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Background: The beneficial effects of both single-session bouts of aerobic exercise
and therapeutic exercise interventions on the cortical regions associated with top-down
attentional control [i.e., prefrontal cortex (PFC)] have been well documented. However,
it remains unclear whether aerobic exercise can be used to buffer against suppressive
influences on the dorsolateral PFC (dlPFC).

Objective: The current study sought to determine whether a single session of moderate
intensity aerobic exercise can offset the expected suppressive effects of continuous
theta burst stimulation (cTBS) targeting the dorsolateral prefrontal cortex (dlPFC).

Methods: Twenty-two right-handed participants (aged 19–30) completed a 20-minute
movement-only control session [10% heart rate reserve (HRR)] and moderate intensity
(50% HRR) exercise in a counterbalanced order. Following each exercise session,
participants received active cTBS to the left dlPFC. Changes in executive functions were
quantified using a Flanker paradigm employed at baseline, post-exercise and post-cTBS
time points. Additionally, EEG was used to measure changes in event-related potential
components related to inhibitory control (i.e., N2) and attentional control (i.e., P3) during
the flanker task.

Results: Behavioral results from the flanker task revealed a significant improvement in
task performance following an acute bout of moderate intensity exercise. Furthermore,
the effect of cTBS in both the movement-only control and moderate intensity conditions
were non-significant. Similarly, EEG data from P3b and N2 ERP components revealed no
changes to amplitude across time and condition. P3b latency data revealed a significant
effect of time in both the moderate intensity and movement-only conditions, such that
P3b latencies were significantly shorter across time points. Latency data within the N2
ERP component revealed no significant interactions or main effects.

Conclusion: The findings of the current study provide tentative support for the
hypothesis that both moderate and light intensity exercise promote cortical buffering
against the suppressive effects of cTBS targeting the dlPFC. However, in the
absence of a no-movement control, a lack of expected suppressive effects of cTBS
cannot be ruled out.

Keywords: TBS, rTMS (repetitive transcranial magnetic stimulation), exercise, DLPFC (dorsolateral prefrontal
cortex), cortex, health
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INTRODUCTION

Across the lifespan, executive functions are a robust predictor
of several psychosocial, intellectual, and health-related outcomes,
including academic performance, adherence to health protective
behaviors, and substance use and abuse (Romer et al., 2009;
Moffitt et al., 2011; Kim and Lee, 2011; Papsideris et al., 2020).
Indeed, the consistent implementation of everyday behaviors,
such as dietary self-regulation, medication adherence, and
academic performance (Insel et al., 2006; Diamond, 2013; Lowe
et al., 2018a), are typically thought to be dependent on executive
functions, and by extension the underlying cortical substrates
(i.e., the prefrontal cortex). Although executive functions are
relatively stable within individuals, several naturally occurring
variables can induce state-like fluctuations in prefrontal cortical
activity, leading to discernable reductions in cognitive control.
These modulators include, but are not limited to; sleep
restriction, acute stress, and alcohol intoxication (Arnsten, 2009;
Brondel et al., 2010; Marinkovic et al., 2012; Schulte et al.,
2012; Lowe et al., 2017). Overtime, these fluctuations can have
a profound impact on individual and societal health and well-
being, highlighting the need for targeted interventions aimed at
offsetting state-like fluctuations in executive control.

Broadly conceived, the term “executive function” is used to
denote a set of higher order cognitive processes that play a critical
role in top-down control and goal-directed behaviors (Baddeley,
1996; Miyake et al., 2000); these processes are distinguishable
from other crystalized forms of mental activity. Constituent
regions within the executive control network, including the
prefrontal cortex (PFC), posterior parietal cortex, inferior frontal
junction, and anterior insula comprise the neuroanatomical
regions typically associated with executive functioning (Miller,
2000; Miller and Cohen, 2001; Yuan and Raz, 2004; Derfuss
et al., 2005; Alvarez and Emory, 2006; Niendam et al., 2012;
Hutchison and Morton, 2016). Within this network, the PFC,
particularly the dorsolateral prefrontal cortex (dlPFC), is thought
to be a neuroanatomical region that is strongly implicated in
executive function. Hemispheric lateralization within the PFC
is thought to contribute to distinct facets of response inhibition
and working memory (Barbey et al., 2013). Specifically, left
hemisphere activation is often associated with tasks involving
the top-down control of attentional tasks (Vanderhasselt et al.,
2009), and verbal working memory demands (Wager and Smith,
2003), whereas motor response inhibition (Aron et al., 2014),
visual-spatial working memory (Smith et al., 1996; Reuter-
Lorenz et al., 2000) and macro-adjustments of cognitive control
(Vanderhasselt et al., 2009) appear to be more dependent on right
hemisphere activation.

Given the association between dlPFC functionality and
executive functions, targeted interventions aimed at enhancing
dlPFC functionality can potentially support and maintain
optimal performance. Such interventions may be especially
pertinent in reducing the impact of acute modulators on
executive control. Along these lines, a growing body of evidence
has demonstrated that both long-term randomized interventions
and acute bouts of aerobic exercise can improve executive
function task performance (Smith et al., 2010; Chang et al., 2012b;

Chaddock-Heyman et al., 2013; Ludyga et al., 2016). These effects
are observed following as little as 20 min of moderate intensity
aerobic exercise, with the largest effects being observed 11-20 min
post-exercise (Chang et al., 2012a); effects remain apparent for up
to 50 min post-exercise (Joyce et al., 2009).

Although, a general improvement in cognitive functioning
is observed following acute bouts of aerobic activity, the
largest effects are observed on measures of executive functions
(McMorris and Hale, 2012), indicating that executive functions
may be the most sensitive to exercise-induced improvements
in neurocognitive functioning. Within the acute exercise and
executive function literature, the majority of studies have focused
on the behavioral inhibition subcomponent. Collectively, these
studies have demonstrated that a bout of acute aerobic exercise
can improve task performance on measures of inhibitory control
in children, young adults and older adults (Kamijo et al., 2009;
Barella et al., 2010; Yanagisawa et al., 2010; Chang et al., 2011,
2012b, 2015; Hyodo et al., 2012, 2016; Lowe et al., 2014, 2016,
2017; Samani and Heath, 2018). Taken together, the available
evidence suggests that acute bouts of aerobic exercise can
facilitate improvements in inhibitory control.

