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In our daily lives, we continuously evaluate feedback information, update our knowledge,

and adapt our behavior in order to reach desired goals. This ability to learn from feedback

information, however, declines with age. Previous research has indicated that certain

higher-level learning processes, such as feedback evaluation, integration of feedback

information, and updating of knowledge, seem to be affected by age, and recent studies

have shown how the adaption of choice behavior following feedback can differ with age.

The neural mechanisms underlying this age-related change in choice behavior during

learning, however, remain unclear. The aim of this study is therefore to investigate the

relation between learning-related neural processes and choice behavior during feedback

learning in two age groups. Behavioral and fMRI data were collected, while a group of

young (age 18–30) and older (age 60–75) adults performed a probabilistic learning task

consisting of 10 blocks of 20 trials each. On each trial, the participants chose between

a house and a face, after which they received visual feedback (loss vs. gain). In each

block, either the house or the face image had a higher probability of yielding a reward

(62.5 vs. 37.5%). Participants were instructed to try to maximize their gains. Our results

showed that less successful learning in older adults, as indicated by a lower learning

rate, corresponded with a higher tendency to switch to the other stimulus option, and

with a reduced adaptation of this switch choice behavior following positive feedback. At

the neural level, activation following positive and negative feedback was found to be less

distinctive in the older adults, due to a smaller feedback-evaluation response to positive

feedback in this group. Furthermore, whereas young adults displayed increased levels

of knowledge updating prior to adapting choice behavior, we did not find this effect in

older adults. Together, our results suggest that diminished learning performance with age

corresponds with diminished evaluation of positive feedback and reduced knowledge

updating related to changes in choice behavior, indicating how such differences in

feedback processing at the trial level in older adults might lead to reduced learning

performance across trials.
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INTRODUCTION

In order to successfully interact with our environment and reach

desired goals, we continuously learn from the outcomes of our

actions and choices. These outcomes (feedback information) are
evaluated in the light of the goals we aim to achieve and are

integrated with the outcomes from prior experiences. In addition,
based on choice-outcome contingencies, knowledge will be

updated, enabling future behavior to be adapted accordingly.
Although learning is crucial at all ages, research has shown

that the ability to learn from feedback and adjust behavior
accordingly declines with age (Marschner et al., 2005; Mell et al.,

2005; Eppinger et al., 2011; Hämmerer et al., 2011; Ferdinand,
2019). However, the neural mechanisms underlying age-related

chances in choice behavior during learning remain unclear. The
present study was aimed at elucidating the relation between
learning-related neural processes and changes in behavior during
probabilistic learning.

Processes that occur during learning, such as feedback
evaluation, integration of feedback information, and updating of
knowledge, seem to be affected by age [for a review see Ferdinand
and Czernochowski (2018)]. For example, neural activity related
to the difference between expected and actual feedback after an
action or choice (reward prediction error) is less distinct in older
compared to younger adults (Mata et al., 2011; Samanez-Larkin
et al., 2014; Ferdinand and Czernochowski, 2018). However,
these changes do not seem to be driven by reductions in the
sensitivity to reward. For instance, studies using functional
magnetic resonance imaging (fMRI) have indicated that the same
set of brain areas appear to be activated following positive and
negative feedback in young and older adults, and the fronto-
striatal response to positive feedback remains intact for older
individuals (e.g., Schott et al., 2007; Cox et al., 2008; Samanez-
Larkin et al., 2014). In sum, age-related learning differences do
not seem to hinge on reward sensitivity, but rather on processes
during feedback evaluation and knowledge updating.

Medial prefrontal cortical brain areas have been shown to
play a pivotal role in learning-related processes, and the medial
prefrontal anterior cingulate cortices (ACC) are thought to be
especially important, as they have been shown to be active
during the evaluation and integration of feedback information
(Alexander and Brown, 2011; Cohen et al., 2011; Samanez-Larkin
et al., 2014; Kolling et al., 2016). Furthermore, ACC activity
during learning has been shown to depend on age, with older
adults displaying less distinct neural patterns in these brain
regions compared to young adults when evaluating feedback
(Eppinger et al., 2008; Hämmerer et al., 2011; Samanez-Larkin
et al., 2014).

The fact that the neural processes involved in feedback
evaluation change with age can have implications for the ability to
learn from feedback. For instance, behaviorally, older adults have
been shown to develop a preference for processing either positive
or negative feedback, depending on task demands (Eppinger
et al., 2011). In a task where feedback does not have to be used
for learning, for example when stimulus-reward associations are
known in advance, older adults seem to focus less on negative
feedback compared to young adults, as illustrated by reduced

neural activity in older adults when anticipating negative but
not positive feedback. In contrast, if successful performance in
the future depends on feedback processing (e.g., in probabilistic
learning tasks), negative feedback has a stronger impact on
learning-related choice behavior of older adults compared to
positive feedback. Ferdinand (2019), for example, showed that
reducing the information value of negative feedback hindered
older adults’ learning performance more than reducing the
information value of positive feedback, supporting the view
that older adults rely more the negative feedback to learn in a
probabilistic learning task.

