Samek et al., 2014; Morioka et al., 2015) or
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compensate changes in the overall feature distribution (Vidaurre
et al., 2011a). In this work, we applied an adaptive feature
normalization approach to fit and evaluate a four class BCI to a
new pilot in a longitudinal study over the course of 14 months.
The duration of the study covers the preparation period for the
participation in the CYBATHLON BCI Series 2019, a single-
discipline spin-off event of the CYBATHLON, as well as the
CYBATHLON 2020 Global Edition.

MATERIALS AND METHODS

Pilot
The pilot was 33 years old at the time of the CYBATHLON
2020 Global Edition. He was recruited by a neurologist at AUVA
Rehabilitation Clinic Tobelbad, who proposed him to the team.
He has had a spinal cord injury (SCI) since an accident in 2007.
His neurological level of injury (NLI) is C5 (AIS B). He is able to
flex the elbow in full range (grade 5) but extend only with a grade
of 2. He can extend his left wrist with grade 5 and the right one
with grade 4. He has neither finger flexion, nor extension (grade
0). His shoulder movement is mainly intact, so he can drive his
supported (e-motion Alber GmBH) wheelchair by himself.

Training Protocol
Figure 1A presents an overview of the training timeline. During
the initial 4 months of working with the pilot, we performed
screening sessions where we tested several class combinations
out of a pool of eight classes. The following mental tasks were
screened: feet motor imagery, hand motor imagery, singing,
mental subtraction, mental rotation, spatial navigation, word
association, and face recall. Detailed task descriptions can be
found in Friedrich et al. (2012).

For the screening procedure as well as to collect calibration
data in the subsequent regular training sessions, we used a
modified version of the Graz BCI motor imagery paradigm
(Pfurtscheller and Neuper, 2001) with discrete visual feedback, as
shown in Figure 1D. Each trial started with a white fixation cross
on a black screen and with an acoustic beep in order to attract the
attention of the pilot. After 3 s, a visual cue representing one of
the mental tasks appeared on the screen. The pilot was instructed
to perform the respective mental task for as long as the cue was
on the screen. The cue period lasted for 4 s. Between trials, there
was a short break, which lasted between 3.5 and 4.5 s, where the
screen was black.

In the screening sessions, EEG signals during the cue period
were evaluated offline, and no feedback was provided. This
strategy to collect calibration data is identified as “calibration
w/o feedback” in Figure 1A. At the end of the screening
period, we selected the tasks feet motor imagery, singing, mental
subtraction, and word association. This decision was based on
the existence of distinguishable brain patterns in event-related
(de)synchronization (ERDS) maps (Pfurtscheller and Lopes da
Silva, 1999; Graimann et al., 2002), and on the preferences of
the pilot. In the subsequent training sessions, we incorporated
discrete visual feedback into the collection of calibration data
(“calibration with feedback”). To this end, a classification model

was trained prior to each session, based on EEG data from the
five preceding sessions, and used to provide online feedback
during the calibration runs. During these calibration runs with
feedback, following the cue period, two horizontal feedback bars
were displayed for 1 s: a white feedback bar reflecting the class
probability in case of a correctly classified trial, and a red feedback
bar indicating the probability of the presence of an artifact during
the trial. In this study, we consider the main training period (26
sessions). The typical protocol for these sessions is illustrated in
Figure 1B. In each session, we recorded three calibration runs
with feedback, each comprising 40 trials: 10 trials per class in
a pseudorandom order. Afterward, the classification model was
updated, and the pilot completed 6 ± 1.3 (mean ± SD) game
runs with the BrainDriver game. A typical training session lasted
between 120 and 150 min, which included between 10 and 30 min
of montage and setup on-site, calibration runs, retraining of the
classification model, game runs, and breaks. The net recording
time was approximately 60 min, and the number and duration of
breaks were dictated by the pilot.

BrainDriver Game
The BrainDriver program simulates a race in which pilots have
to steer a vehicle along a race track (Figure 1E). The race track
consists of the following four sections: straight, left curve, right
curve, and dark area. The sections are equally distributed over
the entire distance of the track. The game accepts three possible
commands, corresponding to three in-game actions, i.e., left turn,
right turn, and headlights. Each of these commands is accepted
as a correct command on the appropriate sections, i.e., left and
right turns on left and right curves, respectively, and headlights
on dark areas. On straight sections, any command is incorrect. All
commands to the vehicle are issued via the pilot’s BCI system. The
vehicle remains in motion throughout the whole race, whereas
the speed is modulated by correct and incorrect commands.

Due to the four specified sections of the racetrack, we
decided to employ a 4-class BCI system, and to assign one class
to each of the three commands, and the fourth class to the
non-command state. Specifically, the classes feet, subtraction,
and word, were associated with the game commands, “right,”
“left,” and “headlights,” respectively, whereas the class singing
was associated with the non-command state. Furthermore,
the probability of artifact contamination is supplied by the
artifact detector.

Online, the classification model yields a set of four
probabilities, corresponding to the four classes, at each time
point. Following a smoothing of the class probabilities via
a moving-average filter with a window length of 1.4 s, the
class with the maximal probability is pre-selected, and several
conditions are assessed to determine whether the respective
command should be triggered. These conditions serve to regulate
the sending of commands to the game, in order to pre-
empt issues arising due to a classifier bias, or fluctuations
in the class probabilities. Furthermore, no commands may be
sent if the artifact probability exceeds 0.5, lest the game be
controlled by artifacts.