The incorporation of neuroimaging and neurophysiological
methods into exercise studies have provided important insight
into the neural processes underlying the observed exercise-
induced enhancements in executive functions. For instance,
fMRI studies have demonstrated that higher levels of fitness
are associated with larger hippocampal volumes, and as a result
superior relational memory (Chaddock-Heyman et al., 2010).
Additionally, increased resting state functional connectivity
between the dlPFC and superior parietal gyrus is observed
following aerobic exercise (Prehn et al., 2017). Further,
Electrophysiological studies, have demonstrated that the latency
and amplitude of the P3b and N2 event related potential (ERP)
components are especially sensitive to aerobic exercise protocols.
While the P3b is typically regarded as reflecting the allocation of
attention resources, the N2 is more often regarded as a measure
of conflict monitoring and response inhibition (Polich, 2007;
Folstein and Van Petten, 2008). More specifically, the P3b is
an endogenous component generated by an anatomically diffuse
network of cortical and subcortical structures. This component is
thought to reflect the neural processes underlying several higher
cognitive functions typically engaged during executive control
tasks (e.g., inhibition, working memory, attention, and stimulus
processing; Polich, 2007). The amplitude of the P3b is thought to
reflect the neural or attentional resources afforded to a given task
or stimulus, whereas, the latency is thought to reflect processing
speed (Polich, 2007).

The functionally distinct N2 component is commonly
observed in conjunction with the P3b (Folstein and Van Petten,
2008). The N2 is a frontocentral component thought to be
generated by medial-frontal and latero-frontal neuroanatomical
regions (Karch et al., 2010). The N2 amplitudes are thought to
represent the capacity to respond to errors and otherwise exert
cognitive control during the early stages of response inhibition
(Veen and Carter, 2002; Folstein and Van Petten, 2008; Tillman
and Wiens, 2011). Thus, the N2 amplitude is larger (i.e., more
negative) when an individual exerts inhibitory control (e.g., for
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incongruent compared to congruent trials; Kopp et al., 1996; Heil
et al., 2000; Yeung et al., 2004; Bartholow et al., 2005; Tillman and
Wiens, 2011).

Across a variety of cognitive tasks, greater amounts of
physical activity are associated with larger P3b amplitudes
and shorter latencies, indicating that the habitual engagement
in physical activity has beneficial effects on neurocognitive
functioning that manifests as increased attentional control
and faster processing speeds (Polich and Lardon, 1997;
Hillman et al., 2004, 2005; Pontifex et al., 2009). Such
physical activity-related modulation of cortical functionality is
substantially larger for cognitive measures requiring greater
amounts of executive control (Hillman et al., 2006). Similarly,
exercise-induced enhancements in the P3b amplitude (Hillman
et al., 2003, 2009; Kamijo et al., 2009; Drollette et al.,
2014; Chang et al., 2017) and reductions in P3b latencies
(Hillman et al., 2003; Kamijo et al., 2009; Drollette et al.,
2014; Chang et al., 2017) are observed following acute
bouts of aerobic exercise, and these effects are specific to
task components modulating inhibitory control demands.
Together, these data suggest that aerobic exercise generally
improves neurocognitive functioning by increasing inhibitory
and attentional control abilities, and cognitive processing speed
during stimulus encoding.

Exercise effects on the N2 ERP are however somewhat less well
understood. While there is evidence to suggest that acute aerobic
exercise is associated with smaller N2 amplitudes and shorter
latencies, indicating greater inhibitory control during cognitive
tasks (Pontifex and Hillman, 2007; Drollette et al., 2014), other
studies have demonstrated no such effects of exercise on the N2
ERP component (Themanson and Hillman, 2006; Winneke et al.,
2019). These inconsistencies across published studies warrant
further investigation into the effects of exercise on the N2 ERP.

In a novel line of inquiry, Lowe et al. (2017) demonstrated
that aerobic exercise has the capacity to promote cortical
resilience (i.e., the ability of cortical brain regions to recover
efficiently following a transient suppressive influence (Hall
et al., 2020) in healthy young adults. In this study, inhibitory
repetitive transcranial magnetic stimulation [rTMS; specifically,
continuous theta burst stimulation (cTBS)] was used to
temporarily attenuate cortical activity in neuronal populations
underlying the left dlPFC prior to an acute bout of exercise. The
application of cTBS induces temporary suppression of cortical
excitability for up to 50 min following stimulation (Huang
et al., 2005; Wischnewski and Schutter, 2015), and reliably
disrupts task performance on attentional-control tasks such as
the Flanker (Lowe et al., 2018b). In the present protocol, cTBS was
followed with either an acute bout of moderate intensity aerobic
exercise (50% heart rate reserve) or a movement-only control
session (walking at 10% heart rate reserve). Results indicated
that dlPFC function recovered at a significantly faster rate in
the moderate intensity relative to the movement only condition.
Specifically, at the 40-min post-stimulation point, 101.3% of
the attenuation in Stroop performance was recovered in the
moderate exercise group, but only 18.3% in the light intensity
exercise control group, demonstrating that aerobic exercise can
promote cortical resilience. While these findings have important
theoretical and empirical implications for how we conceptualize

the neuroprotective effects of exercise and supports the use of
therapeutic approaches to improving cognitive function.

Currently, it remains unclear whether acute exercise can
also blunt a suppressive influence in an a priori manner (i.e.,
act as a buffer against suppressive influence). The purpose of
the current study was to test this latter possibility. Specifically,
it was hypothesized that moderate intensity exercise would
reduce cTBS-induced suppression of dlPFC function, compared
to movement only control condition. In order to quantify
these effects, we examined both behavioral indicators of top-
down attentional control, such as Flanker performance and
event related potential components indicative of the same
(e.g., P3b, and N2). We hypothesized that Flanker task
accuracy and reaction time would improve following moderate
intensity exercise, and demonstrate buffering effects against cTBS
induced attenuation. Additionally, we anticipated the P3b ERP
component to improve; such that P3b amplitude would be larger,
and P3b latencies would be shorter following moderate exercise,
and would not be significantly altered following cTBS. Further,
due to the uncertainty around exercise effects of N2 ERP, we
examined it in an exploratory manner.

