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Background: Generalized anxiety disorder (GAD) and panic disorder (PD) are the two

severe subtypes of anxiety disorders (ADs), which are similar in clinical manifestation,

pathogenesis, and treatment. Earlier studies have taken a whole-brain perspective on

GAD and PD in the assumption that intrinsic fluctuations are static throughout the

entire scan. However, it has recently been suggested that the dynamic alternations

in functional connectivity (FC) may reflect the changes in macroscopic neural activity

patterns underlying the critical aspects of cognition and behavior, and thus may act as

biomarkers of disease.

Methods: In this study, the resting-state functional MRI (fMRI) data were collected

from 26 patients with GAD, 22 patients with PD, and 26 healthy controls (HCs).

We investigated dynamic functional connectivity (DFC) by using the group spatial

independent component analysis, a sliding window approach, and the k-means

clustering methods. For group comparisons, the temporal properties of DFC states were

analyzed statistically.

Results: The dynamic analysis demonstrated two discrete connectivity “States” across

the entire group, namely, a more segregated State I and a strongly integrated State II.

Compared with HCs, patients with both GAD and PD spent more time in the weakly

within-network State I, while performing fewer transitions and dwelling shorter in the

integrated State II. Additionally, the analysis of DFC strength showed that connections

associated with ADs were identified including the regions that belonged to default mode

(DM), executive control (EC), and salience (SA) networks, especially the connections

between SA and DM networks. However, no significant difference was found between

the GAD and PD groups in temporal features and connection strength.

Conclusions: More common but less specific alterations were detected in the

GAD and PD groups, which implied that they might have similar state-dependent

neurophysiological mechanisms and, in addition, could hopefully help us better

understand their abnormal affective and cognitive performances in the clinic.

Keywords: generalized anxiety disorder, panic disorder, dynamic functional connectivity, neural networks,

functional MRI
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INTRODUCTION

Anxiety disorders (ADs) are a group of mental disorders
characterized by excessive fear, anxiety, and related behavioral
abnormalities, which have a great impact on the social function
and quality of life of the patients, and thus impose a great burden
on the family and society (Grupp et al., 2014). Among them,

generalized anxiety disorder (GAD) and panic disorder (PD),
with anxiety as the core emotional experience, are very similar in
clinical features, forms of the disease, and treatment, and often
coexist. Specifically, GAD shows a persistent omnidirectional
difficulty with autonomic nervous system symptoms, and
PD is characterized by a paroxysmal, prominent autonomic
symptom, with different degrees of avoidance behavior in both
groups. Currently, in order to explore a new diagnostic system
in line with the biological findings rather than the clinical

symptoms, it is necessary to detect their common and specific
neural physiopathology.

Based on the resting-state functional MRI (RS-fMRI) data,
the static functional connectivity (FC) analysis has been widely
used to indicate the neural physiopathology of various diseases
(Bell and Sejnowski, 1995; Lawrie et al., 2002; Greicius et al.,
2007; Hahn et al., 2011; Zhong et al., 2018). Nevertheless,
different degrees of attention, mind-wandering, and even mood

swings may occur during the scanning process, which leads
to the observed blood-oxygen-level-dependent (BOLD) signal
nonstationary and deviates from the hypothesis. Recently, the
temporal features of brain activities, acquired from fMRI, can
be characterized by applying a dynamic functional connectivity
(DFC) approach (Allen et al., 2014; Calhoun et al., 2014). The
full repertoire of the resting-state functional networks has been
regarded as continuously and dynamically active (Smith et al.,
2009). Current studies have revealed that DFCmetrics may index
the changes in macroscopic neural activity patterns underlying
the critical aspects of cognition and behavior (Hutchison et al.,
2013), and thus be of great significance for the early diagnosis
and prediction of the severity of mental illness (Damaraju et al.,
2014; Li et al., 2014; Ou et al., 2015).

For the brain mechanism of AD, the “limbic-PFC circuitry”
was the mainstream view in the past decade. Based on this,
Calhoon and Tye (2015) proposed a hypothesis that reconciled
the region-specific studies of anxiety into a broader network
(Calhoon and Tye, 2015). At present, many studies have
progressed in understanding the neural basis of ADs via the FC
analysis and detected that multiple key functional networks play
an important part in generating different symptoms of ADs. For
GAD, studies have identified that the amygdala and the prefrontal
cortex (PFC) play important roles in “emotion dysregulation”
(Hilbert et al., 2014), and that the altered FC was found between
these regions of interest (i.e., the amygdala and the PFC) and the
default mode network (DMN) (Makovac et al., 2018). Besides, the
integrity of functional brain networks was globally disrupted in
GAD, showing impairments consistent with the neurobiological
models of GAD (involving amygdala, PFC, and cingulate cortex)
(Li et al., 2016), appearing that the DMN, cerebellar (CB)
network, executive control network (ECN), and salience network
(SAN)may be altered (Etkin et al., 2009; Yao et al., 2017). For PD,

it is reported that right superior temporal gyrus (STG), left
dorsomedial prefrontal cortex (dmPFC), and right orbital frontal
cortex (OFC) have a co-atrophy relationship with each other, and
these regions are related to the behavioral domains of audition,
music, emotion, and execution. The left dorsolateral prefrontal
cortex (dlPFC) co-activates with bilateral dmPFC, and these
regions are related to the behavioral domains of social cognition
and emotion of sadness (Wu et al., 2018). The greater FC between
somatosensory cortex and thalamus in PD was more likely linked
to interoceptive processing (Cui et al., 2016). Furthermore, the
DMN, SAN, and SMN may be altered in PD (Pannekoek et al.,
2013; Shin et al., 2013; Kim and Yoon, 2018). In brief, to elucidate
diagnostic nosology and promote disorder-specific therapies, it
appears to be distinctly necessary for the resting-state studies that
directly compare DFC between subjects with different ADs.

In this study, by using the independent component analysis
(ICA) and DFC analysis on the RS-fMRI data, we aimed to reveal
the characteristics of dynamic connectivity in patients with GAD
and with PD. We made the following hypotheses: (1) the patients
with AD and healthy controls (HCs) have DFC alterations within
the resting-state networks and (2) there are more common and
less specific alterations between patients with GAD and PD.

