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A theoretical framework for the reinforcement learning of aesthetic biases was recently
proposed based on brain circuitries revealed by neuroimaging. A model grounded on
that framework accounted for interesting features of human aesthetic biases. These
features included individuality, cultural predispositions, stochastic dynamics of learning
and aesthetic biases, and the peak-shift effect. However, despite the success in
explaining these features, a potential weakness was the linearity of the value function
used to predict reward. This linearity meant that the learning process employed a
value function that assumed a linear relationship between reward and sensory stimuli.
Linearity is common in reinforcement learning in neuroscience. However, linearity
can be problematic because neural mechanisms and the dependence of reward on
sensory stimuli were typically nonlinear. Here, we analyze the learning performance
with models including optimal nonlinear value functions. We also compare updating the
free parameters of the value functions with the delta rule, which neuroscience models
use frequently, vs. updating with a new Phi rule that considers the structure of the
nonlinearities. Our computer simulations showed that optimal nonlinear value functions
resulted in improvements of learning errors when the reward models were nonlinear.
Similarly, the new Phi rule led to improvements in these errors. These improvements were
accompanied by the straightening of the trajectories of the vector of free parameters in
its phase space. This straightening meant that the process became more efficient in
learning the prediction of reward. Surprisingly, however, this improved efficiency had a
complex relationship with the rate of learning. Finally, the stochasticity arising from the
probabilistic sampling of sensory stimuli, rewards, and motivations helped the learning
process narrow the range of free parameters to nearly optimal outcomes. Therefore,
we suggest that value functions and update rules optimized for social and ecological
constraints are ideal for learning aesthetic biases.

Keywords: reinforcement learning, aesthetic value, value function, delta rule, regret minimization, stochastic
dynamics
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INTRODUCTION

Values and in particular aesthetic ones are a significant part
of our lives because they contribute to our process of decision
making (Skov, 2010). Because humans are highly social animals,
the set of values of each personmust be in tune with their cultures
and surroundings. Therefore, learning is an essential component
of how our values come to be. In the case of aesthetic values, they
begin to be learned early on in life, such that by preschool age,
cultural idiosyncrasies are observed in children (Senzaki et al.,
2014). In addition, these values continue to progress over our
lifespans (Park and Huang, 2010).

How does the brain learn aesthetic values? An important
meta-analysis of neuroimaging considered commonalities of
aesthetic biases across multiple sensory modalities (Brown et al.,
2011). The results of this and many other imaging studies
indicated general mechanisms for appraisal involving a well-
studied (Schultz, 1998, 2016) reward-based learning circuit
(Lacey et al., 2011; Vartanian and Skov, 2014; Wang et al., 2015).
However, these studies suggest that many independent factors
impact this process of reward-based learning, with Brown et al.
(2011) in particular discussing a novel role for motivation.

Because the development of aesthetic biases involves
a rewards-based learning circuitry, a mechanism akin to
reinforcement learning (O’Doherty et al., 2003; Sutton and
Barto, 2018) likely mediates the process. Several theoretical
frameworks for aesthetic values have elements of reward-
circuitry and reinforcement learning. Some of these theories
are computational (Martindale, 1984; Schmidhuber, 2010; Van
de Cruys and Wagemans, 2011; Aleem et al., 2019, 2020) and
some are not (Biederman and Vessel, 2006; Skov, 2010; Vessel
and Rubin, 2010; Chatterjee and Vartanian, 2014). Of the
computational theories, the only one considering motivation
is that of Aleem et al. This is also the only theory studying the
temporal evolution of learning. Simulations of a model based on
the Aleem et al. theoretical framework andmathematical analysis
lead to three main findings. First, different people may develop
distinct weighing of aesthetic variables because of individual
variability in motivation (Nelson and Morrison, 2005; Brown
and Dissanayake, 2009; Silvia et al., 2009). Demonstration of the
development of individuality is especially important in a theory
in which learning leads to a degree of coordination of aesthetic
values across society. Second, individuals from different cultures
and environments may develop different aesthetic values because
of unique sensory inputs and social rewards. Third, because
learning is stochastic stemming from probabilistic sensory
inputs, motivations, and rewards, aesthetic values vary in time.

A potential problem for reinforcement-learning models for
the brain is the linearity of many of the most important
mechanisms. For example, the model used by Aleem et al.
(2020) assumes a linear value function (Sutton and Barto, 2018),
that is, a linear relationship between sensory inputs and values.
Furthermore, this model makes a linearity assumption for the
update rule of the value function. Thus, although the reward
has a nonlinear dependence on sensory inputs, brain actions
would approximate this dependence linearly. Biologically, these
linear mechanisms are not reflective of typical reward-related

neural signaling (Schultz, 2015). Moreover, recent studies have
signaled the need for a new conception of aesthetics that
incorporates distributed processing and nonlinear recurrent
networks (Leder and Nadal, 2014; Nadal and Chatterjee, 2019).
Assuming such linear mechanisms is common even in Machine
Learning to lighten computations and mathematical analysis
(Chung et al., 2018). In addition, linear methods have also
been well-explored theoretically (Tsitsiklis and Van Roy, 1997;
Maei, 2011; Mahmood and Sutton, 2015; Iigaya et al., 2020)
and empirically (Dann et al., 2014; White and White, 2016)
in the Machine Learning literature. Finally, arguments have
been made that linear rules perform comparably to deep neural
networks when predicting subjective aesthetic values (Iigaya
et al., 2020). However, modeling nonlinear processes with linear
approximations should produce errors, or equivalently, regret in
Machine Learning terminology (Kaelbling et al., 1996; Sutton and
Barto, 2018; formally, regret is the difference between an agent’s
performance with that of an agent that acts optimally). Hence,
increasing effort has begun in Machine Learning to develop
methods for nonlinear value functions (Tesauro, 2005; Xu et al.,
2007; Kober et al., 2013; Gu et al., 2016; Osband et al., 2016;
Chung et al., 2018).

In this article, we present mathematical and computational
analyses of linear and nonlinear reinforcement-learning models
for the acquisition of aesthetic values. We analyze 16 models.
They stem from the combination of four types of value function
(one linear and three nonlinear) and four types of value-
function update rule (two making a linearity assumption for
the updates and two assuming nonlinearities). All these models
incorporate motivation (Brown et al., 2011). The comparisons
between the models use different metrics, the most important
of which is ‘‘regret.’’ We measure regret as the difference
between reward and the prediction of reward. We choose this
metric because humans often experience emotional responses
to regret as a decision error (Gilbert et al., 2004; Filiz-Ozbay
and Ozbay, 2007; Somasundaram and Diecidue, 2016). Another
metric is time of convergence, which is important because a
good learning mechanism should acquire its values as quickly
as possible.

THEORETICAL CONSIDERATIONS

We have split the description of the theoretical considerations
into two subsections, general and mathematical. The ‘‘General
Description of the Theoretical Considerations’’ section has a
description of the ideas without any equations. Our goal in
that section is to help the reader understand the elements of
the theoretical considerations at an intuitive level. That section
may allow some readers to skip the equations (‘‘Mathematical
Description of the ‘‘Theoretical Considerations’’ section) and
the ‘‘Materials and Methods’’ section, and go directly to the
‘‘Results’’ section. The subsections of ‘‘General Description of
the Theoretical Considerations‘‘ and ‘‘Mathematical Description
of the Theoretical Considerations’’ sections have parallel titling.
The parallel subjects of these subsections may help the
reader when connecting the intuitive and mathematical levels
of understanding.
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General Description of the Theoretical
Considerations
Motivation-Gated Reinforcement Learning of
Aesthetic Values
The starting point for the analyses in this article is the theoretical
framework of Aleem et al. (2020). The core of the framework
is reinforcement learning. As it is normal for reinforcement
learning, the system first receives inputs from the external
world, that is, the sensory inputs. Moreover, the system receives
internal inputs on the motivation to act. The system then uses
these external and internal inputs to estimate what will be
the expected reward during the period in which these signals
are arriving. This estimate is commonly referred to as value.
When rewards arrive, they are compared with the values (i.e.,
the estimated rewards). If there is a mismatch (i.e., non-zero
regret), the system learns by updating the parameters of the
internal model (the value function). This update allows the
system to achieve its goal of producing better reward predictions
in the future.

While reinforcement learning is at the heart of the theoretical
framework, it has four notable extensions. First, the estimate
of reward itself is equivalent to aesthetic value. Second,
the reinforcement-learning circuitry includes the concept of
motivation within, which, by our definition, refers to the internal
drive of an individual to act given an input. More specifically,
motivation is a component of the likelihood of a person to act,
which in turn is akin to policy in Machine Learning (Sutton and
Barto, 2018). Third, both motivation and sensory inputs to the
theoretical framework are probabilistic. Fourth, the inputs to our
theoretical framework depend not only on individuals but also
across societies.

Linear and Nonlinear Value Functions
In this article, we investigate the performance of aesthetic
learning with four types of value function. First, we probe
the linear value function, which yields an estimate of reward
that is proportional to the sensory inputs. The constants
of proportionality, which Aleem et al. (2020) call aesthetic
weights, are the free parameters that the process of learning
should estimate. Second, we follow the linear step with
a saturation function characteristic of many neurobiological
processes (Hudspeth et al., 2013; Schultz, 2015). Such saturation
function added to the output of the linear function models a
value-function nonlinearity resulting from diminishing marginal
utility (Kreps, 1990). We call this mechanism the Output-
saturation model because we apply the saturating process
at the output of the linear stage. Third, we apply the
same saturation mechanism to each component of the linear
model. Appropriately, we call this mechanism the Component-
saturation model. Fourth, we use the value function developed
by Aleem et al. (2020) in their theoretical framework for
aesthetic learning.

Update Rules for Value Functions
In the Aleem et al. article, the updates of the value function
are performed with the delta rule (Sutton and Barto, 2018).
This rule implements a gradient descent on the magnitude of

regrets (errors) of the predictions of reward. The delta rule
stipulates that the change of the free parameters of the value
function should be proportionate to the difference between
observed and predicted rewards, typically denoted δ. Thus, the
larger this difference is, the faster this change becomes. In
all the simulations and mathematical analyses in this article,
this component of the delta rule applies. Furthermore, the
delta rule prescribes in what direction the vector of free
parameters of the value function should change (Here, we often
use ‘‘free parameters’’ when referring to the vector of free
parameters of the value function). This change should be in
the direction opposite to the gradient of the value function
with respect to this vector. If the value function is linear,
then this gradient is equal to the vector of sensory stimuli
(Sutton and Barto, 2018).