METHODS

A total of 23 healthy young adults participated in this study.
However, 1 participant was unable to complete the second
session, as they did not bring appropriate shoes; they were
wearing high-heel shoes and did not have running shoes. As such,
their data was excluded from all analyses, resulting in a final
sample of 22 participants, aged 19 to 30 years old (see Table 1).
We determined the sample size using G∗Power (version 3.1.9;
Faul et al., 2009). The results suggest that 20 participants are
required to achieve cTBS suppression effect similar to the one
found in previous work (d = 0.76; Lowe et al., 2017), with 95%
power. Participants were recruited from undergraduate courses
using an online recruitment system, and from recruitment
posters located around the university campus. All participants
indicated that they were naïve to TMS, right-handed, and
had normal or corrected-to-normal vision. Participants were
financially compensated for their participation. Study procedures
were approved by the University of Waterloo Research Ethics
Committee and conformed to the ethical standards outlined the
Declaration of Helsinki. Informed consent was obtained from all
participants prior to the start of the study protocol.

Prior to participation, participants were screened to be
free of any neurological or psychiatric, and physical health
conditions that may increase the risk of an adverse reaction to
either the TMS or aerobic exercise protocol. Participants were
excluded from the study if they had (a) been diagnosed with a
neurological or psychiatric condition (i.e., epilepsy, depression,
anxiety), (b) being treated with any psychiatric medications; (c)
had a family history of epilepsy or hearing loss; (d) history
of head trauma (i.e., concussion); (e) experienced chronic
headaches or migraines; (f) has metal in the cranium and/or
any implanted electronic or medical devices (i.e., electronic
pacemaker, implanted medication pump); (g) were pregnant; (h)
answered “yes” to any of the questions of the Physical Activity
Readiness Questionnaire (PAR-Q).
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TABLE 1 | Participant characteristics.

Mean (SD) Range n (%)

Age 21.68 (2.89) 19-30

Sex

Female 13 (62%)

Male 8 (38%)

Not Reported 1 (4.5%)

Race/Ethnicity

Caucasian 11 (55%)

Asian 7 (35%)

Multiracial/other 1 (4.5%)

Declined to respond 3 (15%)

Height (m) 1.65 (0.09) 1.57 – 1.83

Weight (kg) 61.4 (15.8) 41.7 – 86.2

Predicted hours of aerobic exercise in next week 4.5 (2.9)

Declined to respond 4 (18%)

Confidence in ability to exercise daily 67% (25.9)

Declined to respond 4 (18%)

Procedure
A within-subject study design was utilized, such that participants
completed both the moderate intensity exercise and the
movement-only control conditions in a counterbalanced order;
exercise sessions were separated by a one-week intersession
interval. Study sessions were identical, with only the exercise
intensity varying.

Upon arrival, participants were fitted with the EEG cap. Next,
they were asked to complete the Profile of Mood States-2 Adult
Short (POMS-2A; Heuchert and McNair, 2014), which is a widely
validated self-reported assessment of transient mood states.
The POMS 2-A was employed as an exploratory measure of
mood disturbance fluctuations across time points and conditions.
Following the POMS 2-A, participants were asked to complete
flanker task. In both conditions, participants walked on the
treadmill for a duration of 20 min (see Appendix Figures 2, 3).
As Chang et al. (2012a) found that the greatest positive exercise
effects manifest after a brief rest period, participants completed
the flanker task following a 10 min period of seated rest. Next,
cTBS was applied over the left dlPFC, and then participants
completed the flanker task (post-cTBS) again. At the end of the
second study session participants were asked to complete a series
of questionnaires pertaining to demographics, physical activity
patterns, and dietary habits. Physical activity frequency patterns
were assessed using a rating scale, responding to statements
of exercise frequency. These data are presented in Appendix
Figure 1. Physical activity attitudes were assessed using a rating
scale pertaining to enjoyment levels of daily exercise. Dietary
habits were assessed using a food frequency questionnaire, aimed
at measuring participants’ regular food choices, dietary self-
control and attitudes toward diet.

Flanker Paradigm
A modified version of the Eriksen flanker task (Eriksen and
Eriksen, 1974) was used to quantify exercise and cTBS effects on

top-down attentional control, and to elicit ERPs. The Flanker task
is a widely validated measure of executive function, and has been
employed in many exercise related studies (Hillman et al., 2006;
Kamijo et al., 2007; Lowe et al., 2018a). The version of the Flanker
paradigm used in the current study was programmed in E Prime
(Psychology Software Tools, Inc.), and has been previously used
in the Lowe et al. (2018a) study. In the context of the Flanker
paradigm, top-down attentional control is indicated by the ability
to recognize and select the correct stimulus while disregarding
distracting or incorrect stimuli presented at the same time. In this
version, a fixation cross followed by a five-letter string, composed
of Hs and/or Ss, was presented centrally on a computer screen.
Participants were instructed to indicate whether the center
target stimulus among four identical congruent (i.e., HHHHH
or SSSSS) or incongruent (i.e., HHSHH or SSHSS) distractors
was an “S” or an “H” as quickly and accurately as possible.
Responses were made using the associated keys on a keyboard
using their dominant hand. For each trial, the flanker stimulus
was presented for 500ms, followed by a random intertrial interval
(ITI) jittered between 600 and 1000 ms, with a total response
window of 1000ms. Participants completed a total of 240 trials
with equiprobable congruency, such that half the trials consisted
of congruent stimuli (120 trials) and the other half incongruent
stimuli (120 trials). The primary dependent measures were
task accuracy, and the flanker interference score (reaction time
on correct incongruent trials minus correct congruent trials);
higher interference scores are indicative of poorer top-down
attentional control.