MATERIALS AND METHODS

Participants
Participants were the clinical outpatients consecutively recruited
at the Department of Medical Psychology and the Department
of Mood Disorders of Nanjing Brain Hospital, affiliated with
the Nanjing Medical University. We used the following core
inclusion criteria: (1) a primary diagnosis of GAD/PD by
an experienced psychiatrist based on the Diagnostic and
Statistical Manual of Mental Disorders (Fifth edition, DSM-
5TM) (Francesmonneris et al., 2013), (2) a confirmation of
GAD/PD diagnosis using Mini-International Neuropsychiatric
Interview (MINI), (3) scores ≥14 on the 14-item version of the
Hamilton Anxiety Rating Scale (HAMA, Hamilton, 1959), (4)
free of psychiatric medications at least 6 months prior to the
study enrollment (for GAD only), (5) aged 18–55 years old,
and (6) right-handed. The exclusion criteria were as follows:
(1) neurological disease, (2) more than one target diagnosis,
including psychiatric and personality disorders, (3) severe
physical illness, pregnancy, and/or breastfeeding, (4) suicidal
risk, (5) inability to complete MRI, and (6) major life change
in the last year as defined by death of spouse, unemployment,
severe illness, serious injury, legal disputes, property loss, traffic
accident, natural disasters, or divorce.

The healthy controls (HCs) matched for gender, age, and
education were recruited by the Internet advertisements and
posters. We used the following inclusion criteria for HCs: (1)
aged 18–55 years old, (2) HAMA (Hamilton, 1959) total score
≤7, and (3) right-handed. The exclusion criteria were as follows:
(1) comorbid neurological disorders, (2) history of any symptoms
consistent with a psychiatric disorder, (3) pregnancy and/or
breastfeeding, (4) history of psychological consultation within 3
months of the study enrollment, (5) inability to complete MRI,
and (6) major life change in the last year.

Frontiers in Human Neuroscience | www.frontiersin.org 2 July 2021 | Volume 15 | Article 647518

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Xu et al. Intrinsic Dysfunction in Anxiety Disorders

Demographic and Clinical Measures
For all participants, we used a self-report questionnaire to
collect their demographic data including gender, age, years of
education, handedness, duration of illness (years), history of
psychotropic substances, history of psychological counseling,
history of physical illness, and so on. Furthermore, the severity of
anxiety of each subject was clinically evaluated by using HAMA
(Hamilton, 1959).

MRI Data Acquisition
All the MRI data were obtained using a Siemens 3.0 T scanner
at the Department of Radiology, Nanjing Brain Hospital. During
fMRI, participants were asked to keep still with their eyes closed
and not to think about anything specific or fall asleep. To
avoid head movement and noise, foam pads and earplugs were
used. T1-weighted anatomical images were obtained using a 3D-
GR/IR sequence according to the following scan parameters:
matrix = 2562 × 56, field of view (FOV) = 240 × 240mm,
repetition time (TR) = 1,900ms, echo time (TE) = 2.48ms,
flip angle (FA) = 9◦, 176 slices, slice thickness = 1mm, and
spacing between slices = 0mm. The resting-state data were
acquired using the echo-planar imaging sequence according
to the following scan parameters: acquisition matrix = 64 ×

64, FOV = 240 × 240mm, TR = 2,000ms, TE = 30ms,
FA= 90◦, 36 slices, slice thickness= 4mm, and spacing between
slices= 4mm. A total of 250 volumes were recorded in 500 s.

MRI Data Preprocessing
The preprocessing of RS-fMRI data sets was carried out using
REST 1.8 software (http://restfmri.net/forum/) and DPARSF
4.4 software (http://rfmri.org/DPARSF) based on the MATLAB
2019a (version R2019a, MathWorks, Inc., Natick, MA, USA).
For each subject, the first 10 volumes of the data set
were removed to allow for MR signal equilibrium. The
remaining volumes were corrected for the acquisition time
delay between slices, realigned to the first volume for head
motion correction, specially normalized using the segmented T1-
weighted anatomical images, and then smoothed with a 6-mm
full-width at half-maximum Gaussian kernel. Participants with
head motion exceeding 2mm or 2◦ were excluded.

Group Independent Component Analysis
After the data preprocessing, we analyzed the group spatial ICA
by using Group ICA of fMRI Toolbox (GIFT v4.0b) (http://
mialab.mrn.org/software/gift/; Calhoun et al., 2002; Erhardt
et al., 2011) to decompose the data of all participants into
functional networks.

The principal component analysis was used to reduce the
dimensionality of data. The subject-specific data were first
reduced to 120 independent components (ICs), and then the
data were reduced to 100 ICs with the expectation–maximization
algorithm (Roweis, 1998) at the group level. We replicated the
Infomax ICA algorithm for 20 times (Himberg et al., 2004;
Lu et al., 2020) in ICASSO to evaluate the reliability of the
decomposition (Bell and Sejnowski, 1995). Then, the subject-
specific spatial maps and time courses for each IC were provided

using the back-reconstruction approach [group ICA (GICA)]
(Calhoun et al., 2001).

To perform the selection of ICs, based on the evaluation
of the ratio of high- to low-frequency power in the spectra of
components as well as whether peak activations took place in
gray matter (Robinson et al., 2009; Allen et al., 2011), 42 ICs
were identified and categorized into eight functional networks,
according to the spatial correlation values between ICs and
the templates (http://findlab.stanford.edu/functional_ROIs.html;
Shirer et al., 2012; Allen et al., 2014). As shown in Figure 1 and
Supplementary Figure 1, the functional networks were arranged
into basal ganglia, auditory (AUD), visual (VIS), sensorimotor
(SM), executive control (EC), default mode (DM), salience (SA),
and precuneus networks. In addition, the subject-specific spatial
maps and time courses were post-processed in 3D-DESPIKE
(http://afni.nimh.nih.gov/afni), filtering with a high-frequency
cutoff of 0.15 Hz.

Dynamic Functional Connectivity
Sliding Window Approach
The sliding window approach is widely used to compute the
Pearson’s correlation coefficient between time courses of ICs.
Following earlier studies, we restricted the window length of
22 TRs with a Gaussian alpha value = 3 and a step of one
repetition time (Allen et al., 2014; Damaraju et al., 2014;
Kim et al., 2017). Considering that it can be noisy for the
covariance estimation, the regularized inverse covariance matrix
was used (Varoquaux et al., 2010; Smith et al., 2011). During
the whole scan time, 208 consecutive windows were obtained
from each subject, in which 42 × 42 pair-wise covariance
matrix was calculated. Besides, the L1-norm was imposed
to promote sparsity in the graphic LASSO framework with
100 repetitions.

Clustering Analysis
To assess the frequency and structure of reoccurring FC patterns,
as suggested in an earlier study (Allen et al., 2014), the k-
means clustering algorithm was adopted to cluster all DFC
matrices. The L1 distance (i.e., Manhattan distance) function, an
effective approach to measure the similarity of high-dimensional
data, was used to estimate the similarity between window FC
matrices. To determine the optimal number of clusters, we
performed the clustering analysis by using the silhouette criterion
of the cluster validity index on the subsampling windows of
all subjects varying k from 2 to 10 (Yao et al., 2019). Finally,
k = 2 was determined, with the cluster medians regarded as FC
states (Supplementary Figure 3). The clustering algorithm was
repeated 500 times to increase the chance of escaping the local
minima (Wang et al., 2019).