Following the evaluation of feedback information, that
information then needs to be used to update knowledge so it
can potentially be used to guide the adjustment of subsequent
behavior. Processes of knowledge updating have been linked
to neural activity in fronto-parietal brain areas (Borst and
Anderson, 2013). In addition, EEG studies have found neural
evidence for increased knowledge updating prior to behavioral
adaptation in the form of switching to a different response on
the next trial (Polich, 2007; Chase et al., 2011; San Martin et al.,
2013; Correa et al., 2018). The impact of age on this switch-choice
behavior has been only sparsely studied, but the available studies
show that both young and older adults adapt their switch choice
on the next trial based on the feedback information received
(Frank and Kong, 2008; Hämmerer et al., 2011). In addition,
older adults displayed a bias toward negative feedback in that
they modified their behavior to a lesser extent following positive
feedback, a bias not found in young adults, further supporting the
view that learning from positive feedback is diminished with age
in probabilistic learning tasks (Frank and Kong, 2008; Hämmerer
et al., 2011). Importantly, although older adults have been shown
to evaluate feedback differently and adapt their choice behavior
differently following feedback, the neural underpinnings of these
effects remain unknown.

In order to gain more insight into the neural basis of
age-related differences in feedback evaluation and knowledge
updating during feedback learning, a group of younger and older
participants performed a probabilistic learning task during which
functional MRI measures of their brain activity were collected.
The probabilistic learning task, which was based on a previous
paradigm developed by our group (van den Berg et al., 2019),
entailed participants choosing between houses and faces on
each trial, after which they received either positive or negative
feedback that was later converted into money. To gain money,
participants had to actively learn which out of two stimulus types
was more likely to yield a positive feedback for each of the 10
blocks of 20 trials.

In our study, older adults were expected to perform worse
on the learning task compared to younger adults, and this
diminished performance was expected to be paralleled by
decreased neural activity related to feedback evaluation following
positive feedback. In addition, we expected effects related to
knowledge updating, which we investigated by contrasting neural
activity related to switch behavior on the next trial. Given that
we expected diminished knowledge updating in older adults,
we predicted a smaller difference in neural activity related
to making a switch vs. not making a switch on the next
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trial, in the older adult group compared to young adults.
Furthermore, these differences in feedback evaluation and
knowledge updating were expected to result in different choice
behavior in older adults related to learning performance. If
decreased learning performance in older adults is related to
different feedback evaluation and knowledge updating, as we
expected, the difference in choice behavior between the age
groups would be most prominent following positive feedback. In
contrast, if only knowledge updating is affected, we expected the
difference in choice behavior to not depend on the valence of the
feedback received.

MATERIALS AND METHODS

Participants
There were 29 young and 27 older adults in this study.
Participants were recruited by means of local advertisements
and advertisements on social media. All participants were right-
handed, had normal or correct-to-normal vision, and did not
report taking any psychoactive medications. The study was
conducted according to protocols approved by the Medical
Ethical Committee of the University Medical Center Groningen,
and all participants gave prior written informed consent.
Four participants did not perform the task according to task
instructions (three younger and one older adult, all female) and
were therefore excluded from the final analysis. In addition, two
older participants (one female) were excluded due to technical
problems. Accordingly, the data from 26 young [13 female; 18–27
years; mean age (SD)= 22.2 (2.7)] and 24 older [11 female; 60–73
years; mean age (SD) = 65.5 (4.0)] participants were included in
the analysis. Participants received 16 euros in compensation for
their time, plus reimbursement of travel expenses and a variable
monetary reward depending on their task performance [mean
(SD): 5.50euro (4.40)].

Experimental Tasks and Stimuli
Materials
MRI data were acquired on a Siemens 3T scanner at
the University Medical Center Groningen. The probabilistic
learning task was programmed using the Presentation R©

software package (Neurobehavioral Systems, Inc., Berkeley, CA,
www.neurobs.com) and presented on an MRI-compatible IPS
LCD monitor (BOLDscreen 24, Cambridge Research Systems,
resolution 1920 × 1200) that was made visible to the participant
through a mirror (viewing distance ∼100 cm). Responses were
made using two buttons positioned above each other on an MRI-
compatible response box. The stimulus base set of 20 male face
images and 20 house images (135 × 180 pixels) was identical to
the one used by our group in van den Berg et al. (2019).