Principally, the probability of the pre-selected class must
exceed a certain threshold. This threshold is initialized at an
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FIGURE 1 | Overview of the training protocol. (A) Timeline from the first contact with the pilot until the CYBATHLON 2020 Global Edition. This study considers 26
sessions that contained calibration with feedback and game data. (B) Protocol of the 26 sessions. Before the session, classification and artifact detection models
were pre-trained using the calibration data from the five previous sessions (15 runs). After mounting the cap and electrodes, three calibration runs with 40 trials each
were recorded. During these runs, the pilot received feedback based on the pre-trained models. The calibration data were subsequently used to retrain the models.
The retrained models were used to play the Brain Driver game. (C) Electrode layout. Thirty-two channels were placed at frontal, central and parietal locations.
Reference and ground were placed at the left mastoid and Fpz. (D) Sequence of events during a calibration trial with feedback. The pictures above the events depict
the associated screen content presented to the pilot. At the beginning of each trial, a fixation cross appeared, and an audible beep was played. After a fixation period
of 3 s, a visual cue informed the pilot of the current mental task. The pilot performed the respective task while the cue was on screen. After the cue period, the pilot
received feedback about the target class, summarized as the average target class probability during the last 3 s of the cue period. The probability was presented as
a white bar within a white frame. If the target class’ average probability was either below 25% or not the largest, the frame was empty. The artifact probability during
the same period was summarized in a similar fashion (red bar and frame). Breaks between trials lasted between 3.5 and 4.5 s. (E) Pilot with EEG setup, playing the
BrainDriver game.

empirically selected baseline value, and adapted throughout the
runtime, for each class separately. More specifically, each time
the class in question is pre-selected, and exceeds the threshold
at that time point, the respective threshold is raised. The raising
of the threshold is followed by a refractory period, and a
consequent exponential decay back to the baseline value (use
case 1 in Figure 2). If the threshold of the pre-selected class
is higher than a defined value above the baseline threshold
before it is being raised, the refractory period of the respective
class is extended (use case 2 in Figure 2). The duration of
the refractory period slowly reverts back to its baseline value
with an exponential decay. As long as a refractory period is
active, no command can be sent to the game, and the thresholds
as well as the durations of the refractory periods of all four

classes are held constant. As an additional measure to mitigate
the effect of an extreme classifier bias toward one class, a
command may not be sent if the class probability is higher than
0.99, and the same class has just been triggered (use case 3 in
Figure 2).

Equipment and Layout
In all sessions, the pilot’s EEG activity was recorded at 500 Hz
using a LiveAmp amplifier (BrainProducts GmbH, Germany)
with 32 active electrodes. The electrodes were placed in a 10-
10 layout over frontal, central and parietal areas, as depicted in
Figure 1C. The reference electrode was placed on the left mastoid
and the ground was located at Fpz.
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FIGURE 2 | Illustration of the adaptive threshold and refractory period of an exemplary class in three use cases. The top row depicts the class probability (black
traces), the corresponding adaptive threshold (blue traces), and the time points where the corresponding command is triggered (green). In the bottom rows, a
zoomed in view of the threshold, and the similarly adaptive refractory period (orange) are shown. At the bottom, the periods where the class is blocked are marked in
yellow.

We used the labstreaminglayer (LSL) protocol1 to synchronize
the EEG signals with the events triggered by the paradigm and
the BCI system. A custom BCI system and analysis scripts were
developed using Matlab (2015b, Matworks Inc., United States)
and the EEGLAB toolbox (Delorme and Makeig, 2004). The
calibration paradigm was based on the Psychtoolbox for Matlab
(Brainard, 1997; Pelli, 1997).

Pipeline
The signal processing pipeline used for fitting the classification
model is depicted in Figure 3. In the first step, drifts and line
noise were removed with a highpass filter (2nd order Butterworth
filter, 1 Hz cutoff frequency) and a bandstop filter (2nd order
Butterworth filter, 49 and 51 Hz cutoff frequencies). Then, an
anti-aliasing lowpass filter was applied (8th order Butterworth
filter, 80 Hz cutoff frequency). Afterwards, the EEG signals were
downsampled to 250 Hz.

From this point on, the pipeline diverged into two different
branches (Figure 3). The upper branch was used 2-fold. First,
trials affected by artifacts were detected and rejected. Second,
the artifact detection model was trained. The lower branch was
used to fit the parameters of a 4-class filter bank common
spatial patterns (FBCSP) + linear discriminant analysis (LDA)
classification model (Ang et al., 2008).

In the upper branch, the preprocessed signals were segmented
into epochs of [−2, 5] s with respect to the onset of the cue (t = 0
s). In the next step, outliers at the level of these epochs were
detected (Delorme and Makeig, 2004) and marked for subsequent
rejection. This resulted in 13 ± 4% (mean ± std) rejected epochs
per session. Afterward, the artifact detection model parameters
were fitted. The algorithm is based on the high-variance electrode
artifact removal (HEAR) algorithm (Kobler et al., 2019).

1https://github.com/sccn/labstreaminglayer

In a nutshell, HEAR monitors the variance of each EEG
channel and converts it into an artifact probability by comparing
the time-varying variance at each time point with the variance of
(artifact-free) calibration data; in this case, the remaining epochs
after artifact rejection. It is therefore possible to detect high
variance artifacts (e.g., blinks, muscle artifacts, pops, and drifts).
As outlined in Kobler et al. (2019), the artifact probability can
be used to attenuate single electrode artifacts via interpolating
the affected channels activity based on the activity of neighboring
channels. We did not use this feature in this study.

