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Brain–computer interfaces can provide a new communication channel and control

functions to people with restricted movements. Recent studies have indicated the

effectiveness of brain–computer interface (BCI) applications. Various types of applications

have been introduced so far in this field, but the number of those available to the public

is still insufficient. Thus, there is a need to expand the usability and accessibility of BCI

applications. In this study, we introduce a BCI application for users to experience a

virtual world tour. This software was built on three open-source environments and is

publicly available through the GitHub repository. For a usability test, 10 healthy subjects

participated in an electroencephalography (EEG) experiment and evaluated the system

through a questionnaire. As a result, all the participants successfully played the BCI

application with 96.6% accuracy with 20 blinks from two sessions and gave opinions

on its usability (e.g., controllability, completeness, comfort, and enjoyment) through the

questionnaire. We believe that this open-source BCI world tour system can be used in

both research and entertainment settings and hopefully contribute to open science in the

BCI field.
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INTRODUCTION

Brain–computer interfaces are a form of technology that enables direct communication between
humans and a computer through brain oscillation. Since it can improve the quality of life for
disabled patients by providing a new communication channel, it has been given much attention
and subsequently advanced over the last 40 years (Schmidt, 1980; Georgopoulos et al., 1986; Farwell
and Donchin, 1988;Wolpaw et al., 2000; Curran and Stokes, 2003; Lotte et al., 2007; Nicolas-Alonso
and Gomez-Gil, 2012; Hamedi et al., 2016; Abiri et al., 2019).

The P300 BCI is a paradigm popularly used in brain–computer interface (BCI) development
(Fazel-Rezai et al., 2012). This paradigm uses the P300 component, which is a positive response
raised about 300 msec after the presentation of an odd stimulus. Indeed, numerous studies have
shown the feasibility of utilizing the P300 BCI with patients (e.g., patients with amyotrophic lateral
sclerosis, ALS) and healthy subjects to communicate. For example, the P300 speller has been used
as a tool to measure the performance of the P300 BCI system to see if the system can be used
by ALS patients (Nijboer et al., 2008; Guy et al., 2018), to unveil the cognitive characteristics
(e.g., temporal differences in visual stimulus processing compared with healthy people) of patients
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(Riccio et al., 2018), or to confirm the efficacy of the system
to many people (Guger et al., 2009). The P300 speller, a
brainwave-based typewriter that uses the P300 BCI paradigm,
usually consists of rows and columns with alphabetic/numeric
characters and detects the intended character of the user based
on the elicited P300 component by flashing rows/columns
(Farwell and Donchin, 1988; Won et al., 2019). This system has
several advantages. First, it shows a relatively high and stable
performance (or information transfer rate), especially compared
with motor imagery BCI (Guger et al., 2009; Cho et al., 2017;
Won et al., 2019). The MI paradigm showed large variation
in performances across subjects and users (Lee et al., 2019).
Second, it provides an intuitive user interface (UI); what a
user sees is what should be spelled. Third, it is designed for
a communication purpose that meets the needs of patients
(especially locked-in patients). Because of these advantages,
the P300 speller has become a standard BCI application and
has been used in investigating various research topics such
as performance improvement (e.g., classification accuracy or
information transfer rate) (Fazel-Rezai et al., 2012), the low-
performance phenomenon called “BCI-illiteracy” (Carabalona,
2017; Won et al., 2019), calibration-less BCI (Lee et al., 2020),
patient study (Guy et al., 2018; Velasco-Álvarez et al., 2019),
and UI/UX in BCIs such as stimulation type (Guan et al., 2004),
clustering of several characters (Fazel-Rezai and Abhari, 2009),
3D cubes (Qu et al., 2018), and facial based cues (Jin et al.,
2012). Indeed, researchers have made great achievements and
advancements with the P300 BCI speller. Moreover, considering
that commercialized P300 BCI speller systems are in the market,
it seems that the BCI application is already in the daily lives
of people.

However, there are still issues to be considered for executing
practical BCI applications. While BCI is often used with the
disabled, the number of accessible applications is limited.
Moreover, usability on the user side is sometimes overlooked
in the research and development of BCIs. Usability is related
to the ease and convenience of a given system to help the
user achieve the desired goal and is also associated with an
index of satisfaction (ISO 9241-11, 1998). Often, the available
resources provided limit the user to a specific domain (Donchin
et al., 2000). For example, the P300 speller is used as the
standard for measuring the performance of the P300 BCI
algorithm and signal-processing techniques. No matter how
algorithms and signal processing techniques are developed,
the end goal is for the application to effectively work for a
specific purpose to meet the needs of users. Since the P300
speller is designed for typing characters, not playing games
or surfing the internet, it is necessary to expand the available
domain by developing new applications while simultaneously
conducting research on suitable algorithms and signal processing
techniques. Therefore, attention should also be paid to increasing
the types of BCI applications and listening to the feedback of
users while making great efforts to improve the performance
of the BCI system (Ahn et al., 2014). Considering the limited
mobility of potential BCI users, expanding the areas from
communication to entertainment, hobbies, and daily work-
related tasks is important.