Probabilistic Learning Task
Participants performed a probabilistic learning task (Figure 1) in
which they were asked to maximize their gains by learning which
of two stimulus types (houses or faces) was more likely to yield
a gain. The task was very similar to the task used in the EEG
study of van den Berg et al. (2019), with slight adaptations of
the stimulus presentation and response times. The task consisted

of 10 blocks of 20 trials each. In each 20-trial block, choosing
either the face images or the house images was more likely to
lead to a gain (62.5 vs. 37.5%). This stimulus type will be called
the “block winner.” Each trial started with a pair of images, one
of a face and one of a house, with one image presented to the
left and the other to the right of a central fixation (Figure 1). The
stimuli for this image-pair choice stimulus were randomly drawn
from the base set (see materials section) and randomly assigned
to be presented to the left and right locations. After 1,200ms, two
arrows appeared just above and below the fixation, each pointing
to one of the two stimuli on the left and the right. The mapping
of the arrow locations (above and below) to the direction the
arrows pointed was randomly assigned on each trial. Participants
indicated their choice using the response box by selecting the
arrow pointing to the image they thought was more likely to
yield a gain in that block. The selected arrow was highlighted for
300ms, which was followed by a jittered interval (500–5,500ms)
during which a blank screen with fixation was shown. Following
this interval, the feedback for that trial appeared on the screen for
500ms. Feedback could either be a loss of eight points or a gain
of eight points, presented as “−8” or “+8” printed in an orange
or blue square (100 × 100 pixels) for a duration of 500ms. The
combination of square color and gain/loss was counterbalanced
over participants. If participants did not respond within 2,000ms
following the presentation of the image pair at the beginning of
the trial, the text “No response” appeared on the screen, which
was then followed by a loss of eight points. The feedback stimulus
was followed by a jittered presentation (1,500 – 7,000ms) of a
blank screen with a fixation cross, before the next image-pair
choice stimulus appeared. Participants were instructed to try to
maximize their gains by learning which of the two images was
more likely to lead to a gain on the trials of a block. They were
also informed about the probabilities of winning after choosing
the block-winner (62.5%) vs. winning after choosing the block-
loser (37.5%). In addition, participants were informed before the
experiment started that their total score would be converted into
a monetary reward at the end of the study. After each block, a
short summary was shown that indicated the points that had been
earned in that block and the total number of points accumulated
up to that point in the session.

Procedure
Prior to the experimental session, participants filled out the
Apathy Evaluation Scale (Marin et al., 1991; Reijnders et al.,
2010), as varying degrees of apathy can affect reward processing,
especially in older adults. None of the participants scored above
the cut-off for clinically relevant apathetic symptoms (cut-off =

37/38; Max. AES-scoreyoung = 22; Max. AES-scoreold = 25), and
the average apathy scores did not differ between the two age
groups [average AES-scoreyoung = 16.1 (SD= 3.5); average AES-
scoreold = 16.0 (SD= 4.6); t(41.1) = 0.1, p= 0.92]. Before entering
the MRI scanner, participants received task instructions and
practiced one block of the probabilistic learning task on a laptop.
MRI acquisition started with a T1-weighted anatomical image,
after which the participants performed a short classification task
(which is not relevant for this paper), followed by two sessions of
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FIGURE 1 | Probabilistic learning task: on each trial an image pair of a house and a face were shown (left/right location randomized over trials), with the task to

choose one or the other. After the arrow stimuli appeared, participants indicated their choice by selecting the appropriate arrow. Following a jittered interval, feedback

as to whether they won or loss was presented. Each experimental block consisted of 20 of these trials, during which participants learned which of the two image

types was more likely to lead to a gain in that block. The human image in this figure is one of the stimuli we used in our experiment, which is part of an image-dataset

that is publicly available and free for academic use. The source of the image-dataset is: http://www2.ece.ohio-state.edu/~aleix/ARdatabase.html (Martinez and

Benavente, 1998).

the probabilistic learning task, each consisting of five blocks. A
short break was given between the two five-block sessions.

Behavioral Analysis
Behavioral analyses were performed using R (R Core Team,
2020). A mixed modeling approach was used to model two
types of learning behavior (choosing the block winner and
switching between stimulus categories) as a function of both trial
position (1–20) and age group. All models included a random
intercept per participant to account for individual variation
in average learning performance and switch rate. A second-
degree polynomial of trial number was added if it improved
the model fit significantly to account for non-linear associations
(which was the case for the learning rate model). A random
slope for trial number per participant was found to improve
the model fit of all models significantly and was therefore
added to account for individual differences in learning rate and
switch behavior. In addition, we also modeled switch behavior
based on feedback history (effect of feedback on trialn−1 and
trialn−2 on switch choice behavior on trialn), to assess the
impact of feedback integration effects on switch behavior. Again,
a random intercept per participant was added to account for
individual variation in average feedback integration effects, and
random slopes for feedback (trialn−1 and trialn−2) per participant
were considered to account for individual differences in the
impact of each feedback position. Lastly, in an exploratory
analysis, switch behavior was modeled based on a combination
of feedback (trialn−1), trial position in the block (1–20), age
group, and learning rate, to examine whether the impact of
feedback on switch behavior changed across the 20-trial block.
In addition to the random intercept per participant to account
for individual variation in switch behavior, two random slopes
were added to account for individual differences in the impact of
feedback on switch behavior and the impact of trial position on
switch behavior.