State Analysis
To investigate the temporal properties of DFC states, we
computed fractional windows, mean dwell time, and the
number of state transitions for all participants. The “fractional
windows” is measured as the number of total windows in
each state, the mean “dwell time,” as the average number
of consecutive windows in a certain state before switching
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FIGURE 1 | Independent components (ICs; n = 42) identified by the group ICA. The IC spatial maps were divided into eight functional networks (namely, BG, AUD,

VIS, SMN, ECN, DMN, SAN, and PN).

to another state, and the number of state transitions, as the
number of state transitions, which stands for the reliability
of each state. Since the effectiveness of the states depended
on the span of states in window numbers, we determined
the minimum number of windows that a state covered
as equal to 10. Specifically, in the approach of the two-
sample t-test analysis (p < 0.05), we examined the group
differences in fractional windows, dwell time, and number
of transitions, between HCs and patients with AD. The
between-group differences among the patients with GAD,
patients with PD, and HCs were performed using an ANOVA
with age, gender, and years of education as covariates
(p < 0.05).

Moreover, we performed the two-sample independent t-tests
to calculate the connectivity strength of each state at each specific
regional pairing [i.e., 861 pairings; p < 0.05, False Discovery Rate
(FDR) correction] between groups.

Statistical Comparison and Correlation
Analysis
For the demographic and clinical characteristics, a permutation
one-way ANOVA was used to compare continuous variables,
and the chi-square test was used for categorical variables.
Additionally, a two-sample t-test was performed between the
AD subgroups.

For the relationships between altered network temporal
properties and clinical variables including HAMA scores and
disease duration, we performed the Spearman’s correlation
analysis in the AD group. All the statistical analyses were
performed using SPSS Statistic, release version 26.0 (SPSS,
Chicago, IL, USA).

RESULTS

Demographic and Clinical Characteristics
Table 1 shows all the statistical differences on the demographic
and clinical characteristics among the GAD, PD, and HC groups.
No significant differences were found in the age, gender, and
education level among the three groups. However, the outcomes
of HAMA were significantly different among these three groups
at p= 0.000.

Intrinsic Connectivity Networks
Based on the anatomical and functional attributes, we grouped
all 42 ICs in the following 8 intrinsic connectivity networks: basal
ganglia (ICs 8, 31, 37), AUD (ICs 9, 41, 57, 61), VIS (ICs 28, 33,
50, 55, 82, 92, 95), SMN (ICs 5, 7, 45, 98), ECN (ICs 40, 56, 59, 69,
71, 74), DMN (ICs 15, 62, 63, 65, 67, 75, 89, 96, 97), SAN (ICs 12,
27, 38, 39, 72, 78), and PN (ICs 43, 66, 99). The detailed spatial
maps of ICs are shown in Figure 1.
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TABLE 1 | Demographic and clinical characteristics of patients with GAD, patients with PD, and HCs in this study.

Variable GAD (n = 26) PD (n = 22) HC (n = 26) p-value

Age (years), mean ± SD 33.75 ± 9.651 35.35 ± 8.715 34.00 ± 9.430 0.817a

Sex, males (%) 15(57.69%) 12(54.55%) 13(50.00%) 0.855b

Duration of illness (years) 2.214 ± 3.122 2.596 ± 3.180 0.692c

Education (years) 12.458 ± 3.605 13.682 ± 3.697 14.846 ± 4.267 0.112a

HAMA-T 16.654 ± 5.211 18.500 ± 7.433 2.577 ± 1.758 0.000a*

GAD, generalized anxiety disorder; PD, panic disorder; HCs, healthy controls; HAMA-T, the total score of the Hamilton Anxiety Rating Scale.
aThe p-value was obtained by the permutation ANOVA.
bThe p-value was obtained by the Pearson’s chi-square test.
cThe p-value was obtained by the two-sample t-test.

*Represents the statistically significant value.

Dynamic Functional Connectivity State
Analysis
Temporal Properties
Based on the analysis of all participants, the group average
functional connectivity values among the independent
components are shown in Figure 2A. For the purpose of
the k-means clustering method, two patterns of structured FC
states were identified which recurred during individual scans and
across subjects. As shown in Figure 2B, there are two distinct
connectivity “States” across the entire group, namely, a more
segregated State I and a strongly integrated State II. Percentages
of total occurrences in these two states favored State I (78%) over
State II (22%).

As illustrated in Figure 2C, the GAD and PD groups
were mentioned as AD group. Group-specific cluster centroids
were obtained by the k-means clustering algorithm. Generally,
regardless of the subpopulation (i.e., HC, GAD, and PD groups),
State I contained sparse connections between ICs but exhibited
more connections within each intrinsic connectivity network
(i.e., AUD, VIS, ECN, DMN, and SAN) as observed through
positive coupling. In contrast, State II was noted to own stronger
internetwork connections, which involved the AUD, VIS, ECN,
DMN, SAN, and PN networks.

Besides, there was a significant group difference in fractional
windows (p < 0.05, two-sample t-test). In AD, State I occurred
more frequently (83.21± 22.20%) than State II (16.79± 22.20%).
In HCs, comparatively, the total occurrences of State I were
observed less frequently (68.20 ± 30.78%; p = 0.037) and State
II occurred more commonly (31.80 ± 30.78%; p = 0.037) by
contrast to AD (Figure 3A). In addition, State I in PD (84.11 ±

15.96%; p = 0.030) was found significantly different from that in
HCs, whereas State I in GAD (82.45 ± 26.32%) was not found
significantly different.

Figure 3B shows the significant group differences that were
identified in the mean dwell time of each state. Concretely,
the mean dwell time of AD group was significantly longer
than that of HC group in State I (AD: 109.50 ± 67.90, HCs:
74.67 ± 56.80; p = 0.031), whereas the mean dwell time in
State II was significantly shorter in the AD group compared
with the HC group (AD: 16.86 ± 17.40, HCs: 27.38 ± 22.68;
p = 0.031). Among the GAD, PD, and HC groups, a further
analysis indicated that patients with GAD (116.29± 66.93) spent

more time in State I than the other groups, while in State II,
patients with PD (14.39 ± 9.79) showed a significantly shorter
mean dwell time than others.

As shown in Figure 3C, no significant differences were found
in regard to the number of transitions betweenHC group and AD
group. Nevertheless, there was a trend for more transitions in the
HCs (AD: 2.67± 2.50, HCs: 3.42± 2.13; p= 0.202). Additionally,
we compared the AD subgroups to HCs and found the result of a
significant difference between GAD and HC groups (GAD: 2.08
± 1.73; p= 0.045).