Since the artifact probability was used to block the BCI
output, we decided to slowly adapt the reference variances per
channel. Without adaptation, a change in the overall tension of
the pilot would have resulted in a sustained blocking of the BCI
output and potential disqualification. This adaptation method
was identical to the adaptive feature normalization method,
outlined in subsection intra-session adaptation.

In the lower branch, the activity of four frequency bands was
extracted from the preprocessed EEG signals. The bands were
selected according to class-specific effects in the screening data.
The selected bands were partially overlapping and covered the
alpha and beta bands. To extract signals in each frequency band,
bandpass filters (3rd order Butterworth filters, the individual
cutoff frequencies are listed in Figure 3) were applied. The filtered
EEG signals were then segmented into epochs of [1, 3] s with
respect to the cue. Next, the previously marked outlier epochs
were rejected. The number of epochs per class was then adjusted
to the number of epochs of the class that contained the maximum
number of remaining epochs. The added epochs were randomly
selected from the class’ epochs.

The equalized epochs were used to fit the parameters of
common spatial pattern (CSP) spatial filters (Ramoser et al., 2000;
Blankertz et al., 2008) for each of the four frequency bands (Ang
et al., 2008). Within each frequency band, binary CSP filters were
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FIGURE 3 | Offline processing pipeline used to fit the model parameters to calibration data. First, the raw EEG signals were filtered and sent through two processing
branches. In the upper branch, bad epochs were detected and rejected. The remaining epochs were used to train the artifact detection model. In the lower branch,
the parameters of the FBCSP + sLDA classification model were fitted. Four CSP filters were trained for each of the four frequency bands and binary class
combinations. After CSP filtering, log band power features were extracted and normalized per session. Finally, a multiclass sLDA filter was fitted to all features and
observations to predict the probability for each of the four classes.

trained in a one-vs.-one classification scheme, yielding six binary
combinations for the four-class problem. Analytical shrinkage
regularization (Schäfer and Strimmer, 2005) was used to estimate
the class-specific covariance matrices from the samples of all
epochs within the training set. From all possible CSP filters,
the filters associated to the two highest and lowest eigenvalues
were maintained. These CSP filters were applied to the band-
specific EEG signals. From the resulting signals, log band power
features were extracted, by squaring the signals, applying a 1-
s moving average filter and taking the base 10 logarithm. For
each epoch and feature, we extracted three observations at 1.0,
1.5, and 2.0 s. This resulted in a total of 334 ± 72 (mean ± std)
observations per session and 96 features = 4 (frequency bands)
× 6 (binary class combinations) × 4 (CSP filters). Before the
log bandpower features were used to fit the parameters of a
shrinkage regularized LDA (sLDA) classifier (Blankertz et al.,
2011), each feature was normalized with the session-specific
mean and standard deviation. Normalizing the features within
each session can compensate for potential shifts in the features’
distribution across sessions.

As outlined in Figure 1B, the parameters of the pre-trained
model, used to provide feedback in the calibration runs, were fit
to the data of five previous sessions. After the calibration data
were recorded, the new data were included in the training set and
the model was retrained. The retrained model was used during
the BrainDriver games.

Intra-Session Adaptation
To compensate for potential intra-session shifts in the features’
distribution, the pre-trained and retrained models were adapted
during the calibration and game runs. Unlike adapting the
parameters of the LDA model, as proposed in Vidaurre et al.
(2011a,b), exponential moving average (EMA) filters were used to
track the time-varying mean mt and standard-deviation st of the

(1× n) dimensional feature vectors. At each time point t, the new
observation xt is used to update mi and st . Given the estimates of
the previous time point t − 1, the update rule for each component
i is obtained by

m(i)
t = (1− η) m(i)

t−1 + ηx(i)
t (1)

s(i)
t =

√
(1− η) s(i)

t−1
2
+ η

(
x(i)

t −m(i)
t

)2
(2)

with a smoothing parameter η, which weights the contribution of
the new observation to the normalization parameters.

We used the normalization parameters of the previous session
as initial estimates (m0 and s0) to start feedback training with the
calibration paradigm. After the model was retrained, the mean
and standard deviation of the current session’s calibration data
were used as initial estimates (m0 and s0) for the first game.
During the remainder of the session, the model parameters were
updated during game runs according to Eqs. (1 and 2), if the
artifact probability of the current observation was lower than 0.5.

The smoothing parameter η was calculated as

η = 1−
(
1− p

) 1
k (3)

where k denotes the number of observations whose weights sum
to a fraction p of the total EMA weights. We set p and k so
that the samples within the last k = 10 min contained p = 90
% of the weights.

At each time-point t, the normalized feature vector x̃t was
calculated as

x̃t = (xt −mt)
∑− 1

2
t

∑ 1
2
t = diag (st) =


s(1)
t 0 0

0
. . . 0

0 0 s(n)
t

 (4)
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where mt and
∑ 1

2
t denote the updated mean feature vector and

the square root of the diagonal covariance matrix, respectively.