Models were estimated using the lme4 and AFEX package in
R (Bates et al., 2015; Singmann et al., 2020), using likelihood

ratio tests for fitting. Model comparison was performed using
the Akaike information criterion (AIC) (Akaike, 1973), with a
delta AIC-threshold of 2 (lower value indicating a better model
fit). Data was pulled over all blocks, and statistical tests were
considered significant at p < 0.05. Less than one percent of the
data consisted of no responses [mean (SD): 0.9% (1.1%); min:
0% max: 5%]; these trials were not included in the analysis. No-
response trials, trials preceded by a no-response trial, and the
first trial of each block were excluded from the switch analyses,
as these could not be classified as a switch or no-switch trial.

MRI Acquisition
A high resolution T1-weighted anatomical image was collected
using a 64-channel head coil. Functional data were acquired
with an echo-planar imaging (EPI) sequence (TR = 1.25 s, TE =

30ms, 60 axial slices, 2.0× 2.0× 3.0mm voxel size).

MRI Analysis
Preprocessing
All MRI analyses were performed using SPM12 toolbox (http://
www.fil.ion.ucl.ac.uk/spm/). Before preprocessing the data were
checked for excessive movements that could not be corrected for.
No participants were excluded from further analysis. Functional
data were corrected for slice acquisition time, and realignment
was applied to correct for headmovements. Then the images were
registered to the corresponding anatomical image, and all images
were spatially normalized to the ICBM space template. The data
were spatially smoothed using a 6mm Gaussian kernel.

General Linear Model Analysis
Three general linear models (GLM’s) were fitted on the individual
subject data to examine different learning-related processes
(feedback evaluation, feedback integration, and knowledge
updating). For the feedback evaluation model, gain trials and loss
trials were added to the design matrix as predictors of interest.
On the individual subject level, beta-estimates were calculated
for gains (ßgain) and losses (ßloss) that were subsequently used to
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compare the two age groups using second-level contrasts (e.g.,
Young ßgain – ßloss – Old ßgain – ßloss).

For the feedback integration model, four predictors were
constructed based on the possible feedback combinations on the
previous and current trial (e.g., gain-loss, loss-loss, etc.). The
individual beta estimates of the different feedback sequences were
used in second-level analyses to assess the effects of integration
across trials. More specifically, we examined whether neural
activation following feedback presentation of a loss or gain
depended on whether it was preceded by a gain or loss on
the previous trial. For example, neural differences identified
when comparing gain-loss vs. loss-loss would be indicative of
previous-trial feedback (gain vs. loss) impacting the processing
of current loss feedback, which would imply feedback integration
over trials. Similarly, we compared neural activity following a
gain on the current trial depending on whether it was preceded
by a gain or a loss (loss-gain vs. gain-gain). These effects
were subsequently compared between the age groups [e.g.,
Young (ßgain−loss − ßloss−loss) − Old (ßgain−loss − ßloss−loss) and
Young (ßloss−gain − ßgain−gain)− Old (ßloss−gain − ßgain−gain)].

Finally, to examine brain activation related to knowledge
updating, two predictors reflecting switch and no-switch choice
behavior on the next trial were constructed and added to the
GLM model. The switch predictor contained all trials where the
participants would switch their choice between stimulus types
(i.e., choose face vs. choose house) on the next trial. The no-
switch predictor consisted of all trials where the participant
would choose the same stimulus type on the next trial. On
the individual subject level, beta-estimates were calculated for
switch trials (ßswitch) and no-switch trials (ßnoswitch), which
were subsequently used in second-level analyses to assess
group differences.

All models contained six movement covariates to account
for head movements during the task, and all regressors were
convolved with a canonical hemodynamic response function
(HRF). The GLM analyses modeled the BOLD activity for
a period of 2,000ms starting at the moment of feedback
presentation, based on previous EEG-work showing that the
processes of feedback evaluation and knowledge updating last
approximately this long (van den Berg et al., 2019). A high-
pass filter with a 128-s time constant was used to remove
low frequency drifts. All second-level contrasts were evaluated
by whole-brain voxel-wise t-tests with a p-value threshold of
0.001 (uncorrected) and a minimal cluster-size of five voxels.
Furthermore, FWE-corrections at the cluster level were applied
(pFWE < 0.05).

RESULTS

Behavioral Results
Learning Rate
Analyses of task performance showed that the probability of
choosing the block winner increased across the block for both
young and older participants, indicating the ability to learn
which stimulus was more likely to yield a gain within the
block [χ2(2) = 151.75, p < 0.01] (Figure 2A). Post-hoc tests
revealed that, at the start of the block (i.e., on the 1st trial),
both younger and older participants chose the block winner

around chance level (younger adults: p(choose block winner) = 0.52
vs. older adults: p(choose block winner) = 0.53; odds ratio = 0.06, SE
= 0.21, n.s.). At the end of the block (i.e., on the 20th trial), the
probability of choosing the block winner was higher in both age
groups, but was higher in younger participants compared to older
participants [p(choose block winner) = 0.88 vs. p(choose block winner)

= 0.77, respectively; odds ratio = 0.80, SE = 2.06, p < 0.01],
reflecting a higher learning level for the younger group.