These changes in the temporal properties showed that patients
with AD, including GAD and PD, spend more time in the weakly
within-network State I, while performing fewer transitions and
dwelling shorter in the integrated State II with the strongly
connected functional internetwork components.

Strength of Dynamic States
A comparison of the strength of connections among states
was performed in the AD and HC groups. As for State I,
comparing HCs to AD, we only found three between-network
connections (HCs > AD; p < 0.05; FDR correction). With
the uncorrected condition, there were 26 within- and between-
network connections (HCs > AD; p < 0.01), 88.46% of which
were related to SAN and DMN networks. The remaining
connections were in AUD–ECN, VIS–SMN, and ECN–ECN
networks. Besides, 12 within- and between-network connections
were also found in patients with AD compared with HCs (i.e.,
BG–AUD, BG–SMN, BG–ECN, BG–SAN, AUD–ECN, AUD–
SAN, SMN–SMN, and SMN–PN; AD>HCs; p< 0.01; Figure 4).

Comparing HCs to patients with AD, 96.15% (25/26)
of connections were in positive relation (p < 0.01) to a
triple network model related to the aspects of attentive,
executive, self-related, and affective information processing
domains. However, comparing patients with AD to HCs, 66.67%
(8/12) of connections negatively correlated (p < 0.01) to
BG network. In short, these results indicate that changes in
connection strength may reveal the dysfunctional cognitive and
psychological processes.

The same analyses for State II were repeated, suggesting
that connections were mainly related to DMN network when
comparing HCs to patients with AD (10/11) (p < 0.01),
while connections are stronger involving SMN network when
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FIGURE 2 | Functional connectivity (FC) results. (A) Group-averaged static FC between IC pairs was computed using the entire resting-state data. (B) Results of the

clustering analysis for each state. The total number of occurrences and the percentage of total occurrences are listed for each state. (C) Group centroid matrices and

group-averaged across subject-specific median cluster centroids of each group [the percentage of total occurrences for states I and II: 68.20 and 31.80% in the

healthy controls (HCs) and 83.21 and 16.79% in the anxiety disorder (AD) groups, respectively]. The value in the correlation matrix represents the Fisher’s

z-transformed Pearson’s correlation coefficient. Based on 8 functional networks, 42 ICs were rearranged individually.
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FIGURE 3 | The temporal properties of dynamic functional connectivity (DFC) states between AD and HCs, and also among generalized anxiety disorder (GAD), panic

disorder (PD), and HCs. (A) The percentage of the mean fractional window subjects spent in each state. (B) Mean dwell time. (C) Number of transitions were depicted

using violin plots. *Indicates that the difference between the two groups is statistically significant (P < 0.05).

comparing patients with AD to HCs. However, no significant
differences were found between GAD and PD groups (p < 0.05;
FDR correction).

Relationship With Clinical Properties
As demonstrated inTable 2, the Spearman’s analyses were carried
out to test the correlations between temporal features and clinical

variables in the GAD and PD groups. Specifically, with regard
to the GAD group, we observed that the HAMA-sum scores
were statistically associated with mean dwell time in each state
and fractional windows (p < 0.05), and moreover, the HAMA-
somatic anxiety scores had an even more significant correlation
(p < 0.01) with dwell time in State I. Conversely, in the PD
group, there turned out to be no significant correlations between
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FIGURE 4 | The results of FC strength in each state. The results of the two-sample t-test of HC and AD groups are listed, where the AD group had a weaker or

stronger FC pattern in comparison with the HCs.

TABLE 2 | The correlations between the temporal properties of dynamic functional connectivity and the clinical characteristics.

Variable HAMA-T HAMA-S HAMA-P Disease duration

GAD PD GAD PD GAD PD GAD PD

Dwell time State I r 0.420 0.185 0.515 0.154 0.263 0.182 −0.343 0.109

p-value 0.032* 0.410 0.007* 0.494 0.195 0.417 0.093 0.630

Dwell time State II r −0.440 −0.057 −0.383 −0.059 −0.384 −0.109 0.156 0.052

p-value 0.025* 0.801 0.054 0.793 0.053 0.630 0.457 0.818

Fractional windows r 0.471 0.202 0.439 0.178 0.386 0.201 −0.262 0.096

p-value 0.015* 0.367 0.025* 0.427 0.052 0.370 0.205 0.672

Number of transitions r −0.358 −0.177 −0.480 −0.157 −0.207 −0.149 0.410 −0.120

p-value 0.073 0.431 0.013* 0.485 0.311 0.508 0.042* 0.595

HAMA-T, the total score of the Hamilton Anxiety Rating Scale; HAMA-S, the somatic anxiety score of the Hamilton Anxiety Rating Scale; HAMA-P, the psychic anxiety score of the

Hamilton Anxiety Rating Scale.

*Represents the statistically significant value.

time-varying properties and clinical measures. In addition, illness
duration seemed to have less relevance to the DFC characteristics.

DISCUSSION

In the past few years, many studies have turned to focus on
the temporal features in the fluctuations of spontaneous brain
activities and come to a preliminary conclusion that DFC may
serve as an efficient diagnostic biomarker for neuropsychiatric
disease (Allen et al., 2014; Nieuwhof and Helmich, 2017). To
our knowledge, this study is the first whole-brain resting-
state FC (RSFC) analysis to investigate common and specific
time-varying FC alterations between patients with GAD and
PD, focusing on the temporal features and the strength of
dynamic states.

As stated in this study, two distinct connectivity states were
identified across the entire group, one of which was characterized
by weakly connected but more frequent, and the other was
integrated and strongly connected but less frequent. Comparing
patients with AD to HCs, we found that the expression of
segregated State I increased by 15.01% in the AD group, while
the occurrence of integrated State II turned lower. As concluded
in an earlier DFC study on major depression disorder (MDD),
the increased occurrence in the weakly connected state indicated
that patients with MDD would have more severe depressive
symptoms (Yao et al., 2019). By means of the Spearman’s
correlation analysis, there is significantly positive correlation
between fractional windows and HAMA scores, implying that
the DFC index may contribute to the diagnosis and the severity
evaluation of ADs.
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Other temporal properties were also found significantly
different among GAD, PD, and HC groups in the segregated
state, suggesting that the AD group tends to display a more
stable pattern. We observed that the AD group dwelled longer
in segregated State I and spent less time in the integrated State
II. Compatible with the results obtained in other neurological
and psychiatric conditions, the disease group stayed longer
in the state with sparse connections (Yao et al., 2016; Liu
et al., 2017) and may indicate the decreased information
communication (Wang et al., 2019). Furthermore, consistent
with evidence suggesting that within-network communication
is essential for motor execution, the mean dwell time of the
AD group in State I had significant positive correlations with
the HAMA-somatic anxiety score. Notably, compared with
the PD group, the GAD group occurred more frequently
and occupied more time in the segregated State I. Referring
to previous findings, it was suggested that the increased FC
between hippocampus/parahippocampus and fusiform gyrus in
GAD were mainly related to a fear generalization-related neural
circuit, which was regarded as evaluation processing, whereas
the greater FC between somatosensory cortex and thalamus in
PD were more likely correlated to detection processing (Cui
et al., 2016). In this respect, our result is in line with what
has been reported earlier (Fiorenzato et al., 2019), suggesting
that increased brain network functional segregation was closely
associated with cognitive performance.