However, the standard delta rule has some disadvantages,
suggesting an important modification. To understand these
disadvantages, let us start with some of the advantages of
this rule. The first worth mentioning is that it attempts to
minimize regret. This minimization holds for both standard
reinforcement learning (Sutton and Barto, 2018) and the version
here with motivation gating (Aleem et al., 2020). In addition,
for the linear value function, the delta rule tends to optimize
the trajectory of the free parameters (Aleem et al., 2020).
However, as we will illustrate in the ‘‘Hypotheses Tested
in This Article’’ sections, this advantage does not apply in
general to nonlinear value functions. Fortunately, a related
rule that has this advantage does exist. This new rule points
the trajectory of the free parameters directly to the closest
point in the isoline corresponding to the reward received
(the target isoline). Because this rule takes the vector through
the shortest route, we say that the rule implements the
Shortest-path strategy. We sometimes also call this the Phi
rule because the vertical line in Φ bisects its ellipse with the
shortest path.

Hypotheses Tested in This Article
In this article, we probe the performance of learning under
various value functions (‘‘Linear and Nonlinear Value
Functions’’ section) and their various update rules (‘‘Update
Rules for Value Functions’’ section). At the simplest level,
the expectations for these probes are straightforward. For
example, an update rule appropriate for a linear value function
should do poorly with a nonlinear one. However, we wish to
develop expectations that are more granular for the various
value functions and update rules. Figure 1 helps us formulate
hypotheses based on these rules and functions.

From Figure 1, if one disregards the stochastic nature of the
learning process, we can draw the following seven hypotheses
about the interactions between values functions and their
update rules:

I. Assume that the value function is linear and the update
delta rule follows the gradient at the position of the vector
of free parameters. The final regret should be zero and the
update convergence should be fast. After convergence, the
recovery from fluctuation errors should also be fast.
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FIGURE 1 | Contour plots of four examples of value functions and relationships to possible update rules. These value functions are two-dimensional in this research
(“Stochastic Sampling” section) but multi-dimensional in general. In the examples given here, the two dimensions are measures of balance and complexity in visual
images. These measures range from 0 to 1 for the value functions illustrated in this research. The parameters of the value functions are those of Table 2. The red
arrows indicate the optimal trajectory from the current position of the vector of free parameters of the value function to the closest point of the isoline corresponding
to the sampled reward (Here, we call this curve the target isoline, but in general, it is an isosurface.) The black arrows indicate the trajectory based on gradient
computation. (A,B) For the Linear and Output-saturation value functions, the gradient and optimal trajectories coincide. (C,D) For the Component-saturation and
Aleem et al. models, the gradient trajectory is not optimal. (E,F) However, if one computed the gradients from the target isoline instead of the current position
(magenta and white arrows), the gradient at the optimal point on the target isoline would be parallel to the optimal trajectory (“Results” section; white arrows). We call
this computation the Shortest-path or Phi rule (“Update Rules for Value Functions” section).
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II. A similar hypothesis applies to the Output-saturation value
function because of its straight and parallel contour lines.

III. We hypothesize that the regret magnitude should be larger
with the Component-saturation and Aleem et al. value
functions than with the Linear and Output-saturation ones.
The convergence and the recovery from fluctuation errors
should also be slower for the former two. These problems
will be especially acute for the Aleem et al. value function.

IV. Similarly, we hypothesize a straight trajectory for the Linear
and Output-saturation value functions (except for small
stochastic fluctuations). But the trajectory should be curved
for the other two functions.

V. Instead, the Phi Rule should yield no regret and fast
convergence and recovery from fluctuation errors for all
value functions.

VI. Regardless of the rule, although value will reach a unique
fixed point, the free parameters will not. The reason for the
lack of uniqueness is that many parameter combinations
yield the same value (isolines in Figure 1).

VII. Let a parameter of the model of reward have higher
sensitivity coefficient than another parameter. Thus, if we
increase the former parameter, we get more reward than if
we raise the latter by a similar amount (Vidal et al., 1966;
Saltelli et al., 2008). The corresponding free parameters of
the value function should exhibit the same hierarchy of
contributions to the estimation of reward.

However, if one does not disregard the stochastic nature of
the learning process, these hypotheses could be wrong. With
the stochastic sampling, the contour plots in Figure 1 would
change across samples, possibly making the convergence more
complex. The computer simulations in the ‘‘Results’’ section test
this possibility.

Mathematical Description of the
Theoretical Considerations
Motivation-Gated Reinforcement Learning of
Aesthetic Values
Much of the work described in this section appears in Aleem et al.
(2020). We will only sketch the relevant work in that work here,
leaving details to that article but pointing out the new ideas in
this article.

Let the sensory inputs be a N dimensional vector, Eu(t), with
the various components ui corresponding to variables that the
brain uses to represent the external world. Without loss of
generality, Aleem et al. assumed that 0 ≤ ui ≤ 1. Moreover, and
more importantly, Aleem et al. assumed that the value function
was linear. Instead, we assume a general value function

v(t) = m(t)µ
(
Eu(t):Ew(t)

)
, (1)

where 0 ≤ m ≤ 1 is the motivation function, µ is a
general nonlinear differentiable function representing the fully
motivated value, and Ew(t) is the vector of free parameters of the
value function (In this research, we use the colon to indicate
parameters and thus, µ

(
Eu(t):Ew(t)

)
means that the function µ

has Eµ as variables and Ew as parameters. The reason Ew varies with
time is that learning operates by parametric optimization.) Thus,

if we interpret m as the probability of acting around time, then
the expected received reward is

r(t) = m(t)r∗(t), (2)

where r∗ is the reward that a fully motivated person would get.
Aleem et al. (2020) used a delta-rule update of the value

function by first computing

δ(t) = r(t)− v(t). (3)

They then used the gradient update rule assuming a linear value
function.We insteadmust use the value function in Equation (1),
which yields

dEw(t)
dt
= εδ(t)∇wµ

(
Eu(t) : Ew(t)

)
, (4)

where ε > 0 is a constant.
To complete the theoretical framework, we need to specify the

statistical properties of Eµ, m, and r*. Following Aleem et al., we
define the probability density functions

P
(
EIu|EB

)
, P
((
Eu(t), r∗(t)

)
|EIu
)
, (5)

where EB indicates the vector of parameters characteristic of the
social and environmental background under consideration and
EIu is the vector of parameters of an individual in this society. We
also define the probability density function ofm as

P
(
EIm|EB

)
, P
(
m (t) |Eu (t) ,EIm

)
, (6)

where we insert EB to indicate that individual motivation may
depend on environmental and social backgrounds.

Linear and Nonlinear Value Functions
For reinforcement learning to work well, the value function
should be able to capture the structure of the incoming rewards.
From Equations (1–3), (5) and (6), the expected least-square
error (dropping both the dependence on t and the parameters
for the sake of conciseness) is

E = ∫∫∫Eu,r∗ ,mP
(
Eu, r∗

)
P
(
m|Eu

) (
m
(
µ
(
Eu
)
− r∗

))2. (7)

This error is a function of the value function µ
(
Eu
)
(Riesz and

Szökefalvi-Nagy, 1990). As shown in Appendix: Optimal Value
Function, the minimal of this function occurs when

µopt

(
Eu:Ew, Ek

)
= 〈r∗〉

(
Eu:EIu =

[
Ew, Ek

])
, (8)

where 〈r∗〉
(
Eu:EIu =

[
Ew, Ek

])
indicates the mean of r* given the

sampled sensory inputs, and the free (Ew) and constant (Ek)
parameters of the value function.

We are now ready to specify the optimal value functions
obtained after setting the mean rewards in our models.

Linear Value Function〈
r∗lin
〉 (
Eu:EIu = Ew(lin)

)
= Ew(lin) · Eu,

µlin
(
Eu:Ew

)
= Ew · Eu, (9)

where Ew(lin) are constant parameters of the model of reward.
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Output-Saturation Value Function

〈
r∗out

〉 (
Eu:EIu =

[
Ew(out), Ek = [α1,β1]

])
=

eα1
(
Ew(out)·Eu−β1

)
− 1

eα1(Ew(out)·Eu−β1) + 1
,

µout
(
Eu:Ew,α1,β1

)
=

eα1(Ew·Eu−β1) − 1

eα1(Ew·Eu−β1) + 1
, (10)

where Ew(out), α1 > 0, and β1 are constant parameters of themodel
of reward. The right-hand side of Equation (10) is the hyperbolic
tangent, a sigmoidal function centered on β1 and with speed of
rise controlled by α1.

Component-Saturation Value Function〈
r∗com

〉 (
Eu:EIu =

[
Ew(com), Ek = [α2,1,β2,1,α2,2,β2,2]

])
=

N∑
i=1

eα2,i
(
w(com)i ·ui − β2,i

)
− 1

eα2,i
(
w(com)i ·ui − β2,i

)
+ 1

,

µcom
(
Eu:Ew,α2,1,β2,1,α2,2,β2,2

)
=

N∑
i=1

eα2,i(wi·ui − β2,i) − 1

eα2,i(wi·ui − β2,i) + 1
, (11)

where again, Ew(com), α21 > 0, β21, α22 > 0, and β22 are constant
parameters of the model of reward. In turn, Ew(com), wi, and ui are
the ith components of the vectors Ew(com), Ew, and Eu respectively.

Aleem et al. Value Function(
Eu:EIu =

[
Ew(ale), Ek = [α3,β3]

])
= −w(ale)1 + 2w1

(ale)u1 − w2
(ale)θ(α3,β3)

+ w2
(ale)e

−
(u2 − α3)2

2β33 ,
µale

(
Eu:Ew,α3,β3

)
= −w1 + 2w1u1 − w2θ (α3,β3)+ w2e

−
(u2 − α3)2

2β23 . (12)

where again, Ew(ale), α3 > 0, and β3 are constant parameters of
the model of reward. In turn, w(ale)i is the ith components of the
vector Ew(ale). Finally, the function θ is (α3, β3) is

θ (α3,β3) =
∫ 1

0
e
−
(u2 − α3)2

2β23 du2.

The derivation of Equation (12) follows from the equations in
Aleem et al. (2020).

Update Rules for Value Functions
We use two update rules for the free parameters, with the
first being the gradient-based delta rule in Equation (4). To
implement this rule, we must first sample Eu (t), r*(t), and m (t)
from Equations (5) and (6) (details in ‘‘Materials and Methods’’
section). From, these samples, we can compute the value
functions as in the second part of Equations (9)–(12) and thus,
δ (t). Finally, we must compute the gradient, ∇wµ

(
Eu (t) :Ew (t)

)
,

for these value functions.