Performance Evaluation
Patterns
The calibration data were used to identify whether the pilot’s
patterns changed during the study. The patterns were extracted
from channel-level log band power features for each class and
session. In detail, the time-varying band power for each EEG
channel was computed. Then, three observations per trial were
extracted, yielding a total of 9,360 (=26 sessions× 3 runs/session
× 4 classes/run × 10 trials/class × 3 observations/trial)
observations for the 128 (=32 channels× 4 bands) features. After
bad trials were rejected, 8628 observations (=92%) remained.
Next, the observations per feature were divided by their average
(all observations within a session) and log transformed. The
resulting features expressed relative band power changes to
the session’s average power in dB. The class- and session-
specific patterns were then obtained via averaging the associated
observations, resulting in 104 (=26 sessions× 4 classes) patterns.

Next, we quantified whether the discriminability of the
patterns improved during the study. As metric, we computed
ratios of the between- and within-class distances. The distances
were computed by extracting two means per class i and session
s, with the first mean µ1(s, i) summarizing the pattern of the first
half of the observations and the second mean µ2(s, i) the last half.
For each binary class combination (i, j), the within-class distance
was then the sum of the Euclidean distances of the within class
means

||1within(s, i, j)|| = ||µ1(s, i)−

µ2(s, i)||2 + ||µ1(s, j) − µ2(s, j)||2 (5)

Conversely, the between-class distance was the sum of the
distances between the patterns of different classes

||1between(s, i, j)|| = ||µ1(s, i)−

µ2(s, j)||2 + ||µ1(s, j) − µ2(s, i)||2 (6)

This resulted in a total of 6 (=binary class combinations)
between to within class distance ratios per session. For each ratio,
we tested for significant trends across sessions and differences
between the first eight and last eight sessions (for details see
“Statistics” section).

To visualize the entire feature space, we applied t-distributed
stochastic neighborhood encoding (t-SNE) (van der Maaten
and Hinton, 2008). Specifically, t-SNE was used to reduce
the 128-dimensional feature space to 2 dimensions with the
goal to preserve the distances between the individual points
without using information about the associated classes. The
dimensionality reduction was applied to all 8,628 observations
and 104 patterns simultaneously. Next, we estimated class specific
distributions at the level of session groups (first 8, middle 10, last
8) in a non-parametric fashion. Using the subset of observations
within the associated group and class, we then computed 2D

histograms (25 ∗ 25 bins), applied smoothing (2D Gaussian
kernel, σ = 2 bins) and normalized the histogram to obtain
an empirical probability density function (PDF). The PDFs
were used to visualize the dispersion of the group and class
specific observations.

Inter-Session Transfer
To assess the effectiveness of the feature normalization with
respect to inter-session transfer learning, we conducted offline
analyses on the calibration data of 26 sessions. Each of these
sessions had five preceding sessions that contained at least three
calibration runs with feedback. To this end, we evaluated several
models using specific selections of training and testing data.
Table 1 contains an overview of the models and data splits. As a
baseline method, we fitted the classification model to the data of
a single session using a 5× 10-fold cross validation (CV) scheme.
Next, transfer models (without and with feature normalization)
were trained on the data of the five chronologically preceding
sessions, and tested on the respective target session. Note that
the transfer model with normalization corresponded to the
pre-trained model that was used to provide feedback during
calibration runs. The combined models were fit to the combined
training set of the single session and transfer models. The
normalization parameters were calculated and applied for each
session for the models with feature normalization. To identify
significant differences in the test set accuracy between the models,
two-sided, paired permutation (10,000 permutations) t-tests
were computed for all binary model combinations (26 sessions,
df = 25, 10 tests).

Additional tests were computed for each model to identify
significant trends across sessions and differences between the first
eight and last eight sessions (details see “Statistics” section).

Intra-Session Adaptation
The recorded EEG data of the BrainDriver game runs were
used to evaluate the adaptive feature normalization approach.
We conducted two simulations, denoted, with adaptation and
without adaptation. In the first simulation (with adaptation),
each new sample of the game runs updated the normalization
parameters according to Eqs. (1 and 2). In the second
simulation (w/o adaptation), the normalization parameters were
not updated. Out of the 26 sessions, there was one session
without recorded EEG data during the game runs, limiting this
analysis to 25 sessions.

The processing pipeline of the simulations was similar to the
online system. First, as outlined in Figure 3, the EEG signals
were spectrally filtered. Then, the artifact detector was applied
to compute the artifact probabilities for each time point. In
parallel, the activity for each of the four frequency bands was
extracted, the CSP filters applied and log bandpower features
computed. In the simulation without adaptation, the features
were normalized with the mean and standard deviation estimated
from the session’s calibration data. In the simulation with
adaptation, the parameters were adapted according to Eqs. (1
and 2). In both simulations, the class probabilities of the sLDA
classifier were saved.
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TABLE 1 | Overview of the evaluated train test partitions and feature normalization methods.

Model Train set Test set Cross validation Normalization

Single session 9 CV folds 1 CV fold 5 × 10-fold Yes

Transfer w/o norm 5 previous sessions Target session No No

Transfer w norm Yes

Combined w/o norm 5 previous sessions + 9 CV folds 1 CV fold 5 × 10-fold No

Combined w norm Yes

To estimate the effectiveness of the adaptation approach in
compensating intra-session non-stationarities, the biases of both
classification models (with and without adaptation) during Brain
Driver games were used as a proxy metric. Non-stationarities
typically result in shifts in the overall feature distribution
(Vidaurre et al., 2011a), rendering the non-adaptive model
suboptimal and resulting in biases toward specific classes. By
design, the occurrence and length of the classes is equally
distributed for one game. Consequently, a model that can track
shifts in the feature distribution should select each class equally
often; i.e., exhibit no bias.