However, contrary to these reports, the reduction in
transitioning between two FC patterns fails to distinguish
patients with AD from HCs. Meanwhile, among the GAD, PD,
and HC groups, the number of transitioning between states in
GAD statistically differed from that in HCs, indicating that GAD
exhibited more steady dynamic connectivity pattern during the
whole scanning. Considering the fact that the rate of transitions
may serve as a measure of reduced cognitive flexibility (Guitart-
Masip et al., 2016; Yao et al., 2019), our findings suggested that
patients with GADmay suffer more severe cognitive dysfunction.

Taken together, our findings show that the DFC properties
may efficiently differentiate patients with AD from HCs and thus
have the potential of a clinical biomarker. Moreover, further
studies with larger sample sizes are needed to confirm whether
patients with GAD are more sensitive to the DFC properties than
patients with PD.

Further, regarding the strength of dynamic states, we observed
that almost half of the within- and between-network connections
in two states (26/61) were associated with the triple networks.
This model is known as a unifying pattern to explain the neural
physiopathology of psychiatric and neurological disorders,
involving SAN, DMN, and ECN (Menon, 2011).

Specifically, in the weakly connected State I, the decreased
functional connections in ADs were mostly found in SAN–DMN
and DMN–ECN. For SAN, it is implicated that the left and right
dorsal Anterior Cingulate Cortex (dACC) were involved in the
processing of somatosensory information, attentional control,
and self-awareness (Bisley and Goldberg, 2010; Koechlin, 2011).
For DMN, it is known to be in correlation with self-reference
(Kelley et al., 2002; Northoff et al., 2006) and plays an important
role in monitoring the internal mental landscape (Greicius et al.,

2003; Qin and Northoff, 2011). In particular, many studies have
provided clues to FC alterations that both GAD and PD have
abnormal RSFC in DMN and SAN (Pannekoek et al., 2013;
Andrew et al., 2014; Yao et al., 2017; Kim and Yoon, 2018).
Interestingly, we found that the connections between SAN and
DMN in ADs were remarkably decreased compared with HCs,
suggesting that patients with AD may be weak in identifying
the most homeostatically relevant among several internal and
external stimuli.

Meanwhile, in accordance with an earlier meta-analysis,
decreased connectivity in the DMN and ECN may be related
to poor emotion regulation (indicated by hyperactivity of the
amygdala), which has been regarded as a central feature in the
neuropathophysiology of ADs (Xu et al., 2019). Additionally,
the findings in the MDD reported similar results, revealing
that the reduced communication in DMN–ECN may be due to
difficulty in switching from a “default-state” to an “executive-
state” (Hamilton et al., 2013; Mulders et al., 2015; Yao et al., 2019).
Notably, for State I, we also observed eight stronger connections
between DMN and AUD (HCs > AD), adding to the view
that anxiety may lead to poor auditory information processing.
Comparing GAD to PD, however, we did not find any significant
differences, implying that these two ADs may have common
resting-state network activation.

LIMITATION

This study should be interpreted cautiously due to several
limitations as followed. First, patients with PD were out of drug-
free state when the fMRI scanning was performed, so that we
cannot exclude the medical effects on FC. Second, taking sample
size into consideration, this study may fail to detect some group
differences. Despite the reason that the PD group is less sensitive
in the DFC analyses, the non-significant values of correlations
between DFC features and HAMA scores in the PD group
may result from the sample size. Therefore, more participants
need to be performed for further verification. Also, according to
earlier evidence, the AD is bound up with cognitive and affective
dysfunctions (Liberzon et al., 2015; Brinkmann et al., 2017;
Neufang et al., 2018), but our brain findings did not correlate with
the specific cognitive performance on the attention, executive,
and memory domains. Finally, we performed the RS-fMRI data
acquisitions in a duration of 8min for only once, resulting in a
lack of two scanning runs for checking the consistency of the
analyses. Moreover, comply with an earlier study, the length of
resting-state acquisitions needed to be longer than 10min in the
DFC analyses, so as to precisely detect the temporal properties.

CONCLUSIONS

This study analyzed an in-depth assessment regarding DFC
features in the GAD and PD groups. Most notably, our findings
may suggest that patients with AD can be distinguished from
HCs according to the DFC alterations in the resting state. Besides,
the GAD group might have the potential to be more sensitive to
these time-varying properties than the PD group, which requires
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further analyses in future studies. Additionally, our study shows
that connections associated with ADs were identified including
the regions that belonged to DM, EC, and SA networks, especially
the connections between SAN and DMN, which may help to
explain the abnormal affective and cognitive functions. These
findings implied that GAD and PD may have similar state-
dependent neurophysiological mechanisms and, in addition, the
DFC characteristics could hopefully help us better understand
their abnormal affective and cognitive performances in the clinic.

DATA AVAILABILITY STATEMENT

The original contributions generated for the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author/s.

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by Medical ethics committee of Brain
Hospital Affiliated to Nanjing Medical University. The
patients/participants provided their written informed consent
to participate in this study. Written informed consent
was obtained from the individual(s) for the publication

of any potentially identifiable images or data included in
this article.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

FUNDING

This study was supported by the National Natural Science
Foundation of China (81971289 and 81871344), Jiangsu
Provincial Key Research and Development Program
(BE2019609), the Natural Science Foundation of Jiangsu
Province (BK20191369), the Natural Science Foundation of
the Higher Education Institutions of Jiangsu Province, China
(18KJB190003), and Major Project of Nanjing Medical Science
and Technology Development (ZKX19028).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnhum.
2021.647518/full#supplementary-material

REFERENCES

Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T., and Calhoun, V. D.

(2014). Tracking whole-brain connectivity dynamics in the resting state. Cereb.

Cortex 24, 663–676. doi: 10.1093/cercor/bhs352

Allen, E. A., Erhardt, E. B., Damaraju, E., Gruner, W., Segall, J. M., Silva, R. F., et al.

(2011). A baseline for the multivariate comparison of resting-state networks.