The second update rule that we use in this article is what we
call the Phi (or Shortest-path) rule (Figures 1E,F). To define this
rule, we begin by considering{

Ewr(t)|µ
(
Eu(t):Ewr(t)

)
= r∗(t)

}
, (13)

which is the set of all free parameters of the value function that
yield the sampled reward. Thus, Ewr(t) are the points of the target
isolines in Figure 1. Now, define the optimal point in the target
isoline, that is, the point closest to Ew:

Ewopt(t) = argminEwr(t) ‖ Ewr(t)− Ew(t) ‖ . (14)

This point may not be unique, but the lack of uniqueness is rare
(and one can break it with tiny random perturbations), and thus,
we neglect it here. We now define the vector E8(t) as

E8
(
Ew(t):Eu(t), r∗(t)

)
=
Ewopt(t)− Ew(t)
‖ Ewopt(t)− Ew(t) ‖

, (15)

that is, the unit vector pointing from Ew(t) to Ewopt(t). With E8(t)
in hand, we propose a new rule instead that in Equation (4):

dEw(t)
dt
= εδ(t) E8

(
Ew(t):Eu(t), r∗(t)

)
. (16)

Hypotheses Tested in This Article
Asmentioned in the ‘‘Update Rules for Value Functions’’ section,
the gradient-based delta rule attempts to minimize regret. This
minimization holds for both standard reinforcement learning
(Sutton and Barto, 2018) and the version here with motivation
gating (Aleem et al., 2020). In the latter study, the demonstration
of the minimization of regret was for the linear value function
(Equation 9). In Appendix: Minimization of Regret Under
Optimal Value Functions and the Delta Rule, we extend the
demonstration for nonlinear value functions in the presence of
motivation. Specifically, we show that the rule in Equation (4)
tends to perform a stochastic gradient descent on the error

E =
〈
m(t)

(
r∗(t)− µ

(
Eu(t):Ew(t)

))2〉
t
, (17)

where 〈 〉t stands for time average. Consequently, the rule in
Equation (4) performs a gradient descend on the error of value
weighed statistically by the motivation.

Another implication of the delta rule is that it tends
to maximize the rate of convergence for the linear value
function (Aleem et al., 2020). The delta rule also maximizes
the rate of recovery from fluctuation errors after convergence.
These maximizations are contingent on the gradient being
perpendicular to the isolines. However as seen in Figures 1C,D,
the gradient is not generally perpendicular to the isolines for
nonlinear value functions.

These conclusions on the gradient-based delta rule underlie
Hypotheses I–IV.

In contrast, the Shortest-path Phi rule overcomes the
deficiencies of the gradient-based delta rule. The Phi
rule does so by going directly to the optimal point, Ewopt ,
on the target isoline (Equations 13 and 16). Appendix:
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Perpendicularity Condition Under the Phi Rule adds to
this conclusion, demonstrating an important property
of Ewopt :

Ewopt − Ew ∝ ∇wµ(Eu:Ewopt). (18)

Consequently, the perpendicular of the target isoline through
Ewopt is parallel to the vector connecting Ew to Ewopt . This
result extends the conclusion for the delta rule that it tends
to maximize the rate of convergence of Ew for the linear
value function. The result also extends the conclusion that
the delta rule tends to maximize the rate of recovery from
fluctuation errors after convergence. These conclusions are
now valid for nonlinear value functions if one uses the Phi
rule.

MATERIALS AND METHODS

We tested the hypotheses of ‘‘Hypotheses Tested in This
Article’’ sections through mathematical analyses and computer
simulations. The ‘‘Simulated Conditions’’ section lists all the
conditions (mixtures of value functions and update rules)
simulated in this article. Then the ‘‘Methods for Computer
Simulations’’ and ‘‘Stochastic Sampling’’ sections describe the
technical details of the simulations. These sections are followed
by a summary of the simulation procedures (‘‘Summary of
the Simulation Procedures’’ section) and the parameters of the
simulations (‘‘Standard Simulation Parameters’’ section). Finally,
the ‘‘Statistics to Test the Hypotheses’’ section describes the
statistics used to test the hypotheses. The detailed mathematical
analyses are left to the appendices, but the results are explained
at appropriate places in this article.

Simulated Conditions
This article compares the performance of various value functions
and their update rules in the learning of aesthetic biases.
Hence, we performed simulations combining conditions of value
functions and update rules. The simulated conditions appear in
Table 1.

The logic of these conditions is as follows: The 16 conditions
are divided in sets of four, with the title indicated in the
first column of this table. Every set includes all four types
of reward model. In the first set, the value function is linear
and the update rules assumes a gradient descent based on the
linear value function. This set makes these assumptions despite
the reward model not always being linear (Conditions 2–4).
Because of the doubly linear assumptions, we call this set the
Purely-linear conditions. In contrast, the second set assumes a
value function matched to the reward models. However, the
update rule continues to be linear and thus, we call this set
the Mixed-linear conditions. Next is the set called the Full-
gradient conditions. This is the only set respecting fully the
reward models in both the value functions and the gradient-
descend update rules. Finally, the Shortest-path conditions also
have values functions respectful of rewards but use the Phi rule
instead of the delta rule.

The main model in Aleem et al. (2020) corresponds to
Condition 4.

Methods for Computer Simulations
We must simulate Equations (1–4) to implement the delta rule
and Equations (1–3), and (16) for the Phi rule. Combining these
two sets of equations, we get respectively

dEw(t)
dt

= εδm(t)
(
r∗(t)− µ

(
Eu(t):Ew(t)

))
∇wµ

(
Eu(t):Ew(t)

)
,

dEw(t)
dt

= ε8m(t)
(
r∗(t)− µ

(
Eu(t):Ew(t)

))
E8
(
Ew(t):Eu(t), r∗(t)

)
. (19)

We use possibly different εδ and ε8 to allow for a fair comparison
between the convergence rates of the two processes, as explained
in the ‘‘Standard Simulation Parameters’’ section. Equations (19)
are stochastic differential equations (Aleem et al., 2020).

We simplify our simulations through a mean-field
approximation of Equation (6):

dEw(t)
dt
= εδm̄

(
Eu(t):EIm

)
(
r∗(t)− µ

(
Eu(t):Ew(t)

))
∇wµ

(
Eu(t):Ew(t)

)
,

dEw(t)
dt
= ε8m̄

(
Eu(t):EIm

)
(
r∗(t)− µ

(
Eu(t):Ew(t)

))
E8
(
Ew(t):Eu(t), r∗(t)

)
,
(20)

where m̄
(
Eu(t):EIm

)
is the mean motivation as a function of the

sensory inputs Eu(t) and parametric on EIm (Aleem et al., 2020).
To approximate a solution to Equations (20), we must

discretize time and sample, Eu, m, and r* for every t. We do this
discretization as follows:

Ew
(
tk+1

)
= Ew (tk)+ ε′δm̄

(
Eu
(
tk+1

)
:EIm
) (
r∗
(
tk+1

)
−µ

(
Eu
(
tk+1

)
:Ew (tk)

) )
∇wµ

(
Eu
(
tk+1

)
:Ew (tk)

)
,

Ew
(
tk+1

)
= Ew

(
tk
)
+ ε′8m̄

(
Eu
(
tk+1

)
:EIm
)(
r∗
(
tk+1

)
−µ

(
Eu
(
tk+1

)
:Ew
(
tk
)))
E8
(
Ew
(
tk
)
:Eu
(
tk+1

)
, r∗
(
tk+1

))
,
(21)

where ε′δ = εδ
(
tk+1 − tk

)
and ε′8 = ε8

(
tk+1 − tk

)
, with tk+1 −

tk being constant (for k = 0, 1, 2, . . .).
In this article, we compute 5wµ analytically. These gradients

are relatively easy to compute, so we omit them here from the
sake of space. As for the computation of E8, we use the method
of Marching Squares Algorithm to obtain the value isolines
(Maple, 2003), and then apply Equations (14) and (15). We
apply this algorithm to a 101 × 101 pixels approximation of the
value function.

Stochastic Sampling
To simulate Equations (21), one must sample Eu and r∗
stochastically from the probability distributions in Equation (5),
and compute m̄

(
Eu(t):EIm

)
for use in Equations (20). We follow

Aleem et al. (2020) and take five steps to simplify the sampling to
make the simulations fast. See Aleem et al. (2020) for more details
and justifications.

A. We did not simulate social ‘‘noise’’ by implementing explicitly
P
(
EIu|EB

)
and P

(
EIm|EB

)
, instead setting individual parameters

by hand.
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TABLE 1 | Conditions simulated.

Set Condition Reward Value function Update rule

Purely linear 1
〈
r∗lin
〉
; Eq. (9) µlin; Eq. (9) 5wµlin; Eqs. (4) and (9)

2
〈
r∗out
〉
; Eq. (10) µlin; Eq. (9) 5wµlin; Eqs. (4) and (9)

3
〈
r∗com

〉
; Eq. (11) µlin; Eq. (9) 5wµlin; Eqs. (4) and (9)

4
〈
r∗ale
〉
; Eq. (12) µlin; Eq. (9) 5wµlin; Eqs. (4) and (9)

Mixed linear 5
〈
r∗lin
〉
; Eq. (9) µlin; Eq. (9) 5wµlin; Eqs. (4) and (9)

6
〈
r∗out
〉
; Eq. (10) µout; Eq. (10) 5wµlin; Eqs. (4) and (9)

7
〈
r∗com

〉
; Eq. (11) µcom; Eq. (11) 5wµlin; Eqs. (4) and (9)

8
〈
r∗ale
〉
; Eq. (12) µale; Eq. (12) 5wµlin; Eqs. (4) and (9)

Full gradient 9
〈
r∗lin
〉
; Eq. (9) µlin; Eq. (9) 5wµlin; Eqs. (4) and (9)

10
〈
r∗out
〉
; Eq. (10) µout; Eq. (10) 5wµout; Eqs. (4) and (10)

11
〈
r∗com

〉
; Eq. (11) µcom; Eq. (11) 5wµcom; Eqs. (4) and (11)

12
〈
r∗ale
〉
; Eq. (12) µale; Eq. (12) 5wµale; Eqs. (4) and (12)

Shortest path 13
〈
r∗lin
〉
; Eq. (9) µlin; Eq. (9) E8; Eq. (16)

14
〈
r∗out
〉
; Eq. (10) µout; Eq. (10) E8; Eq. (16)

15
〈
r∗com

〉
; Eq. (11) µcom; Eq. (11) E8; Eq. (16)

16
〈
r∗ale
〉
; Eq. (12) µale; Eq. (12) E8; Eq. (16)

B. We split the individual parameters EIu into sensory related (EIs)
and reward related (EIr):

EIu =
[
EIs,EIr

]
. (22)

C. We made Eu two-dimensional. One component was visual
balance (ub) and the other was visual complexity (uc), making

Eu = [ub, uc] ,

where 0 ≤ ub, uc ≤ 1, as per the definitions elsewhere (Aleem
et al., 2017). Thus, while our model is amenable to a range
of sensory inputs, we simplified it to the visual domain for
illustrative purposes. Accordingly,N = 2 in Equation (11), and
u1 = ub and u2 = uc in Equation (12) and Figure 1.