Prior to participation in the study, participants were asked to
wear appropriate exercise apparel (i.e., running shoes) and were
given a bottle of water during each exercise session. Participants
were fitted with a Polar FT1 heart rate monitor, and resting
heart rate (RHR) was measured prior to exercise. For both
the moderate exercise and movement-only control condition,
participants were asked to walk on a treadmill for 20 minutes
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including warm up time. Speed and incline were gradually
adjusted for the first two minutes until participants reached their
target heart rate (THR), determined using the Karvonen formula
and heart rate reserve (HRR; the difference between the age-
predicted heart rate max [220-age] and resting heart rate). To
ensure that all participants could complete the 20 min exercise
session at a brisk walking pace, 50% HRR was selected for
the moderate intensity condition. The movement-only control
condition was set to 10 percent HRR, representing minimal
aerobic demands during otherwise identical physical movement
in relation to the moderate exercise condition. Following exercise,
participants were given a 10-minute seated rest period, during
which they completed the POMS 2-A mood questionnaire.

Theta Burst Stimulation Procedure
Continuous TBS was administered using a 75 mm outer diameter
figure-8 coil (MCF-B65) connected to a MagPro (model X100)
stimulation unit (Medtronic, Minneapolis, MN, United States).
Coil positioning was guided using a computerized frameless
stereotaxic system and neuronavigation software (Brainsight
TMS, Rogue Research, Montreal, Canada) in conjunction with
an T1 weighted structural MRI scan, normalized to MNI
space, from a previous data set (the same scan was used
for all participants). The left dlPFC was located using the
International 10-20 system (Herwig et al., 2003). Consistent
with prior work (Bolton and Staines, 2011; Lowe et al., 2014,
2017, 2018a), cTBS – a 40 s continuous train consisting of
600 pulses applied in the theta burst pattern (bursts of three
stimuli at 50 HZ repeated at 5 Hz frequency (Huang et al.,
2005) – was administered over the left dlPFC by positioning
the coil at a 90◦ angle from the mid-sagittal line with its
center positioned over F3. Stimulation intensity was set at
80% resting motor threshold (RMT). RMT was defined at
the lowest stimulation intensity required to produce a motor-
evoked potential (MEP) with a peak-to-peak amplitude exceeding
50 µV in at least 5 out 10 consecutive trials. Stimulation was
applied over the contralateral motor cortex, at a 45◦ angle
tangentially to the scalp, with the handle pointing posteriorly.
For each study session, individual RMTs were determined using
electromyography measured from the right abductor pollicus
brevis (APB) muscle.

Average cTBS stimulation intensity (% stimulator output)
for the moderate intensity exercise and movement-only control
conditions were 53.41(SD = 6.57) and 53.40 (5.63) respectively.
No significant differences in cTBS stimulation intensity between
exercise conditions was observed (t(21) = 0.012, p = 0.990,95% CI
[−1.58, 1.60]).

EEG Recording and Analysis
Continuous EEG data were recorded from 10 midline and frontal
electrode sites [FP1, FP2, FPz, Fz, F3, F4, FCz, Cz, CPz, Pz] using
a 64 Ag/AgCI electrode Neuroscan Quick-Cap (Compumedics,
Charlotte, NC), referenced online to a mid-line electrode located
between Cz and CPz and grounded to AFz. Amplitudes and
latencies for the N2 component were measured from electrode
sites Fz, FCz, and Cz, and were averaged together to create a
frontocentral N2 cluster. The P3b component were measured

from central parietal sites Cz, CPz, and Pz, and were averaged
together to create a central parietal P3b cluster. Data were
sampled and digitized at a rate of 1000 Hz with a bandpass
filter of.1 to 70 Hz. All channel recordings had impedance values
below 5 k�, and impedance was monitored before and after
cTBS and exercise.

Offline, data were pre-processed using MATLAB 2018a and
the EEGLAB toolbox (version 14; Delorme and Makeig, 2004).
EEG data were filtered using a 50 HZ low-pass filter to remove
signal drifts and line noise, and re-referenced to the averaged
linked mastoids (M1, M2). Stimulus-locked ERP segments
spanning −100 to 800 ms post-stimulus onset for correct
congruent and incongruent trials were computed individually
for each participant. The resulting data were individually
decomposed using temporal independent component analysis
(ICA) with extended infomax algorithm (Bell and Sejnowski,
1995; Delorme et al., 2007). Independent components that were
not located within the cortex, as well as those components
elicited by spurious movement and ocular artifacts were
removed. Afterward, data were visually inspected, and residual
non-stereotyped artifacts were removed (Mennes et al., 2010;
Jiang et al., 2019).

For all dependent measures [incongruent, congruent], data
were averaged relative to a 100 ms pre-stimulus baseline. As
recommended by Luck and Gaspelin (Luck and Gaspelin, 2016),
measurement time windows and electrode regions of interest for
each component were determined a priori using typical electrode
sites and time windows from prior studies. This reduces type
1 error and the bias toward significance. Electrode sites and
measurement time windows were confirmed via visual inspection
of the grand average waveforms. Data for all components was
extracted from midline electrode sites Fz, FCz, CZ, and Pz.

Stimulus-locked amplitude and latency measures for each ERP
component was calculated by determining the peak amplitude
(µV) for correct congruent and incongruent flanker trials within
two-time windows. The P3b was defined as the peak amplitude
between 300-600ms post-stimulus presentation. Likewise, the
flanker N2 was defined as a negative deflection peaking between
200 and 300 ms. As recent evidence has suggested that averaging
ERP amplitudes across several electrodes to increases signal
reliability (Huffmeijer et al., 2014). As such, amplitude and
latency data were averaged across electrode regions of interest
for each component. Specifically, a P3b cluster was created by
averaging the peak amplitude (µV) and latency across central and
parietal electrodes (Cz, CPz, Pz). The P3b is typically maximal at
central parietal sites (Polich, 2007).The amplitudes and latencies
from frontocentral electrode sites (Fz, FCz Cz) were averaged
together to create a frontocentral N2 cluster.