Front. Syst. Neurosci. 5:2. doi: 10.3389/fnsys.2011.00002

Andrew, P., Paul, F., Janine, T., and Ruth, L. (2014). Resting-state neuroimaging

studies: a new way of identifying differences and similarities among the anxiety

disorders? Can. J. Psychiatry 59, 294–300. doi: 10.1177/070674371405900602

Bell, A. J., and Sejnowski, T. J. (1995). An information-maximization approach

to blind separation and blind deconvolution. Neural Comput. 7, 1129–1159.

doi: 10.1162/neco.1995.7.6.1129

Bisley, J. W., and Goldberg, M. E. (2010). Attention, intention,

and priority in the parietal lobe. Annu. Rev. Neurosci. 33, 1–21.

doi: 10.1146/annurev-neuro-060909-152823

Brinkmann, L., Buff, C., Feldker, K., Tupak, S. V., Becker, M. P. I., Herrmann, M. J.,

et al. (2017). Distinct phasic and sustained brain responses and connectivity of

amygdala and bed nucleus of the stria terminalis during threat anticipation in

panic disorder. Psychol. Med. 47, 2675–2688. doi: 10.1017/S0033291717001192

Calhoon, G. G., and Tye, K. M. (2015). Resolving the neural circuits of anxiety.

Nat. Neurosci. 18, 1394–1404. doi: 10.1038/nn.4101

Calhoun, V. D., Adali, T., Pearlson, G. D., and Pekar, J. J. (2001). Spatial

and temporal independent component analysis of functional MRI data

containing a pair of task-related waveforms. Hum. Brain Mapp. 13, 43–53.

doi: 10.1002/hbm.1024

Calhoun, V. D., Adali, T., Pearlson, G. D., and Pekar, J. J. (2002). A method

for making group inferences from functional MRI data using independent

component analysis. Hum. Brain Mapp. 16, 131–131. doi: 10.1002/hbm.

10044

Calhoun, V. D., Miller, R., Pearlson, G., and Adali, T. (2014). The chronnectome:

time-varying connectivity networks as the next frontier in fMRI data discovery.

Neuron 84, 262–274. doi: 10.1016/j.neuron.2014.10.015

Cui, H., Zhang, J., Liu, Y., Li, Q., Li, H., Zhang, L., et al. (2016).

Differential alterations of resting-state functional connectivity in generalized

anxiety disorder and panic disorder. Hum. Brain Mapp. 37, 1459–1473.

doi: 10.1002/hbm.23113

Damaraju, E., Allen, E. A., Belger, A., Ford, J. M., McEwen, S., Mathalon, D.

H., et al. (2014). Dynamic functional connectivity analysis reveals transient

states of dysconnectivity in schizophrenia. Neuroimage Clin. 5, 298–308.

doi: 10.1016/j.nicl.2014.07.003

Erhardt, E. B., Rachakonda, S., Bedrick, E. J., Allen, E. A., Adali, T., and Calhoun,

V. D. (2011). Comparison of multi-subject ICA methods for analysis of fMRI

data. Hum. Brain Mapp. 32, 2075–2095. doi: 10.1002/hbm.21170

Etkin, A., Prater, K. E., Schatzberg, A. F., Menon, V., and Greicius, M. D. (2009).

Disrupted amygdalar subregion functional connectivity and evidence of a

compensatory network in generalized anxiety disorder. Arch. Gen. Psychiatry

66, 1361–1372. doi: 10.1001/archgenpsychiatry.2009.104

Fiorenzato, E., Strafella, A. P., Kim, J., Schifano, R., Weis, L., Antonini, A., et al.

(2019). Dynamic functional connectivity changes associated with dementia in

Parkinson’s disease. Brain 142, 2860–2872. doi: 10.1093/brain/awz192

Francesmonneris, A., Pincus, H., and First, M. (2013). Diagnostic and Statistical

Manual of Mental Disorders: DSM-V. American Psychiatric Association.

Greicius, M. D., Flores, B. H., Menon, V., Glover, G. H., Solvason, H. B., Kenna,

H., et al. (2007). Resting-state functional connectivity in major depression:

abnormally increased contributions from subgenual cingulate cortex and

thalamus. Biol. Psychiatry 62, 429–437. doi: 10.1016/j.biopsych.2006.09.020

Greicius, M. D., Krasnow, B., Reiss, A. L., and Menon, V. (2003).

Functional connectivity in the resting brain: a network analysis of the

default mode hypothesis. Proc. Natl. Acad. Sci. U.S.A. 100, 253–258.

doi: 10.1073/pnas.0135058100

Grupp, H., Koenig, H. H., and Konnopka, A. (2014). Cost measurement of mental

disorders in Germany. J. Ment. Health Policy Econ. 17, 3–8.

Guitart-Masip, M., Salami, A., Garrett, D., Rieckmann, A., Lindenberger, U.,

and Bäckman, L. (2016). BOLD variability is related to dopaminergic

neurotransmission and cognitive aging. Cereb. Cortex 26, 2074–2083.

doi: 10.1093/cercor/bhv029

Hahn, A., Stein, P., Windischberger, C., Weissenbacher, A., Spindelegger, C.,

Moser, E., et al. (2011). Reduced resting-state functional connectivity between

amygdala and orbitofrontal cortex in social anxiety disorder. NeuroImage 56,

881–889. doi: 10.1016/j.neuroimage.2011.02.064

Frontiers in Human Neuroscience | www.frontiersin.org 10 July 2021 | Volume 15 | Article 647518

https://www.frontiersin.org/articles/10.3389/fnhum.2021.647518/full#supplementary-material
https://doi.org/10.1093/cercor/bhs352
https://doi.org/10.3389/fnsys.2011.00002
https://doi.org/10.1177/070674371405900602
https://doi.org/10.1162/neco.1995.7.6.1129
https://doi.org/10.1146/annurev-neuro-060909-152823
https://doi.org/10.1017/S0033291717001192
https://doi.org/10.1038/nn.4101
https://doi.org/10.1002/hbm.1024
https://doi.org/10.1002/hbm.10044
https://doi.org/10.1016/j.neuron.2014.10.015
https://doi.org/10.1002/hbm.23113
https://doi.org/10.1016/j.nicl.2014.07.003
https://doi.org/10.1002/hbm.21170
https://doi.org/10.1001/archgenpsychiatry.2009.104
https://doi.org/10.1093/brain/awz192
https://doi.org/10.1016/j.biopsych.2006.09.020
https://doi.org/10.1073/pnas.0135058100
https://doi.org/10.1093/cercor/bhv029
https://doi.org/10.1016/j.neuroimage.2011.02.064
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Xu et al. Intrinsic Dysfunction in Anxiety Disorders

Hamilton, J. P., Chen,M. C., and Gotlib, I. H. (2013). Neural systems approaches to

understanding major depressive disorder: an intrinsic functional organization

perspective. Neurobiol. Dis. 52, 4–11. doi: 10.1016/j.nbd.2012.01.015

Hamilton,M. (1959). The assessment of anxiety states by rating. Br. J. Med. Psychol.