D. To be compatible with the two-dimensional Eu and so that all
value functions have the same number of free parameters,
we have set the number of free parameters in each model of
reward to two. The models in Equations (10–12) have other
parameters, namely, α1, β1, α2, β2, α3, and β3. However, we
treat them as constants, with values specified in the ‘‘Standard
Simulation Parameters’’ section.

E. We split the second term of Equation (5) as follows:

P
((
Eu, r∗

)
|EIu
)
= P

(
Eu|EIs

)
P
(
r∗|Eu,EIr

)
. (23)

With these simplifications in hand, we followed Aleem et al.
for the sampling of Eu through the first term of the right-hand
side of Equation (23). We also followed them for the subsequent
computation of m̄

(
Eu(t):EIm

)
. For the sake of space, we refer the

reader to their article (see their Equations 12, 13, 18, and 19).
Finally, we must specify how to sample r* through the

second term of the right-hand side of Equation (23). We model
P
(
r∗|Eu,EIr

)
as a Gaussian distribution with one of the means as in

Equations (9–12):

P
(
r∗x |Eu:EIr =

[
Ew(x), Ek =

[
Ek(x), σx

]])
=

1
√
2πσx

e
−

(
r∗−〈r∗x〉

(
Eu:Ew(x) ,Ek(x)

))
2σ2x , (24)

where x ∈ {lin, out, com, ale}, and Ew(x), Ek(x), and σ x > 0 are
constant parameters.

Summary of the Simulation Procedures
The simulations proceed with the following algorithm:

a. Suppose that at time tk, the vector of free parameters is Ew (tk).
b. Sample Eu

(
tk+1

)
=
[
ub
(
tk+1

)
, uc

(
tk+1

)]
from Equation (12) of

Aleem et al. (2020).
c. Sample

〈
r∗x tk+1

〉
from Equation (24), with the definitions of

〈
r∗x
〉

in Equations (9–12).
d. Compute m̄

(
Eu
(
tk+1

)
:EIm
)
from Equation (18) of Aleem et al.

(2020).
e. Compute Ew

(
tk+1

)
from Equation (21).

f. Start the process again at Step a but at time tk+1.

See Aleem et al. (2020) for more details on this algorithm.
All simulations were performed with code specially written

in MATLAB.

Standard Simulation Parameters
In this article, we report on simulations with different parameter
sets to explore the various models. We have designated one of
these sets as our standard set because the corresponding results
capture the data in the literature reasonably well (Aleem et al.,
2020). Table 2 shows the parameters of the standard simulations.
Parameters for other simulations are indicated as appropriate in
the Results (‘‘Results’’ section).

A parameter in this table merits special discussion, namely, ε8
= 0.007454. We chose this value to make the comparison of the
convergence rates of the gradient delta rule and the Phi rule fair.
Changes of Ew in both rules are proportional to δ times a vector
indicating the direction of change. In the delta rule, the vector
is 5wµ whereas in the Phi rule, the vector is E8, with the latter
being a unit vector, while the former possibly having variable
magnitudes. To make the convergence rate fair, we wanted to
make themagnitudes of εδ ×5wµ comparable to themagnitudes
of ε8 × E8. We did so by obtaining the root mean square of the
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TABLE 2 | Standard set of parameters.

Parameter(s) Equation(s) Values

Ew (t0) (21) [0, 0]
εδ (21) 0.01
ε8 (21) 0.007454
tk+1 − tk (21) 1[
Ew(lin), σlin

]
(9) and (24) [0.6, 0.9, 0.1414][

Ew(out),α1,β1, σout
]

(10) and (24) [1.2, 1.8, 10, 1.5, 0.1414][
Ew(com),α21,β21,α22,β22, σcom

]
(11) and (24) [1.2, 1.8, 10, 0.6, 10, 0.9, 0.1414][

Ew(out),α3,β3, σout
]

(12) and (24) [0.6, 1, 0.75, 0.1, 0.1414]

magnitude of εδ × 5wµlin, which is 0.7454, and thus because
εδ = 0.01, we got ε8 = 0.007454.

Statistics to Test the Hypotheses
All analyses comparing these statistics across the stimulated
conditions (Table 1) used one-way ANOVA followed by post-
hoc two-sided t-tests. For each of the Conditions 1–16, we ran
10 repetitions with 1,000,000 iterations each.

The statistics used to test our hypotheses (‘‘Hypotheses Tested
in This Article’’ sections) are summarized in Table 3.

To start the estimation of these statistics, we began
by obtaining the fully motivated value curve obtained for
the most common stimulus, namely, Eu = [ub, uc] = [0.5, 0.5]
(Aleem et al., 2020). This curve was v∗(t) = µ

(
[0.5, 0.5] : Ew(t)

)
[Equation (1)].

From this curve, we first estimated τ c as the number of
iterations needed for v*(t) to reach 90% of the median of
v*(t) during the last 100,000 iterations. Similarly, we used these
100,000 iterations of v*(t) to estimate τ r. This statistic was
important because it determined how many iterations we had
to consider to avoid correlated measurements of the variable
under consideration. We estimated this statistic through the
autocorrelation coefficient (Park, 2018), by measuring when it
decayed to 0.1 and setting that time to τ r. We also tested whether
τ c and τ r were correlated across all the conditions in Table 1.
For this purpose, we used the robust Kendall’s τ correlation
coefficient (Bonett and Wright, 2000).

With τ r in hand, we could proceed to measure the values of
δf and Ewf . To measure these statistics, we obtained the medians
of δ and Ew respectively over the last 2 × τ r iterations of each
simulation. By considering 2× τ r iterations, we could make sure
to have two sets of temporally independent measurements.

Finally, to measure ρq we first obtained the phase diagram of
the free parameters, that is, w2(t) vs. w1(t). As we will see in the
‘‘Results’’ section, we can model the initial portion of this plot in
our simulations as the straight line w2(t) = kw1(t), where k >
0 is a constant, and w1(t), w2(t) > 0 for t > 0. We estimated
this line by robust linear regression, using M-estimation with
Tukey’s biweight function (Rousseeuw and Leroy, 2003) from
all the iterations such that t ≤ τ c. The plot then sometimes
deviated from this line, meandering from it a certain distance. To
measure the deviation from straightness, we used three points:
Ew (t0) (Table 2), Ewf =

[
wf ,1,wf ,2

]
(Table 3), and the point Ew (tn)

in the line w2(t) = kw1(t) that was nearest to Ewf . From these
points, we defined the deviation from straightness as the signed
ratio of the distance from Ewf to Ew (tn) to the distance from

Ew (tn) to Ew (t0). The sign was positive if Ewf was above the line
and negative otherwise. This definition using a signed ratio was
valid because the denominator was always positive with our
simulations. Straightforward calculus and algebra showed

ρ¬ =
wf ,2 − kwf ,1

kwf ,2 + wf ,1
. (25)

Consequently,−∞ ≤ ρ¬ ≤ ∞, with ρ¬ = 0 if and only if Ewf
was on the initial straight line. Highly positive ρ¬ meant that
final aesthetic preferences had a strong bias towards complexity,
whereas highly negative ρ¬ meant a strong balance bias.

To test Hypothesis VI, we ran a one-way ANOVA on each of
the components of Ewf over the 10 repetitions of each condition.

RESULTS

Limitations of the Purely-Linear Conditions
If the brain acquires aesthetic biases through reinforcement
learning, neural circuitries implementing suitable value functions
and update rules are necessary for good performance. We
propose that good value functions and update rules depend on
the statistics of sensory inputs, motivations, and rewards. Here,
we focus on the latter. We do so because learning to predict
rewards is the goal of the learning process. We thus built several
models of reward, one linear and three nonlinear, and tested the
learning performance of four value functions and three types of
update rules (Table 1).

The simplest and thus, the most used combination of
value function and update rule for reinforcement learning in
the brain is purely linear (Conditions 1–4 in Table 1). Is
learning performance with this combination good even when
facing nonlinear reward models? Figure 2 shows the results
of simulations with this combination of value function and
update rule. The figure includes the temporal progression of free
parameters, their phase diagrams, and errors in the prediction
of reward. The simulations are performed for the four types of
reward model studied in this article.

In all the simulations, the free parameters rose rapidly initially
(Figures 2A–D). This rise occurred because these free parameters
correlated positively with reward (Aleem et al., 2020). However,
for some conditions, the fast rise ended and one of the free
parameters started to fall as the other continued to climb
(Figures 2A,C). This apparent competition of free parameters
eventually stopped and the simulations reached steady state.
We will address the reason for this apparent competition in
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TABLE 3 | Statistics used to test the hypotheses.

Symbol Title Hypotheses

τ c Time of convergence I–III and V
τ r Time of recovery from fluctuation errors I–III and V
δf Final regret I–III and V
Ewf Final free parameters of the value function VI
ρ¬ Deviation from straightness IV

the ‘‘Failing Hypotheses: How Stochasticity Helps and Shapes
Learning’’ section. The apparent competition was especially
evident in the phase diagrams (Figure 2E). With apparent
competition, the phase diagram first seemed to rise linearly and
then meandered away from the straight line (see the Linear and
the Aleem et al.’s reward models in Figure 2E).

The apparent competition between the free parameters was
not reflected in the temporal dependence of values. They rose and
reached a steady state without any inflection points (Figure 7 of
Aleem et al. —the results here were similar; data not shown). The
lack-of-inflection point result is not surprising, because as shown
in the ‘‘Update Rules for Value Functions’’ section, although free
parameters do not statistically reach a unique fixed point, values
do (Aleem et al., 2020). Furthermore, the delta rule used in these
simulations tends to minimize value regret in a gradient-decent
manner (‘‘Update Rules for Value Functions’’ section; Appendix:
Minimization of Regret Under Optimal Value Functions and
the Delta Rule). Hence, values monotonically approach optimal
results, even if the free parameters display strange behaviors.

Going back to the temporal plots, we almost always observed
the free parameter of complexity being larger than that of
balance in these simulations (Figures 2A,B,D). This advantage
of complexity was not surprising. We set up the simulations
such that the fixed parameters of complexity made it contribute
more to reward than those of balance (Table 2). However, when
the reward model used the Component–saturation nonlinearity,
the opposite happened and balance won (Figures 2C,E). The
plots of regret provided further evidence of the inadequacy
of the Purely-linear conditions (Figure 2F). Only when the
reward model was linear did the final regret stay near zero. For
all nonlinear reward models, the final regret was significantly
negative (overestimation of reward).