Data Analytic Approach
Accuracy was calculated as the proportion of correct responses
to congruent and incongruent trials. Prior to analyses, reaction
times less than 100 ms and greater than 3 standard deviations
from the individual mean reaction time were excluded.
Frequentist analyses were conducted using SPSS (version 25;
IBM Corp, Armonk, NY, United States). First, paired sample
t-tests were conducted to ensure baseline comparability between
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conditions in Flanker task performance and cTBS stimulation
intensity. Behavioral data were analyzed using a 2 × 3 mixed
ANOVA with exercise condition [moderate, active-control] and
time [baseline, post-exercise, post-cTBS] as the within subject
factor, and order of the exercise condition as the between subject
factor. Significant interactions were followed up with simple
effects one-way ANOVAS at each level of exercise condition.
For significant effects, Fisher’s least square differences (LSD)
post hoc tests were performed. Electrophysiological data were
analyzed using separate 2[moderate, very-light] × 3 [baseline,
post-exercise, post-cTBS] × 2 [incongruent, congruent] repeated
measures ANOVAs for N2 amplitude, N2 latency, P3b amplitude,
P3b latency. Significant three-way interactions were followed up
with a 3 [baseline, post-exercise, post-cTBS] × 2 [congruent,
incongruent] repeated measures ANOVAs at each level of
exercise [moderate, very-light]. Significant interactions were
followed up with simple effect ANOVAs. For significant effects,
Fisher’s LSD post hoc tests were performed.

To account for the small sample size, we also employed a
Bayesian approach. Bayesian inference is a model comparison
approach that is better suited to accommodating small sample
sizes than standard frequentist approaches. Bayesian statistics
provide information on likelihood and strength of an effect
by evaluating how well the data support the alternative over
the null hypothesis. As such, this approach is capable of
distinguishing between lack of power and/or precision, and
the lack of an effect. Specifically, the Bayes factor quantifies
how likely the alternative is relative to the null model. For
instance, a Bayes factor of 10 (BF10) would suggests strong
evidence indicating that the alternative model is 10 times more
likely to occur than the null. Bayesian analyses were conducted
using the default priors for t-test and ANOVA analyses (Rouder
et al., 2012) and JASP software using the same procedures
described above.

Results
Baseline Comparability of Condition
No significant differences in baseline interference scores were
observed (t(21) = 0.904, p = 0.376, 95% CI [−6.99, 17.74];
BF10 = 0.321), indicating comparable baseline performance
between movement-only control and moderate exercise
conditions. Likewise, no significant differences in cTBS
stimulation intensities between exercise conditions were

observed (t(20) = 0.01, p = 0.990, 95% CI [−1.58, 1.60];
BF10 = 0.228

Behavioral Results
Performance accuracy, reaction times on incongruent and
congruent trials, and flanker interference scores as a function of
exercise condition (active-control or moderate intensity exercise)
and time (baseline, post-exercise, post-cTBS) are presented in
Table 2. Effect size was quantified by Cohen’s (d).

Interference score analyses indicated that the order by exercise
condition (F(1, 20) = 2.15 p = 0.158, d = 0.655), order x
time (F(2,40) = 0.73, p = 0.489, d = 0.369), and the three-way
[order × time × exercise condition] interaction (F(1, 20) = 0.69,
p = 0.507, d = 0.381) were not significant. Although the main
effect of exercise condition was not significant (F(1, 20) = 2.73,
p = 0.114, d = 0.739), a significant main effect of time (F(2,
40) = 5.43, p = 0.008, d = 1.04) was observed. This was qualified by
a significant time [baseline, post-exercise, post-cTBS] by exercise
condition [moderate, movement-only control] interaction (F(2,
40) = 5.86, p = 0.006, d = 1.08).

Results from the one-way simple main effects ANOVA
indicated a significant main effect of time for the moderate
intensity exercise condition (F(2, 42) = 12.23, p < 0.001,
d = 1.526). Planned LSD comparisons revealed that flanker
interference scores were significantly lower (p < 0.001,
95% CI [10.00, 24.88) following the acute bout of moderate
aerobic exercise relative to baseline. No significant differences
in post-exercise and post-cTBS interference scores were
observed (p = 0.274, 95% CI[−11.43, 3.41). Most notably,
post-cTBS interference scores were significantly lower than
baseline scores (p = 0.003, 95%CI [5.27, 21.60]), indicating a
potential buffering effect of aerobic exercise; see Figures 1,
2. The main effect of time was not significant for the
movement-only control condition (F(2,42) = 1.25, p = 0.298,
d = 0.487).

Further, accuracy analyses indicated a significant main effect
of congruency (F(1, 20) = 35.31, p < 0.001, d = 2.62),
such that flanker trials were significantly more accurate on
congruent trials compared to incongruent trials. No significant
main effects of time (F(1, 20) = 0.65, p = 0.53, d = 0.36), or
exercise condition (F(1,20) = 0.043, p = 0.837, d = 0.09) were
observed. Additionally, no significant interactions (p > 0.12)
were observed.

TABLE 2 | Accuracy, reaction time (RT) (ms), and interference scores (ms) across time and conditions.

Moderate Exercise Mean (SD) Movement-only Control Mean (SD)

Baseline Post-Exercise Post-cTBS Baseline Post-Exercise Post-cTBS

Accuracy Congruent 0.91 (0.08) 0.90 (0.12) 0.89 (0.12) 0.89 (0.12) 0.90 (0.13) 0.90 (0.12)

Accuracy Incongruent 0.84 (0.11) 0.83 (0.13) 0.83 (0.13) 0.80 (0.15) 0.84 (0.15) 0.86 (0.14)

Congruent RT 193.16 (59.05) 197.16 (61.29) 188.12 (52.48) 183.47 (73.68) 179.10 (62.10) 174.72 (57.62)

Incongruent RT 221.11 (55.25) 207.66 (59.45) 202.64 (52.28) 206.05 (68.51) 202.89 (64.63) 204.07 (59.58)

Flanker Interference 27.95 (13.21) 10.51 (13.79) 14.51 (17.63) 22.58 (24.27) 23.78 (27.03) 29.35 (23.01)

Exercise Effect −16.67 (15.71) 1.20 (17.59)

cTBS Effect 4.01 (16.74) 5.57 (21.88)
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FIGURE 1 | Flanker interference scores at baseline, post-exercise, post-cTBS in moderate intensity exercise and movement only conditions.