On average, younger participants had a steeper learning
curve than older adults [χ2(2) = 16.78, p < 0.01; average
learning rateyoung = 0.11 (SD = 0.07); average learning rateold
= 0.07 (SD = 0.07)]. However, we also observed large individual
differences in learning rate (Figure 2B). Hence, to further
investigate if differences in brain activity in subsequent analysis
of the fMRI BOLD signal can be explained by general age-
related differences or by differences in learning rate, we took into
consideration learning rate as a potential confounding factor in
these analyses.

Switch Behavior
Switch probability (i.e., choosing a different stimulus category
[houses or faces] on the current trial than on the previous trial)
decreased over the course of a 20-trial block [χ2(1) = 24.16, p <

0.01]. Although on average the older group switched more often
than younger participants [mean number of switches (SD): young
= 29 (19), old= 46 (26); χ2(1)= 8.52, p < 0.01], the decrease in
switch probability over the block was not significantly different
between the two age groups [χ2(1) = 0.18, n.s.]. When taking
into account the individual differences in learning performance
in the mixed model, we found that higher learning rates were
associated with a lower average switch probability [χ2(1)= 12.40,
p < 0.01]. These effects were found to be dependent on an
interaction between age and trial number [Age × Trial number
× Learning rate: χ2(1)= 6.52, p= 0.01]. Post-hoc testing showed
that switch probability during the block was similar for young
adults with low learning rates and older adults with high learning
rates. Young adults with high learning rates had a lower switch
probability compared to the other groups and older adults with
low learning rates had significantly higher switch probabilities
compared to the other three groups (Figure 3A).

Effects of Feedback Information
In a further analysis we examined whether switch behavior was
modulated by feedback history. More specifically, we inspected
the impact of feedback valence (gain or loss) on the probability
to make a switch by taking into account in the model both
feedback on the previous trial (feedbackn−1) and feedback on
the trial before that (feedbackn−2). Switch probability was higher
following a loss compared to a gain [Feedbackn−1: χ

2(1) =

110.68, p < 0.01]. In addition, feedback on the trial two trials
back also influenced the switch probability [Feedbackn−2: χ

2(1)
= 42.68, p < 0.01]; however, this effect was dependent on
feedbackn−1 [Feedbackn−1 × Feedbackn−2: χ

2(1) = 16.57, p
< 0.01]. As reflected through post-hoc tests, the probability to
make a switch was highest if both feedbackn−1 and feedbackn−2

were losses, and lowest after receiving two gains or a loss
followed by a gain [p(switch)loss−loss = 0.36, p(switch)gain−loss

= 0.18, p(switch)loss−gain = 0.08, p(switch)gain−gain = 0.06].
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FIGURE 2 | Learning rate data (lines depict the logistic model fit with a 95% CI in gray, raw data represented as separate points). (A) Probability of choosing the block

winner on the different trials across the block for young and older adults; (B) estimated individual learning rates, gray diamonds represent the average learning rate per

group.

Feedback history effects were found not to differ between the
two age groups in the model without the individual learning
slopes [Feedbackn−2 × Feedbackn−1 × Age: χ2(1) = 0.02, n.s.]
(Figure 3B), but the higher switch rate in older compared to
young adults wasmore pronounced following a gain as compared
to a loss [Age × Feedbackn−1, χ

2(1) = 4.59, p = 0.03]. After
adding individual learning slopes to the model, the age effects
were no longer significant [main effect of Age: χ

2(1) = 2.28,
n.s.; Age× Feedbackn−1 interaction: χ

2(1)= 2.98, n.s.]. Instead,
learning rate was predictive of the switch probability, with higher
learning rates being related to a lower overall switch probability
[χ2(1)= 5.73, p= 0.02]. After accounting for individual learning
slopes, no interactions between feedback history and age or
learning rate remained.

Lastly, in addition to our planned analyses we examined
whether the relation between feedback and switch probability
changed over the course of the 20-trial block. An interaction
was found [Feedbackn−1 × Trial position: χ

2(1) = 3.85, p =

0.05], indicating that whereas the switch probability following
a gain remained the same over the course of the block, switch
probability following a loss decreased over the block (Figure 3C).
This effect was found not to differ with age [Feedbackn−1 × Trial
position× Age: χ2(1)= 2.95, n.s.] or learning rate [Feedbackn−1

× Trial position × Age: χ
2(1) = 1.36, n.s.]. Hence, overall we

found that older adults switchedmore compared to young adults,
but we found no evidence for different learning behavior between
the two groups.