To quantify the performance of the Purely-linear conditions,
we measured the five statistics indicated in Table 3. The first
statistic, regret (δf), indicated the overall error of the estimation
of reward after the learning process had converged. Next, the
time of convergence (τ c), estimated how long the learning
process took to converge. A related statistic was τ r, which
captured how long the learning process took to recover from a
fluctuation error. In turn, the deviation from straightness (ρ¬
captured how directly the learning trajectory went to the final
goal. Finally, we measured with Ewf where the free parameters
converged at the end of the simulation. These results are
summarized in Figure 3.

As expected, the magnitudes of the final regrets were large
when using the Purely-linear strategy with nonlinear reward
models (Figure 3A). These regrets were negative (overestimation
of reward). However, the regrets were not significantly different

from zero for the linear reward model (δf = −0.0001 ± 0.0001;
mean ± standard error). Although the regrets were statistically
different from each other (one-way ANOVA and post-hoc two-
sided t-test), the times of convergence were roughly similar (τ c
≈ 1,400 iterations—Figure 3B). Likewise, the times of recovery
of fluctuation errors were roughly comparable (τ r ≈ 1,200
iterations—Figure 3B). The times of recovery exhibited a strong
positive correlation with the times of convergence across all
the conditions of Table 1 (Figure 3B; Kendall’s τ = 0.93, p <
4 × 10−10). As for deviations from straightness, all but the
Output-saturation reward yielded results significantly different
from zero (Figure 3C). These deviations were positive (advantage
to complexity) or negative (advantage to balance). Interestingly,
the Purely-linear simulations deviated from zero even for the
linear reward model (ρ¬ = 0.084± 0.004; t = 20.0, 9 d. f.,
p< 1× 10−8).

In conclusion, the simulations with the Purely-linear
conditions rule out Hypothesis I (‘‘Hypotheses Tested in
This Article’’ sections). This hypothesis fails because of the
non-zero final regrets observed despite using a linear value
function. We also rule out Hypothesis IV, since the linear value
function yielded curved trajectories for all but the Output-
saturation reward model. Finally, the inversion of complexity
and balance preferences in Figure 2C rules out Hypothesis VII.
On Table 2, the parameters of complexity are larger than those
of balance, making the sensitivity coefficients for the former
larger than for the latter. Therefore, Hypothesis VII would
predict complexity preferences to be always larger than those
for balance.

Simulations With the Mixed-Linear
Conditions
Using a linear value function tends to lead to a poor
learning performance when the reward model is nonlinear
(Figures 2, 3), but does the outcome improve when one
uses the appropriate nonlinear value function? Would
we observe an improvement even if the update rule
continues to be linear? To answer these questions, we
performed the simulations for the Mixed-linear conditions
(Table 1). Figure 4 shows the results of these simulations.
These results are important because they address the
Hypotheses II and III in the ‘‘Hypotheses Tested in This
Article’’ sections.

A comparison of Figure 4 with Figure 2 revealed that the
Purely and Mixed-linear conditions yielded qualitatively, but
not quantitively, similar learning performances. The ordering
of the free-parameter curves (Figures 4A–D) were largely
similar for the two sets of conditions. So were the shapes
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FIGURE 2 | Dynamics of the free parameters of the value function for the purely-linear conditions (Table 1). (A–D) Linear, Output-saturation, Component-saturation,
and Aleem et al.’s reward models respectively. Red and blue lines correspond respectively to free parameters related to balance and complexity in the sensory
inputs. The inset in (A) provides details of the early dynamics (first 10,000 iterations). (E) Phase diagrams. (F) Time dependence of regrets, smoothed with a
500-iterations moving average. This figure indicates that linear value functions and update rules yield poor learning performance when the reward models are
nonlinear. For example, regrets are significantly negative (overestimation of reward) for all nonlinear reward models (Panel F).

of the phase diagrams (Figure 4E) and the regret behaviors
(Figure 4F). This similarity included the surprising ‘‘error’’ in
ordering for the behavior of the Component-saturation curves
(Figure 4C). However, the final free parameters were smaller

for the Saturation reward models and larger for Aleem et al.
in the Mixed-linear conditions. In addition, the magnitudes of
final regrets were smaller. Figure 3A quantifies the improvement
of the final regret for the Aleem reward model. In contrast,
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FIGURE 3 | Statistics of the tested conditions (Table 1). (A) Final regret. (B) Times of convergence and of recovery from fluctuation errors. (C) Deviation from
straightness. (D) Final free parameters of the value functions. each of these statistics was measured 10 times for each of the reward models, with the means and
standard errors displayed. Color bins indicate the different reward models (colors matched to Figures 2E,F). We group the 16 conditions in sets of four according to
the experimental conditions (Table 1). These sets were the purely linear, mixed linear, full gradient, and shortest path. The sets appear twice in Panel (B), for time of
convergence (transparent red) and time of recovery from fluctuation errors (transparent blue). Similarly, the sets appear twice in Panel (D), for balance (transparent
red) and complexity (transparent blue) free parameters. The dotted horizontal lines indicate the parameters of the linear reward models.

both Saturation reward models did not show statistically
significant changes in terms of regret. Surprisingly, however,
the time of convergence became faster for the Saturation
reward models (τ c ≈ 430 iterations) and slower for Aleem
et al. reward τ c = 7,300 ± 100 iterations (Figure 3B). The
times of recovery from fluctuation errors exhibited similar
results (Figure 3B). Finally, the magnitude of deviations
from straightness fell for the Aleem et al.’s reward model
(Figure 3C).

We conclude that Hypothesis II is also not valid. It
fails because the Mixed-linear conditions include the Output-
saturation value function, which yields no improvement in the
final regret. Moreover, we can reject Hypothesis III because the
magnitude of final regret for the Aleem et al. value function is
smaller than for the Linear one. However, the slowness of both
convergence and recovery from fluctuation errors with the Aleem
et al. value function is predicted by the second part of Hypothesis
III. Similarly, the straightness of the trajectory with the Output-
saturation value function supports the second part of Hypothesis
IV. The curvatures with the Component-saturation and Aleem et
al. value functions also do so.

Simulations With the Full-Gradient
Conditions
Why does the Mixed-linear conditions not improve the
performance with the Output and Component-saturation reward

models despite using the appropriate value functions? Is the
failure due to the use of an inappropriate (linear) update
rule? A simple way to answer these questions is to implement
the gradient update fully in the simulations. This is exactly
what the Full-gradient conditions of Table 1 aim to achieve.
The results of the simulations with these conditions appear in
Figure 5.

The learning performances in Figure 5 were like those in
Figure 4. The only apparent changes in Figure 5 were more noise
in the Saturation conditions, and closer final free parameters of
balance and complexity for Component Saturation (Figure 5C).
However, inspection of the statistics in Figure 3 revealed small
but significant improvements with the Full-gradient conditions.
For example, the final regret improved slightly for the Aleem
et al. function from δf = 0.0017 ± 0.0001 to δf = 0.0013 ±
0.0001 (t = 2.26, 18 d. f., p < 0.04). The statistics also revealed
faster times to convergence for the Saturation value functions
(τ c ≈ 40 iterations; t = 4.64, 18 d. f., p < 3 × 10−4 for Output
Saturation). The times of recovery from fluctuation errors again
exhibited similar results. In terms of deviation from straightness,
the notable result was the change of sign for the Aleem et al.
value function. The deviation from straightness changed from
ρ¬ = 0.066± 0.002 to ρ¬ = −0.057± 0.003.

Consequently, employing the appropriate update rules in a
gradient-based delta-rule model helps the learning performance,
but the effects are minor.
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FIGURE 4 | Dynamics of the free parameters of the value function for the Mixed-linear conditions (Table 1). The conventions for this figure are the same as those for
Figure 2. The results here are qualitatively like those in Figure 2, but some significant quantitative differences are readily apparent. The panels and conventions for
this figure are the same as those for Figure 2.

Improved Performance With the
Shortest-Path (Phi Rule) Conditions
Even with the Full-gradient conditions, the learning performance
is still wanting (Figure 3), especially for nonlinear reward
models. Figure 1 provides a possible explanation for the
deficiency of performance based on gradient-based delta rules.

The gradient is taken at the position of the vector of
free parameters. Therefore, the direction of the gradient is
generally blind to the curvatures of the isolines of the value
function (Figures 1C,D). We have then proposed a new
update rule that bypasses this deficiency of the gradient-
based delta rule. If the value function is known, a calculation
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FIGURE 5 | Dynamics of the free parameters of the value function for the full-gradient conditions (Table 1). The conventions for this figure are the same as those for
Figure 2. The results here are qualitatively like those in Figure 4, with only minor quantitative differences being easily observable. The panels and conventions for this
figure are the same as those for Figure 2.

can be performed of the direction minimizing the path
from the vector of free parameters to the target isoline
(Figures 1E,F). We have called this update rule the Shortest-
path or Phi rule (‘‘Update Rules for Value Functions’’ section).
The results of the simulations with this new rule appear in
Figure 6.

Figure 6 shows that the Shortest-path (Phi) update rule
produces superior performance when compared to the Full-
gradient delta rule (Figure 5). The best evidence for the
improved performance is that the magnitudes of final regrets
are smaller with the Phi rule than with the delta rule
(red curves in Figures 5C, 6C). This is confirmed in
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FIGURE 6 | Dynamics of the free parameters of the value function for the shortest-path (Phi Rule) conditions (Table 1). The conventions for this figure are the same
as those for Figure 2. The free-parameter and phase-diagram results here are qualitatively like those in Figure 5, with minor apparent quantitative differences
(Panels A–E). However, although the changes in the free-parameter curves are subtle, the improvement of the regrets are dramatic (Panel F).

Figure 3A, especially for the Saturation conditions. The
magnitude of the deviation from straightness also fell for
the Component-saturation condition (Figure 3C; t = 7.23,
18 d. f., p < 2 × 10−6). Furthermore, this deviation
fell for the Aleem et al. value functions (t = 3.76, 18

d. f., p < 0.002). Finally, the time of convergence fell
for Aleem et al. value function from τ c = 8,900 ± 100
to τ c = 6,290 ± 70 iterations (Figure 3). The time of
recovery from fluctuation errors also exhibited similar results
(Figure 3B).
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In conclusion, the Shortest-path (Phi) rule leads to superior
learning performance as compared to the delta rule. However,
the performance is not perfect. Imperfections include the small
but non-zero regrets, small but significant deviations from
straightness, and the relatively slow convergence and recovery
for the Aleem et al. value function. Hence, the results reject
Hypothesis V that states that the Phi Rule should yield no regret,
and fast convergence and recovery from fluctuation errors.