Fortunately, recent studies have introduced various types of
applications to the BCI field (see Table 1). Traditional targets
(e.g., wheelchair and computer cursor) are often used for controls
in research, but new BCI innovations are being researched, such
as the exoskeleton (Frolov et al., 2017; Wang et al., 2018a), drone
(Wang et al., 2018b), web browser (Zickler et al., 2011; Yu et al.,
2012; Saboor et al., 2018), emailing (Zickler et al., 2011), and
cleaning robot (Shao et al., 2020). In addition, the BCI field has
produced more games, such as the traditional Tetris (Wang et al.,
2019), action (Coyle et al., 2015) and games that stimulate rowing
(Vourvopoulos et al., 2016), cart control (Wong et al., 2015),
attention training (Rohani and Puthusserypady, 2015), as well
as drawing (Botrel et al., 2015). In addition to the emergence
of several applications, methods have been proposed to enhance
usability and accessibility that should be considered for the
development of BCIs for patients in terms of user-centered design
(UCD) (Kübler et al., 2020).

Although the future of BCI looks very bright, an important
complication hinders its progression. Over decades, applications
of various themes have appeared, but these applications have not
become widely accessible. To be exact, most BCI applications
published in the literature are often closed (not shared) and
documentations, such as user or developer manuals, are rarely
created and provided. Thus, generally, these applications are not
usable to other researchers.

From the point-of-view of the BCI researcher, this trend
is fully understood, because application development is
enormously expensive. In particular, the development of the
P300 BCI application requires an extensive investment of time
and effort for three main reasons. First, because it must operate
online, the performance of the module responsible for data
measurement and signal processing must be optimized for
speed and accuracy. This is a common issue related to online
application development. Second, because how well the P300
component is detected on the system determines the effectiveness
of the application, it is necessary to search optimal parameters
for stimulation (e.g., target-to-target interval, inter-stimulus
interval, physical property, the distance between stimuli, and
appropriate luminance of the stimulus for avoiding afterimage)
under a given system design and apply it to the module in charge
of the graphical user interface. Third, optimal bi-directional
communication should be implemented to minimize the
stimulus time lag and overall system delay that occur, as each
module exchanges marker information. Because of costs, it is
natural for a developer to accumulate results by conducting
several studies using just his own application. However, when
all developers do this, such large cost creates a high barrier
for nonexperts, and the subsequent delay in research progress,
consequently, may serve as a serious bottleneck that hinders the
development of the BCI field. Therefore, just as developing the
BCI application with new contents is important, sharing it with
the research community is also crucial to expanding the field.
We expect that diversifying application types will increase the
efficiency of BCI research and ultimately contribute to leading
the advancement of BCI.

So far, the obstacles that hinder the development of the current
BCI have been mentioned, and methods to solve them have been
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TABLE 1 | BCI application contents, paradigm, and platform.

Application contents Article Paradigm Platform

Wheelchair control Taher et al., 2015 EEG, Eye tracking Emotive EPOC SDK, OpenViBE

Yu et al., 2017 MI, P300 BCI 2000

Bastos-Filho et al., 2018 SSVEP C

Exoskeleton control Frolov et al., 2017 MI Matlab

Wang et al., 2018a SSVEP -

Post-stroke rehabilitation using VR Aamer et al., 2019 MI Python, Unity 3D

Cursor control Ma et al., 2017 MI, mVEP -

Drone control Wang et al., 2018b SSVEP Unreal Engine4, C++, Matlab

Web browser control Zickler et al., 2011 P300 BCI 2000

Yu et al., 2012 P300 Windows 32bit Platform Development Kit, Neuroscan

Saboor et al., 2018 SSVEP Microsoft VS C++

Emailing Zickler et al., 2011 P300 BCI 2000

Cleaning robot Shao et al., 2020 SSVEP Matlab psychology toolbox, Bluetooth

Spelling Lin et al., 2016 SSVEP, EMG MATLAB

Stawicki et al., 2017 SSVEP, Eye tracking EyeTribe, Microsoft VS C++

IoT Coogan and He, 2018 MI Unity, BCI2000

Drawing game Botrel et al., 2015 P300 BCI 2000

Action game Coyle et al., 2015 MI MATLAB Simulink

Cart control game Wong et al., 2015 SSVEP Microsoft VC++ 2010, DirectX SDK

Motion tracking game Park et al., 2016 Neurofeedback Unity 3D, Microsoft Kinect

Rowing game Vourvopoulos et al., 2016 MI Open ViBE, Unity, RehabNet Control Panel