fMRI Results
Feedback Evaluation
We found clusters with higher levels of BOLD activity following
gains compared to losses throughout the brain, in frontal,

parietal, temporal, occipital, and subcortical regions, in line with
previous research (e.g., Cohen et al., 2008; Drueke et al., 2015;
Andreou et al., 2017) (See Supplementary Table S1 for a full
overview of clusters). Conversely, we also found a trend toward
higher activity following a loss compared to a gain in a small
part of the frontal operculum, a part of the superior frontal
gyrus, and in a part of the supplementary motor area and middle
and anterior cingulate cortex (more superior compared to the
gain activity effect), areas previously reported as being more
active following negative feedback (Cohen et al., 2008; Bischoff-
Grethe et al., 2009; Amiez et al., 2016). In addition to the
general effects of feedback valence, we also found differences
in feedback-related BOLD activity between the two age groups
(contrast: younggain>loss > oldgain>loss), especially in parts of
the middle frontal gyrus, anterior cingulate cortex, and angular
gyrus. The involvement of these areas in feedback evaluation
(Cox et al., 2005; Cohen et al., 2008; Mies et al., 2011; Jahn
et al., 2014; Lee and Kim, 2014; Drueke et al., 2015) and
the diminished increase in activity following gains in older
compared to younger adults observed here (Figure 4A), suggest
that especially the processing of positive feedback is reduced with
age. Although previous studies have reported a stronger ventral
striatal response to positive feedback in older adults (Schott et al.,
2007; Widmer et al., 2017), we did not find an effect of age
in this area. In addition to the age effects, our results showed
that activity following feedback was also different for participants
with a low versus a high learning rate. More specifically, the
difference between gains and losses was more pronounced for
the participants with a high learning rate in three frontal lobe
clusters covering areas related to executive functioning, such as
the supplementary motor cortex, middle cingulate gyrus and the
postcentral gyrus.
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FIGURE 3 | Switch behavior [lines depict the logistic model fit with a 95% CI in gray, raw data (indicating the proportion of switch) are depicted as separate points].

(A) switch probability across the block for young and older participants with high and low learning rates (median split per age group); (B) switch probability per

feedback sequence for young and older adults; (C) switch probability across the block per feedback type and age group.

Switch-Related Activity
In order to examine knowledge-updating effects, we compared
levels of BOLD activity following feedback presentation on trials
preceding a trial on which participants switched to the other
stimulus category (switch trials), relative to trials preceding a
no-switch trial. Of particular interest were the frontal and centro-
pariatal brain areas, given that they are thought to be the origin
of the LPC component linked to switch behavior by EEG research
(Chase et al., 2011; San Martin et al., 2013). In the visualization
(Figure 4B) we focused on the anterior cingulate cortex given
its role in the processing of feedback and the updating of beliefs
(Shenhav et al., 2013).

We found higher levels of activity preceding switch trials
in frontal and parietal brain areas, the cerebellum, and the
insular cortices (for a full overview of significant clusters see
Supplementary Table S2). A direct comparison between the
two age groups showed that switch-specific activity was more
pronounced in young compared to older participants in three
clusters, one covering parts of the anterior and middle cingulate
cortex, the superior frontal gyrus, and the supplementary motor

cortex, one covering parts of the precentral and postcentral
gyrus, and one covering parts of the middle and superior frontal
gyrus (Figure 4B). These results suggest enhanced knowledge
updating in young adults prior tomaking a switch. Switch-related
enhancement of activity was not observed in the older group,
suggesting a less pronounced link between knowledge updating
and choice behavior in this group. Besides the age-related effects,
the increase in activity preceding switch compared to no-switch
trials was found to be more pronounced in the group with high
learning rates compared to low learning rates in parts of the
middle frontal gyrus, medial superior frontal gyrus, and anterior
cingulate cortex related to executive functioning.

Feedback History
The integration of feedback information over trials was examined
by comparing neural activity following different feedback
sequences to investigate if activity following current feedback
depended on feedback on the previous trial (e.g., comparing
a gain-loss sequence to a loss-loss one). Our results showed
that neural activity after receiving gains and losses depended
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FIGURE 4 | fMRI results (p < 0.001 uncorrected voxel level, pFWE−cluster < 0.05) (A) Cluster covering the anterior cingulate cortex where the difference in brain activity

between gains and losses was bigger in young compared to older participants. Bar graph was based on a 5mm sphere ROI centered around the approximate center

of the ACC cluster (MNI −4, 40, 8); (B) Clusters where the difference in BOLD activity preceding a switch on the next trial compared to a no-switch is bigger in young

as compared to older participants. Bar graph is based on a 5mm sphere ROI centered around the peak voxel in the left anterior cingulate gyrus (MNI −6, 28, 29).

on the feedback received on the previous trial. When a gain
was preceded by a loss as compared to a gain, more activity
was found in areas related to reward processing, including the
superior frontal gyrus, the supramarginal gyrus, and the anterior
insula, suggesting that receiving negative feedback enhances
reward processing of positive feedback on the next trial (see
Supplementary Table S3 for full results). No significant clusters
were found where activity was higher when the gain was preceded
by a gain as compared to when it was preceded by a loss. With
regard to receiving negative feedback, we found enhanced activity
in the inferior temporal gyrus and fusiform gyrus when a loss was

preceded by a gain compared to a loss. When a loss was preceded
by another loss we found higher levels of activity in areas involved

in feedback evaluation and decision making, including like the

medial superior frontal gyrus and anterior insula, suggesting
that receiving negative feedback enhances processing of the
subsequent loss.