To identify biases, the mean class probabilities for each game
and session were computed and compared. Then, the difference
to the probability of an unbiased classifier (25%) was computed.
A two-sided, permutation (10,000 permutations), paired t-test
was used to test for a difference in the biases between the adaptive
and non-adaptive model across sessions (25 sessions, df = 24).

Statistics
This study’s primary focus was on training effects across sessions.
Training effects were identified 2-fold. First at the session level, by
computing Pearson correlation coefficients r between the session
index, encoded as elapsed time since the first session, and each
metric. Second at the session group level, two-sample t statistics
were computed between the first eight and last eight sessions. In
either case, non-parametric permutation (10,000 permutations)
tests (Nichols and Holmes, 2002; Maris and Oostenveld, 2007)
were used. The considered metrics were the game runtimes, the
pattern distance ratios and the test set accuracies of the evaluated
inter-session transfer models, resulting in a total of 24 (=2 tests
for 1 runtime, 6 ratios, 5 models) tests.

To test whether the effects in the metrics were related, we
conducted three additional tests. At the session level, we tested for
significant correlations between the runtime, the accuracy of the
combined model with normalization, and the average (all binary
comparisons) pattern distance ratio.

A total of 38 = 24 (metric × session) + 3 (metric × metric)
+ 10 (model × model) + 1 (intra-session adaptation) tests
were computed. We corrected the significance level α = 0.05
of the individual tests to account for multiple comparisons
by controlling the false discovery rate (FDR) according to
(Benjamini and Hochberg, 1995).

RESULTS

For the evaluation of our results, we considered 26 training
sessions that took place during the period between 03.09.2019

and 12.11.2020. We present the evolution of performance metrics
at the level of three session groups (first 8 sessions, middle 10
sessions, and last 8 sessions). The first eight sessions correspond
to the period between 03.09.2019 and 09.12.2019. The middle
10 sessions correspond to the period between 06.02.2020 and
07.09.2020. The last eight sessions correspond to the period
between 05.10.2020 and 12.11.2020.

Patterns
Figure 4 summarizes the evolution of the patterns over time,
for the three session groups detailed above. Figure 4A depicts
the evolution of the grand average log band power features over
time. The frequency bands depicted are the ones used to train
the classifier. This figure shows an enhancement of the patterns
corresponding to the classes feet and subtraction, in the frequency
bands [6, 10] Hz and [8, 12] Hz.

Figure 4B depicts the distribution of the session- and class-
specific patterns in three panels, one for each group of sessions.
A level line, enclosing 50 % of the estimated probability densities,
summarizes the dispersion from the patterns. An increase in
distance between the classes feet and subtraction over the training
period indicates that the patterns became more distinguishable,
which is also corroborated by the results of Figure 4A. In the last
eight sessions, two clusters associated with feet and subtraction
were separated from singing and word. The effect was significant
for the (feet, subtraction) pattern distance ratio in terms of
correlation (r = 0.47) and t-statistic (t = 3.32). Supplementary
Figure 2 and Supplementary Table 1 summarize the results of
all tests. Additional significant differences were observed for the
(feet, word; r = 0.59, t = 3.99) and (subtraction, word; r = 0.47,
t = 3.00) tuples. No significant effect was observed for any tuple
that included the singing class.

Evolution of Game Performance
The runtimes with the BrainDriver game are depicted in Figure 5.
We observed a significant linear trend (r = −0.52, p = 0.0001),
which highlights the decrease in runtimes over the training
period. The slope of the linear trend was−2.4 s/month.

In the first eight sessions, the average runtime was 255 ± 23.1
s (mean ± std). This average decreased to 239 ± 20.4 s
(mean± std) in the middle 10 sessions, and further to 225± 21.7
s (mean± std) in the final eight sessions. The difference between
the first and last sessions was significant (t = −6.72, p = 0.0001).
The last two sessions were performed with the competition setup,
where races timed out at 240 s. In the cases where a time-out
occurred, we extrapolated an estimated runtime based on the end
position on the track.
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FIGURE 4 | Calibration data. Evolution of class-specific patterns across training sessions. (A) Topographic distribution of the class-specific (rows) pattern across the
first 8, middle 10 and last 8 sessions (columns). The evolution of the patterns is plotted separately for the four frequency bands (6–10 Hz, 8–12 Hz, 15–25 Hz, and
25–35 Hz). Each topographic plot summarizes the ratio between the class-specific and the grand average (=all classes) power per session. The group (first, middle,
last sessions) level averages were computed in log space (dB). (B) Distribution of the session- and class-specific patterns within each group. t-SNE was used to
compress the 128-dimensional feature space to 2 dimensions and maintain the distances between the individual observations. Each point summarizes the
class-specific average of the observations within a session. The level lines summarize the dispersion of the observations within each class and group of sessions.
Each line encloses an area that contains 50% of the estimated probability densities. Plots with multiple level lines are displayed in Supplementary Figure 1. The
color indicates the associated class. To emphasize the evolution across session groups, they are plotted in three panels.