Spatial navigation Chen et al., 2017 SSVEP Matlab

Tetris game Wang et al., 2019 MI, SSVEP Android SDK

VR: attention training Rohani and Puthusserypady, 2015 P300 Microsoft Kinect, Unity 3D

Ali and Puthusserypady, 2015 SSVEP Unity, Adobe Photoshop, Autodesk 3DS Max

Mercado et al., 2019 Neurofeedback Unity, OpenViBE

VR: BCI system McMahon and Schukat, 2018 MI OpenViBE

MI, Motor imagery; SSVEP, steady state visual evoked potential; EMG, electromyogram; SDK, software development kit; VR, virtual reality.

suggested. Now is the time to take action on this. The aim of
this study is not to propose a novel signal-processing algorithm
or provide a consumer-grade application but instead introduce
an open-source-based BCI application that can be easily reused
and customized by BCI researchers at minimal costs (saving time,
no need for platform charge). In this study, we developed a BCI
world tour system (WTS) where a user can choose a touristic
destination (country or city) and watch a movie that essentially
takes them on a visual tour of the destination.

The P300 speller is appropriate for communication, but
sometimes entertainment application is overlooked. Considering
the limited mobility of the end users, providing various
applications, such as entertainment, is important. Especially, it is
unimaginable for them to travel in their limited circumstances.
With this motivation, we chose virtual travel as the theme,
which could help the end user to acquire travel experiences on
their own, and contribute to enhance their self-efficacy, which
is important for improving the quality of life (Bandura, 2010).
Thus, we believe that the developed system could be meaningful
for some end users (e.g., in the locked-in state) and also useful for
other researchers. This application was built on three open source
codes, and all the codes and detailed user manual are available in

the Github repository (BCILab, 2020). Thus, anyone can access
and use the application for their own purpose for free.

The following sections are organized as follows: In “Materials
AndMethods” section, we explain the development environment
and scenario of the WTS as well as the experiment methods.
The results from the questionnaire survey and performance from
the online experiment are presented in “Results” section. Finally,
further issues, such as the limitation of WTS, will be discussed in
“Discussion” section.

MATERIALS AND METHODS

Application Development
Open Source Used
WTS operates through the interaction of three open source
codes, which give us a competitive edge in terms of portability,
scalability, online performance, and UI quality. They are
OpenViBE, Python, and Unity 3D. Detailed information is
as follows.

• OpenViBE for overall integration and scalability: an open-
source software platform specialized for integrating various
components of the BCI (Renard et al., 2010), OpenViBE
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enables real-time acquisition, preprocessing, classification,
and visualization of brain waves. The scenarios can be
designed using function boxes, allowing users to design
experiments more intuitively. Through this, portability was
obtained in the process of collecting and processing the
EEG signal and synchronizing it with the target application.
Furthermore, OpenViBE is compatible with various EEG
devices; thus, a device can be easily changed with minimal
cost. However, there is also limitation. OpenViBE supports
only Window or Linux operating systems; thus, it is hard to
implement a BCI application running onmobile environment.

• Python for signal processing: a Python scripting box provided
by OpenViBE was used in this system. In addition, scikit-
learn, a state-of-the-art machine learning algorithms package,
was used for signal processing and classification analysis
(Pedregosa et al., 2011).

• Unity 3D for application: a game engine (https://unity3d.
com) widely used in 3D game development, architectural
visualizations, and real-time 3D animations. Under the
integrated development and execution environment,
developers can easily develop and debug applications. Since it
supports multiple platforms, the application can be extended
to various versions (Android, iOS, and personal computer).

Game Scenario and Contents
We wanted to give an indirect travel experience and provide
control to the user. Thus, we designed the WTS to have options
for the user to choose through the BCI and to provide an
interesting content (e.g., video). In this sense, the WTS provides
the names of countries or cities on the screen. For the purpose of
the study, the destinations were chosen manually. However, the
WTS is customizable, and the cities and contents can be changed
by the developer or researchers for their own purpose.