Taken together, these results suggest that feedback processing
is impacted by preceding feedback, and especially by negative
feedback. Direct group comparisons did not reveal any
significant differences in the effect of feedback history between
young and older participants. In participants with a high learning
rate compared to a low learning rate, however, we did find
a larger enhancement of activity in the right anterior insula
and frontal operculum when a loss was preceded by another

loss compared to a gain, suggesting a more prominent effect of
previous feedback in participants with high learning rates when
receiving negative feedback.

DISCUSSION

In this study, we aimed to elucidate age-related differences in
the neural mechanisms underlying learning. Older and younger
adults performed a probabilistic learning task in which they were
asked to learn which one out of two stimulus types was more
likely to lead to a gain. The behavioral results indicate that over
the course of a block of 20 trials, participants increasingly chose
the option that was more likely to yield a gain, showing that
they were able to learn from the feedback. However, in line with
previous research, we also found that older participants hadmore
difficulty learning from the probabilistic feedback compared to
young participants, as indicated by a lower learning rate (Mell
et al., 2005; Hämmerer et al., 2011). This diminished performance
in older adults coincided with altered choice behavior, as well as
in differences in feedback evaluation and knowledge updating at
the neural level.

In order to gain more insight in how differences in learning
performance arise, it is valuable to examine the choice behavior
leading up to this performance in more detail. During our task,
participants were given feedback on each trial, and based on this
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information they could decide whether or not to switch their
choice from one stimulus to the other on the next trial. Our
results show that participants indeed used feedback information
to adapt their choice behavior, switching more often following a
loss compared to a gain. However, because of the probabilistic
nature of the feedback, participants knew to expect a loss
occasionally even when choosing the correct stimulus (i.e., block
winner). Therefore, feedback information should not be used
only at a trial level, but it should also be integrated over trials
in order to learn which of the two choice options was more
likely to be the block winner and to choose that option more
and more often. In line with this, the probability to switch to the
other stimulus was found to not only depend on the most recent
feedback, but also on feedback history. Furthermore, switch
behavior was shown to be related to learning performance, with
the making of fewer switches in general being associated with a
higher learning rate. Together these results indicate that switch
choice behavior was guided by feedback information and linked
to learning performance, underlining its relevance in the study of
feedback related learning.

As feedback information was accumulated over the course
of each 20-trial block, participants were expected to become
more certain about which stimulus was the block winner and,
as a result, become more consistent in their choices. This was
reflected in the decreasing number of switches across the block,
in combination with the increasing chance of choosing the block
winner. At the same time, this growing bias toward choosing the
block winner across the block can be expected to coincide with
requiring more conflicting evidence before switching to the other
stimulus. In other words, because of the probabilistic feedback,
participants will be more likely to accept more losses when they
are more convinced their choice is right. As certainty about the
identity of the block winner is higher at the end of the block
compared to the beginning, participants are expected to accept
more losses at the end of the block before adapting their choice
behavior. We indeed showed that switch probability following a
loss decreased across the block, indicating that the information
value of the feedback decreased as participants became more
certain of the block winner. These results show how choice
behavior was not only adapted based on feedback information
received, but also as participants learned the right choice (e.g.,
with time on task).

Importantly, switch choice behavior and its modulation
depended on age. First of all, older adults were found to switch
more in general compared to younger adults, regardless of
feedback valence or trial number within the block. One of the
factors that might be related to this difference in switch tendency
is the uncertainty of probabilistic feedback. It could be argued
that older adults are less able to use relative uncertainty to guide
learning (Nassar et al., 2016). Given that the value of feedback
at the start of the 20-trial block is more uncertain compared
to the end of the block when the participant has learned the
stimulus reward associations, optimal use of uncertainty in the
learning process would implicate a decreasing switch tendency
following negative feedback across the block associated with the
declining level of uncertainty. Suboptimal use of uncertainty
in older adults would therefore imply a reduced adaptation of

switch tendency across the block, which is not in line with our
findings of a comparable modulation of the probability that
participants shift between the choice options across the block in
the two age groups following negative feedback, suggesting that
the higher switch rate in older adults is most likely not driven
by a less efficient use of uncertainty during learning. However,
the higher general switch rate in older adults in combination
with the fact that this higher tendency was more pronounced
following positive compared to negative feedback, might also
suggest that older adults adhere to a different learning strategy
that results in alternative choice behavior and less successful
learning. Our findings are in line with findings of Hämmerer
et al. (2011), who also reported a larger age-related difference
in switch rate following positive feedback. They argued that this
suggests that switch choice behavior is affected less strongly by
positive feedback in older compared to younger adults, meaning
that that older adults learn less from positive feedback compared
to negative feedback. Taken together, our results suggest that age
impacts learning-related behavior at the trial level, both with
regard to the magnitude of switch choice tendency and how it
is affected by feedback valence.