Inter-Session Transfer
To evaluate the inter-session transfer, we computed the overall
accuracies for the five tested models on the calibration data.
The results are summarized in Figure 6. Figure 6A shows a
boxplot of the accuracy for each model. The dots indicate the
accuracy of each session and are visualized in chronological
order (as in Figure 5). Linear regression lines indicate effects of
time on the accuracy. Supplementary Table 2 lists the results
of the significance tests. Significant correlation coefficients were
obtained for the single session model (r = 0.52) and combined
models without (r = 0.46) and with (r = 0.53) adaptation.
The two-sample t-tests, comparing the first eight and last eight
sessions, did not reveal significant differences.

The results for significant differences between the model
accuracies are summarized in Figure 6A and listed in
Supplementary Table 3. Comparing the transfer models, the
feature normalization had a significant positive effect on the
mean classification accuracy (t = 3.35). For the combined models,
the effect did not turn significant (t = 0.95). There was no
significant difference between the single session model and

either transfer model. The combined models (with and without
normalization) achieved significantly higher accuracies than the
single session (t > 5.28) and transfer models (t > 6.63).

The transfer model with normalization corresponded to the
pre-trained model that was used to provide feedback during the
calibration runs (Figure 1B). Accordingly, the model’s average
accuracy of 46 ± 4% (mean ± std) is comparable to the
average online accuracy during the calibration runs of 44 ± 6%
(mean± std).

The confusion matrices of the combined model with feature
normalization are summarized in Figure 6B. The feet class had
the highest within-class accuracy, with 0.70 in the first eight
sessions and 0.83 in the last eight sessions. The confusion among
the other three classes was considerably larger, resulting in lower
within-class accuracies. However, with prolonged training their
within-class accuracies increased as well.

Intra-Session Adaptation
To test whether the adaptive intra-session feature normalization
technique reduces potential biases to specific classes during the
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FIGURE 5 | BrainDriver game runtimes for the 15 month training period in chronological order. Each dot represents the runtime during a game for training sessions
(gray), the CYBATHLON BCI Series (orange), and Global Edition (violet) competitions and other sessions in front of an audience (blue). During the competitions the
maximal runtime was limited to 240 s (yellow line). A horizontal gray line indicates the game duration in case no command is sent. A red regression line summarizes
the linear trend across the training sessions.

BrainDriver games, the average difference between the class
probabilities and 25% was compared. Ideally, the difference
should be 0% because the classes’ duration and occurrence were
approximately balanced during a game. Figure 7A illustrates the
results for adaptive and non-adaptive models. Across sessions,
the average class probabilities of the adaptive model were close
to the ideal value of 25% and exhibited little variance, suggesting
little to no biases for each session. The non-adaptive model
exhibited session-specific biases with a systematic bias toward
the feet class and a large variability across sessions. The grand-
average differences to 25% were 3.8 ± 3.2% (mean ± std)
and 26.2 ± 13.7% for the adaptive and non-adaptive models,
respectively. The difference in the mean bias was significant
(t = 14.55, p = 0.0001).

The average class probabilities of the adaptive classifier for
the first three games are depicted in Figure 7B. In the first
game, the adaptive classifier exhibited large biases toward feet but
in subsequent games the biases became smaller and the mean
probability was closer to 25%. This indicates that the adaptive
normalization technique could compensate for distribution
shifts between the calibration paradigm and the games within
approximately one game run.

DISCUSSION

In this single case study, we applied inter-session transfer learning
and unsupervised adaptation techniques to fit a 4-class BCI based
on mental imagery to a user with tetraplegia with the goal of
participating in a competition called BCI Race (Riener, 2016;
Novak et al., 2017). We slowly adapted the BCI to the user-
specific patterns by fitting the model parameters to calibration
data of the current and five previous sessions. Within 14 months
and 26 sessions, the system, comprising the tetraplegic user, the

pilot, and the BCI, improved the classification accuracy from 46%
in the first eight sessions to 53% in the last eight sessions. At
the same time, the distances between the patterns significantly
increased while the game runtimes significantly declined from
255 ± 23 s (mean ± std) to 225 ± 22 s. In addition to a
training effect across sessions, we observed that adapting the
normalization parameters of the log band power features within
a training session mitigated intra-session non-stationarities. The
unsupervised adaptation process was able to track shifts in the
feature distribution, counteracting biases of the classification
model during the BrainDriver game.

With training, the pilot was able to significantly improve the
discriminability of the class specific patterns. Specifically, we
observed stable patterns for the feet and subtraction tasks, while
the patterns for singing and word were less consistent (Figure 4).
Within the 14 months, the pilot could significantly increase the
ratio of the between to within class pattern distances for the
(feet, subtraction), (feet, word), and (subtraction, word) tuples
(Supplementary Figure 2 and Supplementary Table 1). This
matches with less confusion of the classifier for these tuples. For
example, given feet was the target class, the misclassifications to
the subtraction and word classes reduced by 5% and 6% from
the first eight to the last eight sessions (Figure 6B). However,
the moderate accuracies at the single trial level (Figure 6A)
together with considerable overlaps of the class distributions
(Figure 4B and Supplementary Figure 1) indicate large non-task
related, trial-by-trial variability. Still, the significant accuracies of
the transfer models (Figure 6A) suggest the presence of stable
patterns. For example, the transfer model, fitted to the previous
five sessions, could be applied to data of the new session without
retraining, and achieve similar classification accuracies as a model
that was fit to session specific data only.