FIGURE 2 | Flanker interference scores at baseline, post-exercise, post-cTBS in moderate intensity exercise and movement only conditions.

Bayesian Statistics
Results from the 2 × 3 Bayesian repeated measures ANOVA
analyses revealed anecdotal evidence supporting the main effect
of exercise (BF10 = 1.918), and no evidence supporting the main
effect of time (BF10 = 0.521). Moderate evidence supporting the
exercise [moderate, very-light] by time [baseline, post-exercise,
post-cTBS] interaction (BF10 = 3.673) was apparent. To assess
the evidence supporting the interaction term the Bayes Factor for
the model with the interaction term was divided Bayes Factor
for the model with only the main effects (exercise and time;
3.673/1.084). The interaction model was preferred over the main
effects model by a Bayes Factor of 3.39, indicating there was

moderate evidence supporting the inclusion of the interaction
term over the main effects.

In the moderate exercise condition, the evidence supporting
the main effect of time was extremely strong (BF10 = 0.6.85).
Post hoc comparisons revealed extremely strong evidence
supporting the contention that post-exercise interference
scores were lower than baseline scores (BF10 = 6.44).
Likewise, results indicated that there was strong evidence
(BF10 = 9.31) supporting the notion that post-cTBS scores
differed from baseline. There was no evidence suggesting
that post-exercise and post-cTBS interference scores were
different (BF10 = 0.263). Conversely, there was no evidence
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TABLE 3 | P3b ERP Amplitudes (µV) and Latencies (ms) Across Condition and Time.

P3b Moderate Intensity Movement-only control

Baseline (SD) Post-exercise (SD) Post-cTBS (SD) Baseline (SD) Post-exercise (SD) Post- cTBS (SD)

Amplitude

Incongruent 7.12 (1.64) 7.42 (2.30) 7.13 (1.84) 5.89 (3.11) 7.45 (2.57) 6.44 (3.40)

Congruent 5.56 (1.62) 5.02 (1.65) 5.51 (1.27) 4.41 (1.72) 5.45 (1.75) 5.31 (2.23)

Latency

Incongruent 423.75 (42.86) 373.78 (21.85) 390.41 (42.01) 432.10 (47.91) 412.45 (49.04) 378.62 (41.31)

Congruent 413.30 (51.15) 401.18 (45.14) 395.85 (34.30) 401.12 (50.05) 413.89 (54.77) 398.94 (59.13)

FIGURE 3 | Grand average waveform of P3b ERP component.

supporting a time effect in the movement-only control
condition (BF10 = 0.261).

ERP Results
P3b Amplitude
Analysis of the P3b amplitude revealed a significant main effect
of congruency (F(1,21) = 40.003, p < 0.001, d = 2.762). Across
exercise conditions, the amplitude to incongruent trials was
significantly larger than congruent trials; see Table 3 The main
effects of exercise condition (F(1,21) = 1.85, p = 0.189, d = 0.594)
and time (F(2,42) = 1.04, p = 0.363, d = 0.444), and exercise by
congruency interaction (F(1,21) = 1.32, p = 0.263, d = 0.501) were
not significant. Trends toward significance were observed for the
exercise by time (F(2,42) = 2.86, p = 0.069, d = 0.739) and time
by congruency (F(2, 42) = 2.80, p = 0.072, d = 0.732) interactions.
The three-way interaction was not significant (F(2, 42) = 0.132,
p = 0.876, d = 0.155; see Figure 3).

P3b Latency
Examination into the effects on P3b latency revealed a significant
main effect of time (F(2, 42) = 8.36, p = 0.001, d = 1.263). The
main effects of exercise condition (F(1, 21) = 0.84, p = 0.370,

d = 0.398) and congruency (F(1, 21) = 0.84, p = 0.369,
d = 0.398) were not significant. This was qualified by significant
time by exercise (F(2, 42) = 5.28, p = 0.009, d = 1.003) and
time by congruency (F(2,42) = 4.96, p = 0.012, n2 = 0.191)
interactions. However, the three-way [time x exercise condition
x congruency] interaction (F(2, 42) = 037, p = 0.963, d = 0.090)
was not significant.

In the moderate exercise condition, results from the 2 × 3
[congruency by time] ANOVA revealed a significant time by
congruency interaction (F(2,42) = 3.37, p = 0.044, d = 0.800).
Similar to the behavioral results, a significant time effect was
apparent for incongruent trials (F(2, 42) = 16.720 p < 0.001,
d = 1.784). Specifically, compared to baseline (M = 423.75,
SE = 9.14). P3b latencies were significantly shorter (p < 0.001,
95% CI [33.58, 66.36]) following a bout of moderate intensity
exercise (M = 373.78; SE = 4.67). Additionally, post-cTBS
(M = 390.41; SE = 8.96) latencies were marginally higher
than those observed post-exercise (post-exercise; p = 0.052,
95%CI [−0.18, 33.44). Importantly, post-cTBS latencies were
significantly shorter (p = 0.004, 95% CI [12.04, 54.64]) than
baseline. No significant time effects were observed for congruent
trials (F(2,42) = 1.004,p = 0.375, d = 0.440).
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TABLE 4 | N2 ERP amplitudes (µV) and latencies (ms) across condition and time.

N2 Moderate Intensity Movement-only control

Baseline Post-exercise Post-cTBS Baseline Post-exercise Post-cTBS

Amplitude

Incongruent −2.11 (1.87) −2.17 (1.08) −2.02 (1.59) −2.39 (1.75) −2.67 (1.84) −2.16 (1.61)

Congruent −1.32 (1.60) −1.59 (1.12) −1.20 (1.01) −1.77 (1.04) −2.32 (0.72) −1.70 (0.99)

Latency

Incongruent 179.49 (69.35) 175.40 (59.62) 164.30 (73.24) 170.32 (62.73) 185.67 (71.29) 170.38 (69.46)

Congruent 158.75 (61.94) 158.40 (53.45) 160. 81 (68.14) 162.10 (67.40) 168.56 (61.97) 168.48 (67.75)

FIGURE 4 | Grand average waveform of the N2 ERP component.