Non-uniqueness of the Learned Free
Parameters
Hypothesis VI predicts that regardless of the update rule for the
value function, the value reaches a unique fixed point (albeit
only statistically), but the free parameters do not. The reason
for the lack of uniqueness is that many parameter combinations
yield the same value (isolines in Figure 1). To test this non-
uniqueness hypothesis, we have inspected the statistics of the
final free parameters of the simulations. The statistics appear in
Figures 3D, 7, which shows box plots for each of the 10 individual
simulations in some of the conditions in Table 1.

The statistics in Figure 3D initially suggested that at least
for some conditions, the free parameters converged statistically
to a unique fixed point. For example, the linear value function,
which we repeated over the four sets of conditions, yielded
final estimated parameters indistinguishable from those of the
reward function (dotted horizontal lines in Figure 3D). The
estimated value-function parameters for the delta rule (N = 30)
were wf,1 = 0.5999 ± 0.0007 and wf,2 = 0.9005 ± 0.0008. In
turn, the estimated value-function parameters for the Phi rule
(N = 10) were wf,1 = 0.598 ± 0.001 and wf,2 = 0.900 ± 0.001.
These estimated value-function parameters were statistically the
same as the reward parameters, which were Ew(lin) = [0.6, 0.9]
(Table 2).

However, closer inspection of the data reveals that the
free parameters do not converge statistically to a unique fixed
point. Figure 7 illustrates this conclusion with four examples
of conditions in Table 1. (However, the conclusion applies
to all conditions—data not shown). In these examples, we
focus on the final balance free parameter and break down the
results into the 10 simulations that give rise to each bin of
Figure 3D. The first example to comment here is the one
described in the last paragraph). As the Figure 7A shows,
although the final balance free parameter hovers close to 0.6
(≈2.5% variation), the outcomes of the different simulations
are not statistically homogeneous (one-way ANOVA, F = 5,960,
9 numerator d.f., 26,080 denominator d.f. p < 10−15). This
inhomogeneity is not due to autocorrelations of the value
signal (‘‘Statistics to Test the Hypotheses’’ section). In addition,
the inhomogeneity is applicable if one uses the Phi instead
of the delta rule (Figure 7B, ≈1.5% variation, p < 10−15).
Finally, the inhomogeneity remains if the value function is
nonlinear. Figures 7C,D illustrate this latter conclusion for the
Component-saturation value function, using the delta and Phi
rules respectively. The respective variations are approximately
25% and 15%. And the one-way ANOVA tests yield p < 10−15

for both cases.

In closing, we cannot strictly speaking reject Hypothesis VI,
because the free parameters do not converge statistically to a
unique fixed point. However, the breakdown of uniqueness is
less than expected from Figure 1. For example, the variation of
final balance free parameters is small, being less than 2.5% for the
linear value function. The small variation and non-uniqueness of
convergence, leads us to define the concept of region (instead of
point) of convergence.

Failing Hypotheses: How Stochasticity
Helps and Shapes Learning
The sections ‘‘Limitations of the Purely-linear Conditions’’ to
‘‘Non-uniqueness of the Learned Free Parameters’’ sections ruled
out the hypotheses raised in the ‘‘Hypotheses Tested in This
Article’’ sections, except possibly for Hypothesis VI, whose
test nevertheless yielded a surprising result. Why did those
hypotheses fail? In the ‘‘Hypotheses Tested in This Article’’
sections, we mentioned that we formulated the hypotheses by
disregarding the stochastic nature of the learning process. In this
section, we show that the stochasticity of the process has more
effect on the learning outcome than expected.

To understand why stochasticity led to the rejection of all but
one of the hypotheses raised by Figure 1, we dove deeper into
the surviving hypothesis. Although the final free parameters did
not predictably exhibit uniqueness according to Hypothesis VI,
their variation was much less than expected (Figure 7). Why was
the variation so small? To answer this question, consider initially
the linear value function (Figure 1A). The expectation of large
variation of final free parameters was due to every point on the
target isoline giving the same prediction of reward. However,
because we drew the sensory inputs and rewards randomly across
iterations, the slopes and intercepts of the isolines changed.
Consequently, the target isoline changed across iterations. But
the intersections of the target isolines crossed in a small region
around the fixed parameters of the reward model (Figure 8A).
Therefore, the variations of the final free parameters were smaller
than we would expect by only considering the non-stochastic
process (Figure 1A). The same low-variation result applied to
the nonlinear value functions (data not shown). The stochasticity
of the learning process thus helped improve the acquired final
free parameters.

Similarly, the stochasticity helped explain the failure of the
other hypotheses. Hypothesis I failed because of the non-zero
final regrets observed despite using a linear value function when
the reward model was nonlinear (Figures 2F, 3A). Consider for
example the nonlinear Output-saturation model in Figure 1B.
In this model, the contour plot also consisted of parallel straight
isolines. When the learning converged around the right solution,
the stochastic process sometimes took the free parameters
beyond the target isoline and sometimes before it. As shown
in Figure 1B, the gradient was larger before than beyond that
isoline. The larger gradient caused the recovery to be faster for the
former kind of error. Thus, the value overestimated reward on
average, that is, the free parameters spent more time recovering
beyond the target isoline than before it. The consequence was that
when the regret is positive, it stayed so for fewer iterations than
when it was negative (Figure 8B). The regret was thus negative on
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FIGURE 7 | Box plots of the final balance free parameter in each of the simulations of four conditions in Table 1. (A) Full-gradient delta rule with linear value
function. (B) Shortest-path (Phi) rule with linear value function. (C) Full-gradient delta rule with Component-saturation value function. (D) Shortest-path (Phi) rule with
Component-saturation value function. Each box plot contains the 10 simulations of the indicated condition. On each box, the central mark is the median, and the
edges of the box are the 25th and 75th percentiles. The whiskers are extended to the most extreme data points that are not considered outliers, with those being
plotted individually using red “+” symbols. Box plots include notches for the comparison of the median values. Two medians are significantly different at the 5%
significance level if their intervals, represented by notches, do not overlap. In all these four examples, the median final balance free parameters varied significantly
across the simulations.

average (Figures 2F, 3A). Similar regret reasons helped explain
why Hypotheses II, III, and V failed (details not discussed here
for the sake of brevity).

Stochasticity also explained why we could reject Hypothesis
IV. We ruled it out because the linear value function yielded
curved trajectories for all but the Output-saturation reward
model (Figure 2E). An initial hypothesis for what caused these
curved trajectories was the motivation function Equation (1).
Aleem et al. (2020) showed that making this function a constant
eliminated the curved trajectory in their model. However, their
model corresponded only to Condition four in Table 1, so
we could not be sure that their result would apply to all the
conditions in Figure 2E. When we probed this possibility by
setting the motivation to a constant, we generally did not
eliminate the curvatures of the trajectories in that figure. The only
exception was for the Aleem et al.’s reward model (Figure 8C).

Further investigation revealed that the reason for the
curvatures was due to something more fundamental and again,
related to the stochasticity of the learning process. The argument

explaining the reason was mathematical. Taking the mean-field
approximation of Equation (19) (Chaikin and Lubensky, 2007)
and neglecting the probabilistic variations of m (because it does
not matter for the curvatures) we get

dEw(t)
dt
= εδm

(〈
r∗(t)∇wµ

(
Eu(t):Ew(t)

) 〉
r∗ ,Eu

−
〈
µ
(
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)
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(
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,
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−
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)
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(
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)
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The term inside the parenthesis in this equation is the
subtraction of two averages over r* and Eu. These averages are like
those in Equation (17), using the sampling of r* and Eu at every
t. Consider the situation in which the value µ

(
Eu(t):Ew(t)

)
is a

poor predictor of the reward r*(t). If the value underestimates the
reward grossly, then the first average dominates the dynamics.
If instead the value overestimates the reward grossly, then the
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FIGURE 8 | Explanations for the failures of the hypotheses in the “Hypotheses Tested in This Article” sections. (A) First 200 target isolines in the simulations of
Figure 7A. The red star indicates the parameters of the model of reward (Table 2). The red star lies in the middle of the small region defined by the intersection of the
target isolines. (B) Distribution of the number of consecutive iterations spent before (blue) and beyond (red) the target isolines in the last 100,000 iterations of the
simulations of Figure 2B. The free parameters take longer to recover when they are beyond the target isoline than after it. (C) Phase diagram similar to Figure 2E
but with the motivation function set to 1. The phase diagrams continue to exhibit curvatures, except possibly for that with the Aleem et al.’s reward model.
(D) Comparison of 100 consecutive iterations (iteration 1,401 to iteration 1,500) with the linear (Figure 2A) and Component-saturation (Figure 2C) rewards models.
The results with the Linear model (red dots) exhibit little correlation between δ and the direction of Eµ. But a strong, complex correlation is evident for the
Component-saturation model (blue).

second average dominates. Either way, the dominance gives rise
to the initial, straight trajectory of the simulations (Figures 2E,
4E, 5E, 6E). When the simulations approach the region of
convergence, both averages begin to contribute simultaneously
to the slower, more random trajectory. Now, the first but not the
second average depend on the statistics of r*. Hence, the initial
and final trajectories are generally in different directions, giving
rise to the curvatures.

Finally, stochasticity was also at the core of why Hypothesis
VII failed. The inversion of complexity and balance free
parameters in Figures 2C, 4C, 5C, 6C ruled out Hypothesis
VII. For this inversion to occur, the right-hand side of Equation
(4) had to push the balance free parameters upward faster
than the complexity ones. The function δ in Equation (4) was
identical for the balance and complexity components of the
vector Ew. Similarly, ∇wµ

(
Eu(t):Ew(t)

)
did not depend on reward

and thus, could not differentiate the importance of balance and

complexity. Consequently, because ∇wµ
(
Eu(t):Ew(t)

)
depended

only on Eu, the explanation for why the balance free parameter
grewmore than the complexity one had to rely on the correlation
between δ and Eu. Did certain directions of Eu coincide with
larger δ? Figure 8D demonstrated the correlation between δ

and Eu with a sector of 100 points in the simulation giving
rise to Figures 2A,C (This sector was from Iteration 1,401 to
Iteration 1,500, but other sectors and other Computer Saturation
simulations yielded similar results). The δ in the simulations
with the Linear reward model was not strongly correlated with
the direction of Eu. However, the Component-saturation model
yielded larger positive δ than the Linear model at low angles of
Eu (closer to the balance axis). Moreover, for the most part, the
Component-saturation model yielded negative δ, specially at the
larger angles, that is, closer to complexity. Therefore, Figure 8D
confirmed the correlation between δ and Eu. This correlation was
such that the Component-saturation model yielded statistically
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larger balance free parameters than complexity ones. Details of
why the Component-saturation model exhibited the correlation
seen in Figure 8D had to do with the specific shape of the
nonlinearity and the statistics of Eu. We left these details out of
this paper for the sake of brevity.