Observing similar accuracies for session-specific and transfer
models is surprising, since higher accuracies are typically
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FIGURE 6 | Comparison of model training approaches. (A) Boxplots of the test set accuracies of 5 models on the calibration data of 26 training sessions. The single
session model was trained and tested on data of 1 out of the 26 target sessions using a CV scheme. The transfer models were trained on five previous sessions and
tested on the data of the target session. Two variants of the transfer models were tested, namely, without feature normalization (w/o norm) and with feature
normalization (w norm). The combined models were fit to the combined training dataset of the single session and transfer models. The dots summarize the test set
accuracies of the 26 target sessions in chronological order. A black dashed horizontal line indicates the significance level. Red regression lines and correlation
coefficients indicate trends over time. Significant trends are indicated (bold correlation coefficient). Model pairs with significant differences in the mean accuracy are
highlighted and the associated t-statistic is reported. (B) Confusion matrices for the combined model with feature normalization. Three groups of sessions, namely
the first 8 sessions, the second 10 sessions, and the last 8 sessions are summarized in separate panels. The elements in the main diagonal summarize the
within-class accuracy. The rows sum to 1.

reported for session-specific models than for transferred models
(Lotte et al., 2018). This discrepancy can be partially explained
by the curse of dimensionality problem. In our case, only three
calibration runs with 30 trials per class were available per session,
yielding a low trial to feature ratio for the single session models
and leading, in turn, to overfitting. Among the tested models, the
combined model, which used data of the current and previous
sessions, achieved the highest classification accuracy (Figure 6A).
This observation is in accordance with previous works (Lotte
et al., 2018). Interestingly, feature normalization had no effect
on the accuracy of the combined model, while it had a weak

significant effect on the transfer model (Figure 6A). This result
suggests that there were no major inter-session non-stationarity
effects in the six consecutive sessions considered by the transfer
and combined models. Indeed, looking at feature distributions
without normalization (Supplementary Figure 3A), we observed
rather small distances and class-specific clustering in sessions
belonging to the same group (first, middle, last). Across groups,
there was a gradient; observations of the first sessions were
overall closer to the ones of the middle sessions than to the
ones of the last sessions. This suggests that the long-term non-
stationarities in the calibration data, which occurred over the
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FIGURE 7 | Intra-session adaptation vs. no adaptation. (A) Boxplots
summarize the average class probability (feet, subtraction, singing, word; from
left to right) during the games of an adaptive classifier (blue) and a
non-adaptive classifier (orange). Each dot corresponds to one session and
summarizes the average class probability within the session’s games. The
solid gray line indicates the ideal average class probability (each class is
equally probable). The larger the distance to this line, the larger the bias of a
classifier toward one class. (B) As in (A) for the adaptive model and the first
three games per session. Boxplots summarize the average class probabilities
for the first, second, and third game.

course of the study (14 months), were higher than the non-
stationarities between consecutive sessions. Normalizing the
observations per session was effective in reducing these long-term
non-stationarities (Supplementary Figure 3A).

While session-wise feature normalization had no significant
effect on the classification accuracy of the combined model
in the calibration data (Figure 6), unsupervised intra-session
adaptation of the normalization parameters resulted in a
significant effect on the class probabilities during games
(Figure 7). Without adaptation, the calibrated model would have
exhibited session-specific biases, suggesting the presence of shifts
in the feature distribution when switching from the calibration
paradigm to the BrainDriver game. Indeed, 2D visualizations
of the calibration and game data feature distribution confirm
the presence of a distribution shift (Supplementary Figure 5).
Combining our observations, we can conclude that the switching
of applications (calibration to game) introduced larger shifts in
the subspaces of the feature space that are relevant for the sLDA
classifier than across-session shifts (calibration to calibration).

A model that adapted the normalization parameters was able to
track changes in the overall feature distribution and reduce the
biases within one game (Figure 7B).

Several approaches have been proposed to mitigate changes
in the feature distribution (Vidaurre et al., 2011a; Samek
et al., 2014; Morioka et al., 2015). Our results suggest that
the unsupervised adaptation approach, originally presented in
Vidaurre et al. (2011a), is suitable in this context. To be
successful in compensating shifts in the feature distribution and
maintaining class separability, this approach requires the data
within the adaptation window to be balanced across classes.
Here, the adaptation window corresponded to the approximate
duration of a game, suggesting that the assumption is fulfilled.
However, the game dynamics also depend on the pilot’s input.
In our case, the pilot could trigger the different commands with
varying degrees of accuracy (Figure 6B). Since the BCI could
discriminate the feet class from the others with higher accuracy,
he passed the associated sections faster, resulting in the feet
class being the target class for shorter periods during a game.
This becomes apparent, after the adaptation approach could
compensate for the distribution shift between the calibration and
game runs. For example, in the 3rd game run in Figure 7B, the
probability of the feet class was on average 5% lower than the
other classes’ ones.