Each step is limited to six commands to be the most
suitable for human–computer interaction (HCI). Since cities are
dependent on a specific continent, the system was designed
with a region-based approach, so that users can more intuitively
select the city they want. Therefore, we used a hybrid of the
region-based paradigm and the single display paradigm that we
mentioned earlier. Thirty-six target touristic places are selected
and categorized into six continents, as shown inTable 2. The user
interface was designed to have two steps. The first is choosing
a continent and the second step is place selection, which is
initiated right after the first step. To provide the information
of the chosen place, we used short video clips available through
the internet. The detailed list of videos is available in the WTS
GitHub repository.

BCI Paradigm and Parameters
The WTS follows the conventional visual-evoked P300 BCI
paradigm where target and non-target stimuli flicker in a
randomized order (Squires et al., 1975; Katayama and Polich,
1996; Tarkka and Stokic, 1998; Strüber and Polich, 2002; Polich,
2007), while the BCI system processes the real-time EEG signal
and detects the intended target.

A clearer P300 component is beneficial for maximum BCI
performance, so it is necessary to set the optimal environment

for this, namely the strength of the stimulus (e.g., brightness in
the visual stimulus) and the time between the stimuli as well
as the UI of the system to which the stimulus is given. In each
step of the developed application, there are six stimuli—one
target and five nontargets. This total is far smaller than the 36
in the conventional 6-by-6 P300 BCI speller, making the target-
to-target interval (TTI) too short. This can be advantageous
from a practical point of view by allowing the user to make
quick selections. In addition, by adjusting the distance between
adjacent commands, it is possible to classify targets in a shorter
time, solving the problem of adjacencies being wrongfully
detected as targets. However, reduction in average TTI may
also lead to a smaller P300 amplitude (Fitzgerald and Picton,
1984; Polich, 1990; Gonsalvez and Polich, 2002) and may hinder
the formation of prominent features of target epochs. This
consequently causes degradation of performance in the BCI.
Since the aim of this study is also to show the feasibility of the
developed system, we simply used 20 for the number of blinks
per stimulus to gain upper bound classification performance.
Although the number of blinks in the WTS is greater than that
of the P300 speller (normally 15 or fewer), the selection time
for each step takes the same time as typing a character with the
P300 speller. The inter-stimulus interval (ISI) is set to 187.5ms
(stimulus interval: 125ms + blink time: 62.5ms), which is the
same as that of the conventional P300 Speller. However, the time
for each selection is too long, making the system impractical.
Thus, we performed offline analysis to obtain the optimal blink
number, which we discuss in “Results” section.

TCP/IP Communication
For communication between OpenViBE to Unity 3D, TCP/IP
was employed. OpenViBE provides a communication method
called “TCP Tagging” that is reliable and gives the minimum
overheads to the application (Foy, 2016). The WTS uses this
protocol to send and receive messages between the OpenViBE
and Unity 3D applications. We implemented the TCP/IP client
code of Unity3d as concisely as possible to enable faster andmore
stable communication.

Application Evaluation
To evaluate the developed application, we conducted an EEG
experiment with healthy participants. The BCI performance,
EEG data, and opinions of users were collected for further
analysis. This section describes the details of the experimental
design and analysis procedure.

Participants
Ten healthy subjects participated in this experiment. Seven
participants were female, and the average age of all the
participants was 23.2 ± 1.72 years. The study was approved by
the Public Institutional Bioethics Committee designated by the
MOHW (P01-201812-11-004), and all the participants signed the
consent form and were given information on the experiment and
their rights before the experiment began.
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TABLE 2 | Continents and touristic places used in the WTS.

Continents Touristic places

Europe Paris London Rome Barcelona Iceland Firenze

Asia Seoul Dubai Hongkong India Tokyo Shanghai

North America Vancouver New York Las Vegas Los Angeles Chicago Alaska

Oceania Sydney Melbourne Fiji New Zealand Papua New Guinea Vanuatu

South America Barbados Easter Island Patagonia Cusco Rio de Janeiro Buenos Aires

Africa Egypt Cape Town Johannesburg Nairobi Pretoria East Ethiopia

FIGURE 1 | Experimental procedure.

Experiment
Each experiment took about 50min and consisted of a
training session for generating the classifier and two subsequent
online sessions where the subjects played the application with
given targets. The subjects sat in front of a 27-inch LED
monitor and were asked to follow the instructions. Each
session started with a resting state recording block. This block
consisted of open and closed eye conditions, each lasting
1min. Both were conducted with relaxed bodies, and in the
open eye condition, the subject was instructed to stare at the
fixation cross on the screen. The training session consisted of
presenting the subject with six buttons labeled with numbers
1–6, and each button was sequentially targeted and randomly
flashed 30 times. This produced 180 target and 900 nontarget
epochs. Based on the collected EEG signals, the classifier
was constructed.