DISCUSSION

An increasingly large number of neuroimaging studies have
allowed us to begin understanding the basic neural circuitries
underlying the computation of aesthetic biases in the brain
(Brown et al., 2011). These circuitries are suggestive of
computational mechanisms for the learning of these biases
as a set of decision values. Their acquisition would take the
form of reinforcement learning gated by internal mechanisms
of motivation. Accordingly, a recent theoretical framework for
the learning of aesthetic biases followed these computational
mechanisms (Aleem et al., 2019, 2020). A model based on that
framework could account for interesting features of human
aesthetic biases. These features included individuality (Nelson
and Morrison, 2005; Brown and Dissanayake, 2009; Silvia et al.,
2009), cultural predispositions (Masuda et al., 2008; Park and
Huang, 2010; Senzaki et al., 2014), stochastic dynamics of
learning and aesthetic biases (Grzywacz and de Juan, 2003;
Pouget et al., 2013; Aleem et al., 2020), and the peak-shift effect
(Ramachandran and Hirstein, 1999; Costa and Corazza, 2006;
Aleem et al., 2020). However, despite the success in explaining
these features, a potential major weakness of the model in Aleem
et al. (2020) was the linearity of the value function used to
predict reward. Such an assumption of linearity is often made
in reinforcement-learning models of brain function (Kaelbling
et al., 1996; Sutton and Barto, 2018). In this research, we probe
what would mean to relax this assumption. In this section, we
discuss the effect of relaxing linearity on regret (‘‘Minimization
of Regret’’ section), learning rate (‘‘Efficiency of Learning’’ and
‘‘Phi Versus Delta Rules’’ sections), and qualitative errors (‘‘Does
the Brain Use Ecological Value Functions?’’ section).

Minimization of Regret
The learning performance exhibited significant regret (error)
when using a linear value function to try to predict rewards
arising from a nonlinear model. Others have proposed nonlinear
value functions (Chung et al., 2018), methods to deal these
functions (Xu et al., 2007; Gu et al., 2016; Osband et al.,
2016), or their approximators (Tesauro, 2005; Kober et al., 2013;
Mahadevan et al., 2013). Here, we attempted to develop optimal
nonlinear value functions. The result was exciting because it told
us that the optimal nonlinear value function related directly to
the statistics of reward in a predictable manner [Equation (8)].
However, incorporating the optimal nonlinear value function
helped with some nonlinear reward models but not others. We
had expected better performance with these value functions when
using the delta rule. Our expectation was due to themathematical
demonstration of theminimization of regret, even with nonlinear
value functions. How did we explain this unmet expectation?
The expectation of optimization came from a process of gradient
descent implemented by the delta rule (Sutton and Barto, 2018).

That the regret did not go to zero could have meant that
a local minimum different from the global one trapped the
gradient descent (Beck, 2017). Such traps might occur for some
nonlinearities but not others.

However, the specific type of stochasticity in our models
made it unlikely that their learning processes normally stopped
at local minima. The stochastic mechanism arising from
the probabilistic sampling of sensory stimuli, rewards, and
motivations caused the target isolines to vary. The variation
likely helped the free parameters to approach their optimal values
(Figures 7A,C). This is not surprising because stochasticity often
helps optimization processes (Metropolis et al., 1953; Kirkpatrick
et al., 1983; Spall, 2003). But for our models, the interaction
between stochasticity and the nonlinearities could also cause
important errors. Even if the simulation succeeded in reaching
exactly a target isoline, the next instant would produce a new
one. At this new instant, the vector of free parameters could be
before or beyond the new target isoline. The rate of recovery
in these two conditions were different because of the model
nonlinearity. Consequently, on average, the solution was not
optimal, because of the interaction between stochasticity and the
nonlinearities of the models. Errors of various forms of stochastic
optimization have been described in other studies (Ingber, 1993;
Shen et al., 2020). For example, errors could arise if the sampling
were not truly stochastic. This could happen to some degree
if predictions based on prior learning or motivational factors
affected the sampling (Janis and Mann, 1977; Frey, 1986; Schulz-
Hardt et al., 2000).

On the other hand, if the learning process occasionally
stopped at local minima because of nonlinearities of value
functions, it might explain a surprising result from the history of
art. An analysis of the statistics of art across the Renaissance and
Baroque revealed phase transitions in some measures (Correa-
Herran et al., 2020). Another such abrupt transition was observed
in a study of the changes in fractal dimension and Shannon
entropy in Western paintings (Mather, 2018). The discussion by
Correa-Herran et al. (2020) pointed out the essential components
of such phase transitions. These components had to be nonlinear
interactions between the basic components of a system, which
was under the influence of changing external conditions. Correa-
Herran et al. (2020) proposed that the basic elements were the
values associated with different aesthetic variables. Hence, our
proposed use of nonlinear value functions is compatible with the
ideas of Correa-Herran et al. (2020). Following their proposal,
our nonlinear value functions would generate nonlinear mutual
influence between artists learning from each other (Aleem et al.,
2019; Correa-Herran et al., 2020). In turn, according to Correa-
Herran et al. (2020), the changing external conditions were
due to the social pressure to innovate (Barnett, 1953). Such a
pressure could come from the desire to increase realism during
the Renaissance (Janson et al., 1997). More pressure came from
the competition among artists to gain the favor of patrons
(Chambers, 1970).

Efficiency of Learning
An implication of the delta rule is that it tends to maximize
the rate of learning convergence for the linear value function
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(Aleem et al., 2020). Under these conditions, the rate of
recovery from fluctuation errors after convergence is also
maximal. Therefore, these conditions should implement a
highly efficient learning process, albeit with some caveats
(Zomaya, 2006; Sutton and Barto, 2018). In contrast, for
nonlinear value functions, the delta rule is not expected to
lead to efficient learning in general (‘‘Hypotheses Tested in
This Article’’ sections). We thus expected the nonlinear value
functions to lead to relatively slow convergence and recovery
with the Full-gradient conditions. This expectation did not
materialize for the Saturation conditions. We also expected
the Shortest-path Phi rule to overcome these deficiencies
of the gradient-based delta rule. The Phi rule does so by
going directly to the optimal point on the target isoline.
But again, this expectation for the Phi rule failed for the
Saturation conditions.

How can we explain the failures of the expectations for
efficiency of the learning rates of convergence and recovery?
Here, we will focus on the time of convergence because
its strong correlation with the time of recovery makes the
answers similar. As discussed after Equation (26), the time
of convergence is dominated by two factors: First, we must
consider how far the free parameters must travel to reach
the slower, more stochastic portion of the learning trajectory.
This phase of the trajectory is reached when the two averages
in Equation (26) become similar. Second, we must consider
the speed of movement of the free parameters during the
early, ‘‘straight’’ portion of the trajectory. This speed depends
on the largest average of Equation (26). Hence, three factors
may influence this speed. They are the gradient of the value
function, the distance from the nearest point on the target
isoline, and the correlation between reward and the direction
of the vector of motion. Because these factors vary across value
functions, the factors modulate the different efficiencies of the
learning rates.

These two factors explain the various apparent efficiencies
of the time of convergence. For example, the short phase-
diagram trajectories of the Saturation conditions explain their
fast convergence. In contrast, the long trajectories for the Linear
and Aleem et al. conditions help explain their slow convergence.
However, for these conditions, the speed of movement of the
vector of free parameters during the early, ‘‘straight’’ portion of
the trajectory alsomatters. The phase-diagram trajectories for the
Linear and Aleem et al. conditions are almost as long. But the
latter converges much more slowly than the former. This slow
convergence for the Phi rule provides further evidence against
Hypothesis V (‘‘Hypotheses Tested in this Article’’ and ‘‘Failing
Hypotheses: How Stochasticity Helps and Shapes Learning’’
sections).

Phi vs. Delta Rules
The importance of the delta rule arguably derives from its
simplicity of implementation, low computational cost, and
differential-equation form (Widrow and Hoff, 1960; Stone,
1986). However, we argue here that the delta rule may do
poorly when applied to some nonlinear value functions. In those
situations, the gradient used in the rule has a non-optimal

direction (Figures 1C,D). Alternatives could include gradient-
free algorithms, but they do not tend to have the simple
and differential forms (Kirkpatrick et al., 1983; Kennedy and
Eberhart, 2001; Conn et al., 2009; Mockus, 2012). We thus
proposed an alternate differential-equation-based rule that
overcomes this deficiency. The new rule (called Phi or Shortest
Path) does not estimate the direction of descent based on
the gradient at the location of the vector of free parameters.
Instead, the new rule uses holistic knowledge of the nonlinear
value function to set the direction toward the optimal point
on the target isoline. This holistic rule leads to better regret
performance. Furthermore, because of its differential form,
the Phi rule allows for a simple implementation as the
delta rule.

However, the Phi rule has an important disadvantage when
compared to the delta rule. The holistic implementation of the
Phi rule is bound to make it computationally expensive and
consequently, slow. In our implementations, the simulations
with the Phi rule conditions were about five times slower
that those with the delta rule. But we did not attempt to
optimize our implementation of the Phi rule. The main step in
such an optimization would be to find efficient algorithms to
obtain the isolines of the value function. We used a standard
implementation of the Marching Squares algorithm (Maple,
2003), but faster versions exist (Ho et al., 2005; Garrido et al.,
2006). We also applied the algorithm to a 101 × 101 pixels
approximation of the value function and perhaps a coarser
approximation would be enough. In addition, we could have used
other algorithms that are faster for isoline calculations (Yanchang
and Junde, 2001). Finally, the holistic isoline computation
is parallelizable (Selikhov, 1997; Belikov and Semenov, 2000;
Huang, 2001; Dong et al., 2011), making it imminently efficient
for brain-network computations.

Does the Brain Implement Nonlinear Value
Functions?
The brain has been often argued to linearize what would
otherwise be nonlinear input dependencies (Yu and Lewis, 1989;
Bernander et al., 1994; Ermentrout, 1998). Such linearization
would allow the brain to map conceptual or perceptual
dimensions using linear functions. For example, Naselaris et al.
(2011) performed successful neuroimaging on many conceptual
and perceptual dimensions often assuming such linearization.
These authors’ results on linearization have been confirmed
by other studies (Qiao et al., 2019). Moreover, linear value
functions account for some forms of reinforcement learning in
the basal ganglia (Schultz et al., 1997; Hollerman and Schultz,
1998; Schultz, 2015; Sutton and Barto, 2018). Hence, such value
functions may sometimes provide a simpler, suitable model for
neurobiological or psychological value updating than the models
considered in this article.