Over the duration of the training period, we observed
a significant decrease in the average runtimes (Figure 5).
This is especially apparent in the periods leading up to the
CYBATHLON BCI Series 2019, and the CYBATHLON 2020
Global Edition, respectively, where the density of training
sessions was high, but even after training breaks of several weeks,
performance held steady or slightly improved. The significant
downwards trend in the game runtimes coincided with significant
upwards trends in the calibration data metrics, specifically,
in the pattern distance ratios (Supplementary Figure 2) and
the classification accuracy (Figure 6A) of the combined with
normalization model, which was used in the BCI during the
games. Tests whether the effects were correlated (Supplementary
Figure 4) revealed a significant correlation (r = 0.61, p = 0.0011)
between the average pattern distance ratio and the classification
accuracy. This result contrasts with findings from other studies
with end-users, which observed that an increase in classification
accuracy does not necessarily correlate with an enhancement
in the separability of brain patterns (Leeb et al., 2015; Perdikis
et al., 2016). Still, in our study neither the correlation between
the runtimes and the classifier accuracy (r = −0.31, p = 0.1260)
nor the correlation between the runtimes and the average
distance ratio (r = −0.29, p = 1544) were significant. This
means that a high performance in the calibration runs of a
session was not significantly coupled with low runtimes during
game runs. However, p-values close to 0.1 indicate that the
variability in the data was too high to identify potential moderate
to weak effects. The low correlations suggest that the runtime
improvements were likely also driven by other factors. We
speculate that the observed decrease of the runtimes could be
linked to the pilot slowly learning to better time the triggering
of the commands, rather than to an enhancement of the brain
patterns per se.
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Interestingly, in 2019, the pilot displayed some of his best
runtimes in front of an audience. In the BCI Series 2019,
he achieved a personal best, which remained unbroken for
several months. Furthermore, in November 2019, he considerably
outperformed his previous training average in a public demo
performance, after a training break of over 2 months. These data
points, in conjunction with our subjective impressions of how
external factors seemed to influence his performance in training
sessions, would support the hypothesis that our pilot tends to
thrive in competitive settings. As a result of restrictions owed to
the COVID-19 pandemic, we have not had further opportunities
to put it to the test. The setting in the CYBATHLON 2020 Global
Edition, while it was technically a competitive context, was not
comparable in terms of actual circumstances. Due to COVID-19,
the competition was modified to a decentralized format, where
all races were individually recorded at the location of the team in
remote correspondence with CYBATHLON headquarters prior
to the broadcast day, and produced into a pseudo-live stream.
As a result, the pilots had no real-time competition on the race
track. In our specific case, the races also had to take place without
an audience, and with only a small number of team members
present, since our country was in a soft lockdown at the time.

We believe that these circumstances could partially explain
why the official races in the CYBATHLON 2020 Global Edition
did not rank among our pilot’s better training races in the
preceding months. Still, our officially recorded race time of 223
s was within the range of race times that we observed in the last
eight training sessions (225 ± 22 s). The time sufficed to achieve
the fifth rank in the CYBATHLON 2020 Global Edition, with
a relatively small margin of 2 and 10 s to the fourth and third
place. The margin to the first (57 s) and second team (51 s) was
considerably higher.

The fact that the winning team used two distinct motor
imagery classes to implement the four commands (Perdikis et al.,
2018) suggests that it is more efficient to detect two classes with a
higher accuracy than four classes with low to moderate accuracy.
As in Perdikis et al. (2018), the two classes could be mapped
to two active commands, while the pilot could trigger the third
command via a temporal coding. For example, the pilot could
perform one mental task until the command is recognized. This
will result in at least one false positive. However, this feedback
informs the pilot to switch the mental task. If the BCI detects this
switch within a certain time period, the system recognizes the
temporal code and sends the third command to the game. The
temporal coding strategy with limited mental tasks has proved
useful in BCI research in other contexts (Müller-Putz et al.,
2009, 2010). The confusion matrices of our four class system
(Figure 6B) indicate that the feet and subtraction classes could
have been detected with few misclassifications in a binary setting,
rendering this strategy promising for future competitions.

Despite the promising results, our single case study suffers
from a number of limitations. Foremost, we observed a large
variation across runtimes of initially 23 s (std) that could not be
reduced within the 14 months training period, confirming that
reliability should be among the top priorities in BCI research
(Lotte and Jeunet, 2015). Another limitation concerns the non-
stationarities within a session. To avoid a situation like in the

CYBATHLON 2016 (Statthaler et al., 2017), we tackled potential
biases of the classification model, caused by within-session
non-stationarities, 2-fold. First, we adapted the normalization
parameters in an unsupervised fashion. Second, we applied
an adaptive thresholding strategy that translated the classifier
output into control commands. Since we applied both methods
simultaneously, it is not possible to disentangle the individual
effects on the performance in terms of runtime improvement.
A systematic evaluation of the individual effects remains missing.
Lastly, we decided to fix the features and mental tasks early
after a few screening sessions so that we could collect a large
dataset with the identical experimental protocol and BCI system.
While this allowed us to identify training effects, we cannot
rule out that other mental tasks or feature types, or advanced
feature selection algorithms (Ang et al., 2008) might have led to
higher classification accuracies and, in turn, to stronger training
effects for our pilot.

CONCLUSION

This longitudinal study has allowed us to gain valuable
insights into long-term user training with a four class BCI
based on mental imagery. Starting with weak patterns and
low classification accuracies, the tetraplegic pilot was able
to significantly improve his control skill over the course of
the 14 months training period. At the end of the training
period, the patterns of the classes feet and subtraction were
separable with little confusion at the single-trial level. When
additionally considering the classes singing and word, the
confusion remained relatively high. Still, the classification
accuracies and feature distributions showed that the separability
among all four classes increased significantly with training.
These improvements coincided with a significant reduction in
the race times. The performance did not plateau toward the
end of the training period, and importantly transferred to the
CYBATHLON competitions, suggesting that the applied methods
can facilitate user training and reduce inter- and intra-session
non-stationarities. Future research is necessary to improve the
reliability. Additional training sessions with the current methods
are likely to result in gradual improvements.
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