32, 50–55. doi: 10.1111/j.2044-8341.1959.tb00467.x

Hilbert, K., Lueken, U., and Beesdo-Baum, K. (2014). Neural structures,

functioning and connectivity in Generalized Anxiety Disorder and interaction

with neuroendocrine systems: a systematic review. J. Affect. Disord. 158,

114–126. doi: 10.1016/j.jad.2014.01.022

Himberg, J., Hyvarinen, A., and Esposito, F. (2004). Validating the independent

components of neuroimaging time series via clustering and visualization.

Neuroimage 22, 1214–1222. doi: 10.1016/j.neuroimage.2004.03.027

Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A.,

Calhoun, V. D., Corbetta, M., et al. (2013). Dynamic functional

connectivity: promise, issues, and interpretations. Neuroimage 80, 360–378.

doi: 10.1016/j.neuroimage.2013.05.079

Kelley, W. M., Macrae, C. N., Wyland, C. L., Caglar, S., Inati, S., and Heatherton,

T. F. (2002). Finding the self? An event-related fMRI study. Cogn. Neurosci. 14,

785–794. doi: 10.1162/08989290260138672

Kim, J., Criaud, M., Cho, S. S., Diez-Cirarda, M., Mihaescu, A., Coakeley, S., et al.

(2017). Abnormal intrinsic brain functional network dynamics in Parkinson’s

disease. Brain 140, 2955–2967. doi: 10.1093/brain/awx233

Kim, Y. K., and Yoon, H. K. (2018). Common and distinct brain networks

underlying panic and social anxiety disorders. Prog. Neuropsychopharmacol.

Biol. Psychiatry 80(Pt B), 115–122. doi: 10.1016/j.pnpbp.2017.06.017

Koechlin, E. (2011). Frontal pole function: what is specifically human? Trends

Cogn. Sci. 15:241. doi: 10.1016/j.tics.2011.04.005

Lawrie, S. M., Buechel, C., Whalley, H. C., Frith, C. D., Friston, K. J., and

Johnstone, E. C. (2002). Reduced frontotemporal functional connectivity in

schizophrenia associated with auditory hallucinations. Biol. Psychiatry 51,

1008–1011. doi: 10.1016/S0006-3223(02)01316-1

Li, W., Cui, H., Zhu, Z., Kong, L., Guo, Q., Zhu, Y., et al. (2016). Aberrant

functional connectivity between the amygdala and the temporal pole

in drug-free generalized anxiety disorder. Front. Hum. Neurosci. 10:549.

doi: 10.3389/fnhum.2016.00549

Li, X., Zhu, D., Jiang, X., Jin, C., Zhang, X., Guo, L., et al. (2014). Dynamic

functional connectomics signatures for characterization and differentiation of

PTSD patients. Hum. Brain Mapp. 35, 1761–1778. doi: 10.1002/hbm.22290

Liberzon, I., Duval, E., and Javanbakht, A. (2015). Neural circuits in anxiety and

stress disorders: aandnbsp;focused review. Ther. Clin. Risk Manag. 11, 115–126.

doi: 10.2147/TCRM.S48528

Liu, F., Wang, Y., Li, M., Wang, W., Li, R., Zhang, Z., et al. (2017).

Dynamic functional network connectivity in idiopathic generalized epilepsy

with generalized tonic-clonic seizure. Hum. Brain Mapp. 38, 957–973.

doi: 10.1002/hbm.23430

Lu, F., Cui, Q., Huang, X., Li, L., Duan, X., Chen, H., et al. (2020). Anomalous

intrinsic connectivity within and between visual and auditory networks

in major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry

100:109889. doi: 10.1016/j.pnpbp.2020.109889

Makovac, E., Mancini, M., Fagioli, S., Watson, D. R., Meeten, F., Rae, C. L.,

et al. (2018). Network abnormalities in generalized anxiety pervade beyond the

amygdala-pre-frontal cortex circuit: insights from graph theory. Psychiatry Res.

Neuroimaging 281, 107–116. doi: 10.1016/j.pscychresns.2018.09.006

Menon, V. (2011). Large-scale brain networks and psychopathology:

a unifying triple network model. Trends Cogn. Sci. 15, 483–506.

doi: 10.1016/j.tics.2011.08.003

Mulders, P. C., van Eijndhoven, P. F., Schene, A. H., Beckmann, C. F.,

and Tendolkar, I. (2015). Resting-state functional connectivity in major

depressive disorder: a review. Neurosci. Biobehav. Rev. 56, 330–344.

doi: 10.1016/j.neubiorev.2015.07.014

Neufang, S., Geiger, M. J., Homola, G. A., Mahr, M., Schiele, M. A., Gehrmann,

A., et al. (2018). Cognitive-behavioral therapy effects on alerting network

activity and effective connectivity in panic disorder. Eur. Arch. Psychiatry Clin.

Neurosci. 269, 587–598. doi: 10.1007/s00406-018-0945-8

Nieuwhof, F., and Helmich, R. C. (2017). Entangled cerebral networks in

Parkinson’s disease. Brain 140, 2767–2769. doi: 10.1093/brain/awx267

Northoff, G., Heinzel, A., de Greck, M., Bermpohl, F., Dobrowolny, H.,

and Panksepp, J. (2006). Self-referential processing in our brain-A

meta-analysis of imaging studies on the self. Neuroimage 31, 440–457.

doi: 10.1016/j.neuroimage.2005.12.002

Ou, J., Xie, L., Jin, C., Li, X., Zhu, D., Jiang, R., et al. (2015). Characterizing and

differentiating brain state dynamics via hidden markov models. Brain Topogr.

28, 666–679. doi: 10.1007/s10548-014-0406-2

Pannekoek, J. N., Veer, I. M., van Tol, M. J., van der Werff, S. J., Demenescu, L.

R., Aleman, A., et al. (2013). Aberrant limbic and salience network resting-state

functional connectivity in panic disorder without comorbidity. J. Affect. Disord.

145, 29–35. doi: 10.1016/j.jad.2012.07.006

Qin, P., and Northoff, G. (2011). How is our self related to midline

regions and the default-mode network? Neuroimage 57, 1221–1233.

doi: 10.1016/j.neuroimage.2011.05.028

Robinson, S., Basso, G., Soldati, N., Sailer, U., Jovicich, J., Bruzzone, L., et al. (2009).

A resting state network in the motor control circuit of the basal ganglia. BMC

Neurosci. 10:137. doi: 10.1186/1471-2202-10-137

Roweis, S. (1998). EM algorithms for PCA and SPCA. Adv. Neural Inf. Process.

Syst. 10, 626–632.