In the movement-only control condition, the main effects
of time (F(2,42) = 6.13, p = 0.005, d = 1.08) and congruency
(F(2,42) = 8.48, p = 0.008, d = 1.27) were significant. However,
the congruency by time interaction was not significant
(F(2,42) = 1.86 p = 0.168, d = 0.594). Across timepoints,
congruent trials had significantly shorter latencies than
incongruent trials (p = 0.008 95% CI [4.75, 28.50]). In addition,
across congruency types, post-cTBS latencies were significantly
shorter than those observed post-exercise (p = 0.003, 95% CI
[9.46, 39.32]) and at baseline (p = 0.006, 95% CI [8.79, 46.
87]). There were no significant differences observed when
comparing post-exercise and baseline latencies (p = 0.720, 95%
CI [−16.30, 23.19]).

N2 Amplitude
Results revealed a significant main effect of congruency
(F(1,21) = 13.88, p = 0.001, n2 = 1.626), such that across exercise
conditions and time points the N2 amplitude to congruent trials
(M = −1.65, SE = 0.09) was smaller than that to incongruent trials

(M = −2.25; SE = 0.19); see Table 4. The main effects of exercise
condition (F(1, 21) = 0.250, p = 0.622, n2 = 0.012) and time
(F(2,42) = 0.423, p = 0.658, d = 0.286). No significant interactions
were observed (p > 0.20; see Figure 4).

N2 Latency
No significant main effects (p > 0.10) or interactions (p > 0.20)
were observed when examining N2 latencies.

Discussion
This investigation sought to assess the capacity of aerobic exercise
to blunt the suppressive effects of cTBS targeting the left dlPFC.
As expected, findings revealed an exercise effect in the moderate
exercise condition, as evidenced in the Flanker task and P3b
ERP components. Additionally, the results from the movement
only control condition indicated no post-movement effects on
cognitive control indices. Interestingly, evidence of a buffering
effect of both aerobic exercise and light intensity movement on
cTBS-induced attenuation was observed; however, given that the
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current study lacked a no-movement control condition, it is
difficult to ascertain the effectiveness of cTBS in this study sample.

Collectively, the findings from this study suggest that
moderate intensity exercise may provide a protective buffer
against temporary perturbations in dlPFC functionality, and by
extension top-down attentional control. Behaviorally, significant
improvements in Flanker task performance were observed
following an acute bout of moderate intensity exercise. Most
notably, post-cTBS interference scores did not differ from
post-exercise scores, but instead remained significantly lower
compared to baseline, indicating a buffering effect of moderate
intensity exercise on executive functions. Counter to our
expectations, there were no significant differences in post-
exercise and post-cTBS interference scores in the movement-
only control condition. While this effect was unexpected, it
may suggest that the intensities of both moderate aerobic
exercise and the movement-only control condition may be
sufficient to offset the temporary cTBS induced attenuation to
cognitive control, given that cTBS reliably suppresses function
within the dlPFC under usual circumstances (Lowe et al.,
2018b). Although cTBS has been shown to reliably attenuate
executive function, these findings should not take the place
of a true control condition. Examination of neuroelectric
measures revealed shorter P3b latencies to incongruent trials
following moderate intensity exercise, suggesting faster cognitive
processing speed post-exercise. Similar to the behavioral data,
there were no significant differences in post-exercise and post-
cTBS latencies. While the movement-only control condition
revealed no neuroelectric changes post exercise, P3b latencies
were significantly shorter following cTBS.

Taken together, the current findings add to the large literature
describing effects of aerobic exercise on cognitive control, yet the
lack of a true control condition warrants further investigation
into the buffering effects of exercise on EF. Novel to the present
investigation, the moderate intensity exercise session seemed
to provide a protective buffer against experimentally induced
perturbations in cognitive control; that is the ability of exercise
to reduce the initial suppressive effect of cTBS. This expands on
the findings by Lowe et al. (2017) wherein 28 female participants
received cTBS prior to engaging in acute exercise. Consistent with
Lowe et al., 2017, the current study demonstrated an exercise
effect in the moderate intensity condition, such that behavioral
scores significantly improved following exercise. Lowe et al., 2017
employed a Stroop task as a behavioral measure of cognitive
control, however given that ceiling effects of accuracy that
were observed (> 0.97), the current study employed a Flanker
paradigm, resulting in lower accuracy scores (< 0.86).

Further, Lowe et al. (2017), observed experimentally induced
attenuation following cTBS in both conditions, along with a
strong recovery effect following moderate intensity exercise,
suggesting a protective and recovery mechanism against
suppression to the dlPFC. Within the current study, it is unclear
whether cTBS was successful in supressing cognitive function,
as a post-stimulation effect was not evidenced. Consistent with
our hypothesis, behavioral task scores in the moderate intensity
exercise condition did not significantly worsen following cTBS
stimulation, however surprisingly, the same phenomenon was

observed in the movement only condition, suggesting a
possible buffering effect of both aerobic exercise and light
intensity movement.

These findings have substantial implications for how we
conceptualize the beneficial effects of aerobic exercise on brain
health and executive control. That is, while the current study
employed an experimental perturbation (specifically, cTBS),
there are many naturally occurring perturbations in everyday
life, including lack of sleep, mood fluctuations, and acute
stress (Fossati et al., 2002; Nilsson et al., 2006; Porcelli and
Delgado, 2009; Tucker et al., 2010; Shields et al., 2016). If
generalizable to these types of everyday perturbations, the current
findings suggest the possibility that exercise may serve to provide
protection against momentary fluctuations in cognitive control
in everyday living. Such findings may have implications for
clinical intervention strategies as well. For instance, acute bouts
of exercise may provide an optimal intervention or preventative
strategy for people who are chronically subject to exposure to
lifestyle perturbations mentioned previously (e.g., shift workers,
hospital employees). Additionally, given that buffering effects
also seem to manifest in relation to light intensity movement, the
effects of this intervention could extend to individuals who may
not be physically able to perform moderate intensity exercise,
such as older adults.