However, two lines of argument suggest that this linearization
argument is only an approximation that is not always valid. The
first line is that some of the results above have been disputed. For
example, the compressive spatial summation in human cortex
(Kay et al., 2013) has challenged the unchecked applicability
of the Naselaris et al.’s (2011) conclusions. This challenge is
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compatible with the neural representation of stimulus features
becoming increasingly nonlinear as one moves along the sensory
pathway (Holdgraf et al., 2017). Further limitation of assuming
linearization is the nonlinear processing at high-in-the-hierarchy
levels of the brain (Andrzejak et al., 2001; Faure and Korn, 2001;
Freeman and Vitiello, 2006; Afraimovich et al., 2011). Finally,
although some linear models for reinforcement learning in the
basal ganglia are good enough, this process is decidedly nonlinear
(Frank and Claus, 2006; Hsu et al., 2009; Niv et al., 2012).

Even more important is the argument that many empirically
determined value functions in the brain are often nonlinear. An
example for this argument in the visual domain comes from
psychophysical studies of preference for complexity. The visual-
complexity value function in humans is highly nonlinear, lying
on an inverted ‘‘U’’ curve, with people liking moderate amounts
of complexity (Berlyne, 1971; Aitken, 1974; Nicki and Moss,
1975; Saklofske, 1975; Imamoglu, 2000). Another nonlinear
value function for the human visual system is indicated by
the saturation relationship between preference and the number
of the axes of symmetry in an image (Wu and Chen, 2020).
Examples of nonlinear value functions in non-visual sensory
modalities also exist. In the auditory system, for instance, the
preference for a piece of music is a saturating function of
the familiarity with the piece (Szpunar et al., 2004). Relatedly,
preference for music has a U-shape dependence on harmonic
surprise (Miles, 2018). And even when one leaves the pure
sensory domain into social value, value functions are nonlinear.
For example, the tendency of humans to adjust values to
social conformity by reinforcement learning has a nonlinear
dependence on mean social value (Klucharev et al., 2009).

The implications of the brain employing nonlinear value
functions in many situations is important. As stated above,
using linear value functions would often be good enough.
The learning process would always converge because even
if the brain erroneously assumes a linear value function,
the process minimizes a positive functional (Aleem et al.,
2020). And the convergence can occasionally be faster for
erroneous linear value functions than for correct nonlinear
ones. However, the price that the brain would be pay is
large systematic regrets with erroneous linear value functions.
Some degree of regret is unavoidable in the learning of
aesthetic value because of the stochasticity of the process.
But our results show that the brain can minimize regret
in a statistical sense by choosing the appropriate value
function. Therefore, by choosing to implement nonlinear
value functions in many situations, the brain seems to
be prioritizing the minimization of regret over the ease
of computation.

Does the Brain Use Ecological Value
Functions?
Because the Phi rule requires holistic knowledge of the value
function, one must ask how would the brain know what the
value function is. An answer to this question is that the brain
has a bank of socially and ecologically important value functions.
Another answer is that the brain uses a single, multidimensional
value function, capturing social and ecological values. The

brain may develop such value functions through evolutionary
pressure. This proposal echoes ecological and evolutionary
ideas for sensory function (Field, 1987; Atick and Redlich,
1992; Grzywacz and de Juan, 2003). Alternatively, the brain
could build ecological value functions through developmental
and learning mechanisms. Again, this would be akin to the
developmental models for optimal receptive fields in the sensory
systems of the brain (MacKay and Miller, 1990; Miller, 1994;
Burgi and Grzywacz, 1998). And this would be akin to
learning new brain representations for familiar objects in adult
life (Tarr, 1995; Weinberger, 1995; Booth and Rolls, 1998).
Thus, if variables like balance, complexity, and symmetry have
evolutionary importance, then the brain would develop dedicated
circuitry, facilitating their computation and assignment of
value. Such a dedicated circuitry would make sense because
the optimal value function depends directly on the external
statistics of reward [Equation (8)]. This link between the ease
of dedicated computation and aesthetic value is the premise
of the Processing Fluency theory (Reber et al., 2004; Aleem
et al., 2017; Correa-Herran et al., 2020). The work here and
elsewhere suggests that humans learn individually to weigh the
various parameters of the ecological value functions (Aleem
et al., 2019, 2020). This conclusion suggests that studying
the statistics of reward may be as important as investigating
the statistics of natural stimuli (Field, 1987; Ruderman and
Bialek, 1994; Balboa et al., 2001; Balboa and Grzywacz,
2003).

However, the hypothetical use of ecological value functions
implies a couple of limitations in the computation of aesthetic
biases. One limitation would be the inability to learn new
values outside the set provided by ecological pressures. The
alternative would be to use general value functions that could
capture both the ecological ones and some that may not
be ecological. Examples of such general value functions were
introduced elsewhere (Konidaris and Osentoski, 2008; Sutton
et al., 2011; Schaul et al., 2015). Another limitation of using
just ecological value functions is the error that they would
make when a sensory stimulus does not fit their expectations.
Using the wrong value function increases the magnitude of
regret in the learning process. However, even when the value
functions are right and optimal, quantitative and qualitative
errors do occur. Errors like these and others are observed after
reinforcement learning in the brain (O’Reilly and McClelland,
1994; Clouse, 1997; Niv, 2009; Gold et al., 2012; Dabney et al.,
2020). Therefore, these kinds of errors may be unavoidable.
The best that one can hope is to make important errors as
small as possible. The important errors are not those of free
parameters but of value, that is, of the estimation of reward.
Value functions and update rules optimized for social and
ecological constraints may thus be ideal for the learning of
aesthetic biases.
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APPENDICES

Optimal Value Function
Claim 1
The expected least-squares error of the prediction of fully
motivated reward by Equations (1–3), (5) and (6) isminimized by

µopt

(
Eu:Ew, Ek

)
=
〈
r∗
〉 (
Eu:EIu =

[
Ew, Ek

])
, (27)

where 〈r∗〉
(
Eu:EIu =

[
Ew, Ek

])
indicates the mean of r* given the

sampled sensory inputs, and the free (Ew) and constant (Ek)
parameters of the value function.

Proof
We start from the expected least-squares error in Equation (8),
namely,

E =
∫∫∫
Eu,r∗ ,m

P(Eu, r∗)P
(
m|Eu

) (
m
(
µ(Eu)− r∗

))2, (28)

where we drop both the dependence on t and the parameters for
the sake of conciseness. This equation indicates that the error is
a functional of µ

(
Eu(t)

)
. To calculate the optimal function, we fix

Eu (t) and calculate

µopt
(
Eu
)
= argminµ∗

∫∫
r∗ ,m

P
(
r∗|Eu

)
P
(
m|Eu

) (
m(µ∗ − r∗)

)2. (29)

To find this minimum, we differentiate the integrals byµ* and
set the result to 0, yielding∫∫

r∗ ,m
P
(
r∗|Eu

)
P
(
m|Eu

)
m2 (µopt − r∗

)
= 0,

µopt〈m2
〉
(
Eu
)
− 〈r∗〉

(
Eu
)
〈m2
〉
(
Eu
)
= 0,

where 〈 〉 (Eu) indicates average given Eu . This last equation proves
our claim.

Comments on Claim 1
• The implication of Equation (27) is to tell us the optimal value
function in the least-squares sense.
• Consequently, to find out what this function is, onemust know
the statistics of reward given the sensory stimuli.
• This conclusion suggests that studying the statistics of reward
may be as important as investigating the statistics of natural
stimuli.

Minimization of Regret Under Optimal
Value Functions and the Delta Rule
Claim 2
If for every τ there is a t > τ such thatm(t)> 0, then the learning
process minimizes

E
(
Ew
)
=

〈
m(t)

(
r∗(t)− µ

(
Eu(t):Ew(t)

))2〉
t
, (30)

where 〈 〉t stands for time average.

Proof
The gradient of E with respect to the components of Ew obeys

∇wE
(
Ew
)
∝ −

〈
m(t)

(
r∗(t)− µ

(
Eu(t):Ew(t)

))
∇wµ

(
Eu(t):Ew(t)

)〉
t ,

∇wE
(
Ew
)
∝ −

〈
r(t)− v(t)∇wµ

(
Eu(t):Ew(t)

)〉
t ,

or
∇wE

(
Ew
)
∝ −〈δ(t)∇wµ(Eu(t):Ew(t))〉t , (31)

Hence, the process governed by Equation (4) minimizes E
(
Ew
)

by performing a gradient descent (Strutz, 2016).

Comments on Claim 2
• The minimization of E

(
Ew
)
with respect to the components

of Ew in Equation (30) implies that µ
(
Eu (t) :Ew (t)

)
becomes statistically close to r*(t). Equivalently,
v (t) = m (t) µ

(
Eu (t) :Ew (t)

)
becomes statistically close to

r(t) = m(t) r*(t). Therefore, the process optimizes value by
making it as close as possible to reward.
• However, ν(t) may not converge exactly to r(t); ‘‘Minimization
of Regret’’ section.
• The requirement that for every τ there is a t > τ such that
m(t)> 0 is necessary to give the process enough time to reach
optimization. If m(t) = 0 for every t > τ , then the learning
process freezes after τ as shown by Equations (1–4).

Perpendicularity Condition Under the Phi
Rule
Claim 3
If one uses the Phi rule [Equations (13–16)] to update
reinforcement learning, then Equation (18) holds.

Proof
The Phi rule calls for finding the point in the target isoline (Ewopt)
that is closest to the vector of free parameters (Ew). We do this
by using the Lagrange-multiplier method (Bertsekas, 1982). We
thus build the Lagrangian function

L
(
Ewopt , λ

)
=
(
Ewopt − Ew

)2
− λ

(
µ
(
Eu:Ew

)
− r∗

)
, (32)

where the first term of the right-hand side is the square of
the distance between Ewopt and Ew, and the second term is
the constraint of the target isoline (µ

(
Eu:Ew

)
− r∗ = 0) times

the multiplier λ. To minimize the distance, we must find the
minimum of the Lagrangian function with respect to both Ewopt
and λ. We find this minimum by calculating the respective partial
derivatives and setting them to zero:

∇EwoptL
(
Ewopt , λ

)
= 2

(
Ewopt − Ew

)
− λ∇Ewoptµ

(
Eu:Ew

)
= 0,

∇λL
(
Ewopt , λ

)
= r∗ − µ

(
Eu:Ew

)
= 0,

which yields

Ewopt − Ew =
λ

2
∇Ewoptµ

(
Eu:Ew

)
, (33)

µ
(
Eu:Ew

)
= r∗. (34)

These equations prove our claim.
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Comments on Claim 3
• The meaning of Equations (33) and (34) is straightforward:
Begin with the target isoline [Equation (34)] and find the
points in it whose gradients are parallel to the line connecting
Ew to Ewopt .

• These gradients are perpendicular to the isoline. Hence, we
must calculate the directions perpendicular to the target isoline
and find those that are parallel to the line connecting Ew to Ewopt .
• Sometimes, we may have multiple such directions, but this
situation is rare.
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