Shin, Y.W., Dzemidzic, M., Jo, H. J., Long, Z., Medlock, C., Dydak, U., et al. (2013).

Increased resting-state functional connectivity between the anterior cingulate

cortex and the precuneus in panic disorder: resting-state connectivity in panic

disorder. J. Affect. Disord. 150, 1091–1095. doi: 10.1016/j.jad.2013.04.026

Shirer, W. R., Ryali, S., Rykhlevskaia, E., Menon, V., and Greicius, M. D.

(2012). Decoding subject-driven cognitive states with whole-brain connectivity

patterns. Cerebral Cortex. 22, 158–165. doi: 10.1093/cercor/bhr099

Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Mickle Fox, P., Mackay,

C. E., et al. (2009). Correspondence of the brain’s functional architecture

during activation and rest. Proc. Natl. Acad. Sci. U.S.A. 106, 13040–13045.

doi: 10.1073/pnas.0905267106

Smith, S. M., Miller, K. L., Salimi-Khorshidi, G., Webster, M., Beckmann, C. F.,

Nichols, T. E., et al. (2011). Networkmodelling methods for FMRI.Neuroimage

54, 875–891. doi: 10.1016/j.neuroimage.2010.08.063

Varoquaux, G., Gramfort, A., Poline, J.-B., and Thirion, B. (2010). “Brain

covariance selection: better individual functional connectivity models using

population prior,” in Paper Presented at the Advances in Neural Information

Processing Systems (Vancouver, BC).

Wang, Y., Wang, X., Ye, L., Yang, Q., Cui, Q., He, Z., et al. (2019). Spatial

complexity of brain signal is altered in patients with generalized anxiety

disorder. J. Affect. Disord. 246, 387–393. doi: 10.1016/j.jad.2018.12.107

Wu, Y., Zhong, Y., Ma, Z., Lu, X., Zhang, N., Fox, P. T., et al. (2018). Gray

matter changes in panic disorder: a voxel-based meta-analysis and meta-

analytic connectivity modeling. Psychiatry Res. Neuroimaging 282, 82–89.

doi: 10.1016/j.pscychresns.2018.09.009

Xu, J., Van Dam, N. T., Feng, C., Luo, Y., Ai, H., Gu, R., et al. (2019). Anxious brain

networks: a coordinate-based activation likelihood estimation meta-analysis of

resting-state functional connectivity studies in anxiety.Neurosci. Biobehav. Rev.

96, 21–30. doi: 10.1016/j.neubiorev.2018.11.005

Yao, Z., Hu, B., Xie, Y., Zheng, F., Liu, G., Chen, X., et al. (2016). Resting-state

time-varying analysis reveals aberrant variations of functional connectivity in

autism. Front. Hum. Neurosci. 10:463. doi: 10.3389/fnhum.2016.00463

Yao, Z., Liao, M., Hu, T., Zhang, Z., Zhao, Y., Zheng, F., et al. (2017). An effective

method to identify adolescent generalized anxiety disorder by temporal

features of dynamic functional connectivity. Front. Hum. Neurosci. 11:492.

doi: 10.3389/fnhum.2017.00492

Yao, Z., Shi, J., Zhang, Z., Zheng, W., Hu, T., Li, Y., et al. (2019). Altered dynamic

functional connectivity in weakly-connected state in major depressive disorder.

Clin. Neurophysiol. 130, 2096–2104. doi: 10.1016/j.clinph.2019.08.009

Zhong, Y., Wang, C., Gao, W., Xiao, Q., Lu, D., Jiao, Q., et al. (2018). Aberrant

resting-state functional connectivity in the default mode network in pediatric

bipolar disorder patients with and without psychotic symptoms.Neurosci. Bull.

35, 581–590. doi: 10.1007/s12264-018-0315-6

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Xu, Xu, Ding, Li and Wang. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Human Neuroscience | www.frontiersin.org 11 July 2021 | Volume 15 | Article 647518

https://doi.org/10.1016/j.nbd.2012.01.015
https://doi.org/10.1111/j.2044-8341.1959.tb00467.x
https://doi.org/10.1016/j.jad.2014.01.022
https://doi.org/10.1016/j.neuroimage.2004.03.027
https://doi.org/10.1016/j.neuroimage.2013.05.079
https://doi.org/10.1162/08989290260138672
https://doi.org/10.1093/brain/awx233
https://doi.org/10.1016/j.pnpbp.2017.06.017
https://doi.org/10.1016/j.tics.2011.04.005
https://doi.org/10.1016/S0006-3223(02)01316-1
https://doi.org/10.3389/fnhum.2016.00549
https://doi.org/10.1002/hbm.22290
https://doi.org/10.2147/TCRM.S48528
https://doi.org/10.1002/hbm.23430
https://doi.org/10.1016/j.pnpbp.2020.109889
https://doi.org/10.1016/j.pscychresns.2018.09.006
https://doi.org/10.1016/j.tics.2011.08.003
https://doi.org/10.1016/j.neubiorev.2015.07.014
https://doi.org/10.1007/s00406-018-0945-8
https://doi.org/10.1093/brain/awx267
https://doi.org/10.1016/j.neuroimage.2005.12.002
https://doi.org/10.1007/s10548-014-0406-2
https://doi.org/10.1016/j.jad.2012.07.006
https://doi.org/10.1016/j.neuroimage.2011.05.028
https://doi.org/10.1186/1471-2202-10-137
https://doi.org/10.1016/j.jad.2013.04.026
https://doi.org/10.1093/cercor/bhr099
https://doi.org/10.1073/pnas.0905267106
https://doi.org/10.1016/j.neuroimage.2010.08.063
https://doi.org/10.1016/j.jad.2018.12.107
https://doi.org/10.1016/j.pscychresns.2018.09.009
https://doi.org/10.1016/j.neubiorev.2018.11.005
https://doi.org/10.3389/fnhum.2016.00463
https://doi.org/10.3389/fnhum.2017.00492
https://doi.org/10.1016/j.clinph.2019.08.009
https://doi.org/10.1007/s12264-018-0315-6
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles

	Intrinsic Network Brain Dysfunction Correlates With Temporal Complexity in Generalized Anxiety Disorder and Panic Disorder
	Introduction
	Materials and Methods
	Participants
	Demographic and Clinical Measures
	MRI Data Acquisition
	MRI Data Preprocessing
	Group Independent Component Analysis
	Dynamic Functional Connectivity
	Sliding Window Approach

	Clustering Analysis
	State Analysis
	Statistical Comparison and Correlation Analysis

	Results
	Demographic and Clinical Characteristics
	Intrinsic Connectivity Networks
	Dynamic Functional Connectivity State Analysis
	Temporal Properties

	Strength of Dynamic States
	Relationship With Clinical Properties

	Discussion
	Limitation
	Conclusions
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