While significant behavioral effects were apparent in the
moderate intensity exercise condition, this did not manifest
as changes in P3b amplitudes as expected, or N2 amplitudes.
However, significant P3b latency effects to incongruent trials were
observed. Consistent with the behavioral data, shorter latencies
were apparent following the bout of moderate intensity exercise.
Further, post-cTBS P3b latencies were significantly shorter than
baseline in the moderate exercise condition. In general, the
amplitude of the P3b and N2 ERP components are thought to
reflect the neural resources afforded to a given task, whereas,
the latency is thought to be an index of cognitive processing
speed or the speed at which an individual is able to classify and
evaluate a stimulus (Polich, 2007; Folstein and Van Petten, 2008).
Therefore, results from the current study seem to suggest that the
buffering effects of exercise are specific to cognitive processing
speeds rather than attentional allocation or conflict adaptation
per say, a finding that is consistent with several other studies. For
instance, P3b latencies in both young and older adults have been
shown to be shorter following both light and moderate intensity
exercise (Kamijo et al., 2007, 2009).

Additional evidence supporting this notion comes from
rTMS prior studies utilizing neuroelectric measures of cognitive
control. Stimulation-induced reductions in the latency of the
P3b component is observed following both 10Hz and 20Hz
(i.e., excitatory stimulation) rTMS targeting the left PFC (Evers
et al., 2001; Rektor et al., 2010; Pinto et al., 2018). Likewise,
several studies using inhibitory rTMS or cTBS targeting the
dlPFC have reported that attenuation of left dlPFC activity results
in the subsequent increase in P3b latencies (Evers et al., 2001;
Jing et al., 2001; Hansenne et al., 2004; Pinto et al., 2018).
Further, recent findings demonstrated that stimulation-induced
increases in P3b latencies to incongruent flanker trials are
observed following cTBS over the left dlPFC (Lowe et al.,
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2018b). These findings are noteworthy, as the same stimulation,
behavioral task, and EEG protocols were employed as in the
current study. Assuming that cTBS was effective in this sample,
these data demonstrate that P3b latencies are sensitive to rTMS-
induced attenuation of dlPFC activity, indicating that moderate
intensity exercise as well as light intensity movement does indeed
provide a protective buffer against cTBS-induced perturbations
to executive control. Further, evidence exists to suggest that high-
fit individuals outperform low-fit counterparts on cognitive tasks
and demonstrate faster processing speeds (Hillman et al., 2005;
Dupuy et al., 2015). This may provide an alternate explanation
for these findings; such that the current study recruited a high-
fit group who exercised frequently, and as a result preserved
an exercise buffer, resulting in better than expected Flanker
interference scores and P3b latencies. It is possible however that
cTBS was not effective in the current study sample, as it remains
unclear as to whether these findings were indeed buffering effects
or merely a carry-over effect of exercise, due to the lack of a
non-movement control.

Exercise-induced improvements in inhibitory control are
thought to be mediated, at least in part, by increased cerebral
blood flow to the left dlPFC (Yanagisawa et al., 2010; Endo
et al., 2013; Byun et al., 2014; Giles et al., 2014; Guiney
et al., 2015). Considering the association between aerobic
exercise and increased cerebral blood oxygenation, it is possible
that both light and moderate intensity exercise are sufficient
to offset cTBS- induced attenuation to neuronal populations
within the left dlPFC. It is also possible that elevated levels of
certain neurotransmitters such as norepinephrine, epinephrine,
serotonin, and dopamine, induced a buffering effect, as they
have been demonstrated to be elevated following acute bouts
of exercise. ERP latencies and amplitudes are thought to be
influenced by dopaminergic function, subsequently impacting
cognitive processing speeds and neural resources allocated to
a specific task (Ullsperger et al., 2014). There is increasing
evidence to suggest that light intensity exercise may also result
in increased cerebral blood oxygenation (Byun et al., 2014).
For instance, previous studies have indicated that light intensity
walking increases cerebral blood oxygenation to the PFC (Suzuki
et al., 2004; Holtzer et al., 2011; Matsukawa et al., 2020).
Additionally, movement only conditions such as yoga have been
shown to sufficiently improve cognitive task scores as well as
mood scores (Berger and Owen, 1988; Gothe et al., 2013).
Furthermore, studies have suggested that specific self-efficacy
combined with positive mood may improve scores on executive
control tasks (Berger and Owen, 1992). According to the POMS
2-A mood scores in Appendix Figure 3 of the Appendix, it
appears that mood disturbance scores improved from baseline
following the movement only condition. However, the buffering
effects of exercise have been largely unexplored and may differ
from other proposed mechanisms. Further research is warranted
to better determine the neurophysiological processes underlying
cortical buffering.

Strengths in the present study include the use of a within-
subject study design in an effort to minimize any inter-individual
variability. Additionally, the use of cTBS as our neuromodulation
protocol provided a safe and reliable method by which to
investigate the buffering effects of exercise. Limitations of the

present study include sampling a healthy university student
population, who may not be as receptive to the effects of
exercise compared to an older adult sample due to high initial
levels of cognitive performance. Previous literature has suggested
that older adults tend to demonstrate greater performance
improvements compared to young healthy adults following acute
bouts of exercise (Chang et al., 2012a; during the rest period
participants were asked to sit comfortably for 10 min. Although
both the moderate intensity exercise and movement-only control
groups appeared to demonstrate a potential buffering effect, this
cannot be known definitively in the absence of a no-movement
control condition. Without this, an alternative interpretation of
the findings is that no cTBS effect emerged in either condition,
which is possible given that not all studies show significant
perturbation effects on executive function following cTBS. Future
studies should aim to disentangle this issue.

Conclusion
Although some of the results of the current study are unexpected,
these findings can provide some initial evidence that moderate
intensity exercise may blunt the usual suppressive impact of cTBS
on the dlPFC. These findings may further suggest that very low
intensity movement also provide some protection against cTBS
induced suppression. However, due to the lack of a no-movement
control group, it is difficult to ascertain whether cTBS was indeed
effective in this target population. Additional research on the
buffering effect of exercise using natural suppressors—such as
sleep deprivation, alcohol consumption, acute stress—may be
potentially useful. Likewise, exploring the reliability of buffering
effects of exercise in other populations may be beneficial, and
could provide a more comprehensive understanding of how
exercise benefits the brain in everyday life.
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