In line with the fact that the influence of positive feedback
on subsequent choice behavior was different between the two
age groups, our fMRI analysis showed age-related differences
related to the processing of positive feedback. More specifically,
we found that even though neural activity levels following gains
were higher compared to losses in both age groups, older adults
demonstrated a less differential BOLD response to gains and
losses in brain areas that have been associated with, amongst
other things, feedback evaluation (e.g., ACC, Alexander and
Brown, 2011; Neubert et al., 2015; Kolling et al., 2016; Bradley
et al., 2017; Wiseman et al., 2018). ROI visualizations indicate
that this smaller differential response to gains and losses was
due to a diminished neural response to positive feedback (i.e.,
because BOLD activity increased less compared to baseline
following positive feedback in the older adults, the activity levels
following gains and losses were more similar in this group).
A less differential neural response to feedback valence in older
adults has also been reported in EEG-studies in which smaller
differences in the feedback related negativity (FRN) component
were found (Mathewson et al., 2008; Hämmerer et al., 2011),
which has been argued to reflect a reduced ability to discriminate
feedback valence in light of the task goal (Hämmerer et al.,
2011). Our results show that age effects were specifically driven
by a smaller increase in activity in brain areas following positive
feedback in older compared to younger adults. In combination
with our behavioral results, this suggests that positive feedback
is processed differently in the older group, potentially altering
its contribution to the learning process, and resulting in a
diminished ability to make optimal behavioral changes. We did
not replicate previous findings of a stronger ventral striatal
response to the rewarding feedback in older as compared to
younger adults (Schott et al., 2007; Widmer et al., 2017),
which might be related to differences in task characteristics
between our study and previous research. In the probabilistic
learning task that we used, participants had to continuously
learn which stimulus type was associated with a higher chance
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of winning, while the stimulus-reward associations in these
previous studies were known beforehand, thereby reducing the
degree of uncertainty in a task. This difference might have an
impact on the information value of feedback information and the
influences of feedback on subsequent behavior.

When comparing neural activity related to the different
feedback sequences, higher levels of activity were found in
the inferior temporal gyrus and fusiform gyrus when negative
feedback was preceded by positive versus negative feedback. As
these brain areas have been associated with the processing of
faces and houses, it could be that these results reflect cortical
(re)activation of stimulus processing areas as part of establishing,
updating and storage of stimulus-reward associations, as we
reported earlier in van den Berg et al. (2019). However, our
dataset does not lend itself for a more detailed analysis of this
effect, and thus this interpretation remains speculative and would
need to be confirmed by future research.

In addition to feedback evaluation, we examined the neural
processes related to switch choice behavior in order to investigate
potential age-related differences in knowledge updating. Previous
EEG-research showed that making a switch on the next trial
was accompanied by a larger Late Positive Complex (LPC)
component from 300 to 600ms post feedback stimulus, which
was thought to reflect enhanced brain activity in frontal and
centro-parietal brain areas prior to a switch (Fischer and
Ullsperger, 2013; San Martin et al., 2013). One of the potentially
contributing brain areas of particular interest is the anterior
cingulate cortex (ACC), which is thought to be serving as
a central hub in the allocation of cognitive control and is
involved in processing of feedback and updating of beliefs
(Shenhav et al., 2013).

In line with the EEG-studies (Chase et al., 2011; San Martin
et al., 2013; Correa et al., 2018), our results indeed showed
increased activity in the ACC following feedback presentation
on the trial prior to a switch in young adults, which might
reflect increased levels of knowledge updating prior to behavioral
adjustment. In older adults, however, no evidence was found
for increased ACC activity on the trial prior to a switch,
suggesting that updating of knowledge was less effective in this
group. Based on the results of the present study, we cannot
be certain whether the equivalent levels of switch- and no-
switch related neural activity in older adults specifically reflected
relatively diminished knowledge updating prior to a behavioral
switch or relatively enhanced knowledge updating prior to
not switching in comparison to young adults. In addition,
as switch choice behavior is inherently linked to feedback
valence (higher switch tendencies following negative compared
to positive feedback), and fMRI has limited temporal resolution,
distinguishing between feedback evaluation and knowledge
updating processes is limited with this method. The low temporal

resolution of fMRI does not allow us to temporally distinguish
processes related to feedback evaluation feedback integration
and knowledge updating, thus restricting us to interpreting our
results based on the specific contrasts showing the differences in
activation. This however does not guarantee that the activation
patterns are exclusive for these processes. Nevertheless, the
distinct spatial locations of the reported feedback-evaluation and
knowledge-updating effects, corresponding to diminished brain
activity in feedback-evaluation areas following positive feedback
in older adults, and a less prominent increase of activity in areas
involved in the updating of beliefs prior to adaptations in choice
behavior in this group, seem to indicate that age impacts both
feedback processing and knowledge updating during learning.

In conclusion, successful learning requires the evaluation of
feedback, updating of knowledge, and adaptation of behavior.
We provided evidence showing that diminished learning
performance in older adults corresponded with making more
switch choices. In addition, older adults were shown to process
positive feedback to a lesser extend compared to young adults,
which might have led to the reduced knowledge updating we
found in this group. Together our findings showed how learning-
related processes are impacted by age both at the behavioral and
neural levels, and how different feedback-evaluation processes
could lead to reduced learning performance across trials.
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