In the two subsequent online sessions, the subject played the
application. The goal was to choose the instructed continent and
touristic destination in order to watch its corresponding 10-s
video. Each session consisted of six trials, and each trial started
with the subject choosing first the target continent and then the
target destination. The target continents and touristic places were
randomly selected and provided to the subject as an instruction
on the top of the screen. The only difference from the training
session is that each button flashed 20 times. Once the place
was selected, the video clip was played, and the next trial was
initiated at the end of the video. Over two online sessions, the
subject watched 12 movies of 12 touristic destinations, and this
procedure produced 480 target and 2,400 nontarget epochs. The
procedure of the experiment is further described in Figure 1. In
both the training and online sessions, each subject was asked to
look at the target stimulus and count the number of blinks. In
addition, all sounds were muted, since unexpected or annoying
sounds may distract the overall experiment.

Questionnaire
Pre- and post-experimental questionnaires were given to the
subjects to evaluate the practical issues of the WTS from the
perspective of the user. Questionnaire items were implemented
in a Unity 3D environment to help each subject complete it easily
and comfortably, and the results of the questionnaire were saved
in an electronic text file for data analysis.

Since the aim of this evaluation is to collect the user feedback
on how they accept this application, we designed naïve question
items, which give us information about each part of the system.
Thus, we did not construct any hypothesis. Basically, we referred
to two published articles (Cho et al., 2017; Lee et al., 2019), and
question items were organized according to a study (Cho et al.,
2017) that collected BCI data from 52 subjects. Some items were
adopted from the study, and we also added specific questions
about the experience of the user with the application (e.g., Follow,
Control, Enjoyment, and Completeness in Table 3). The items in
each questionnaire are described below.

The pre-experiment questionnaire included questions focused
on general information (e.g., history of neurological/mental
disease, hours elapsed since smoking/drinking, hours slept the
previous night), previous experience in a BCI experiment, and
self-assessed scores of depression, mood, and expectation of the
application in a 5-point Likert scale.

The question items in the post-experiment questionnaire
were designed to assess application usability and gather
opinions of the subjects. These questions ask the subjects to
evaluate instructions of the experiment, controllability of the
application, adequacy of playing time, and appropriateness of
the surrounding environment. Finally, questions concerning the
overall completeness of the WTS and enjoyment of the subject
were asked to measure satisfaction. Additional details about the
question-and-answer format of the pre/post questionnaires are
listed in Table 3.
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TABLE 3 | Items of pre/post questionnaires.

Questionnaires Question items Answer format

Pre • Have you had brain or mental disease? Yes or No

• Have you ever participated in BCI

experiment or game?

Yes or No

• Write hours you slept the previous night. 1–24

• Write hours elapsed since you

had alcohol.

1–24, 0 if did not

• Write hours elapsed since you had

a cigarette.

1–24, 0 if did not

• Evaluate your depression

level. (Depression)

1–5 (Depressed)

• Evaluate your mood level. (Mood) 1–5 (Excited)

• Evaluate your expectation to BCI

WTS. (Expectation)

1–5 (Interested)

Post • Evaluate your mood level. (Mood) 1–5 (Excited)

• Evaluate how well you followed the

instruction. (Follow)

1–5 (Well)

• Evaluate the controllability to operate the

WTS. (Control)

1–5 (Easy)

• Evaluate the playing time. (Length) 1–5 (Long)

• Evaluate the comfort of

surroundings. (Comfort)

1–5 (Comfortable)

• Evaluate the completeness of the

WTS. (Completeness)

1–5 (High)

• Evaluate how much you enjoyed the

WTS. (Enjoyment)

1–5 (Enjoyed)

Data Acquisition and Processing
For EEG acquisition, we used the Biosemi Active Two
system (with 32 channels, 2,048Hz sampling rate). During the
experiment, these 32 electrodes were attached to the scalp of the
subject according to the international standard 10–20 System
(Jasper, 1958), and the brain signals were recorded from 32
locations (FP1, AF3, F7, F3, FC1, FC5, FC6, FC2, F4, F8, AF4,
FP2, Fz, C3, CP1, CP5, CP6, CP2, C4, Cz, P7, P3, Pz, PO3, PO4,
P4, P8, T7, T8, O1, Oz, and O2).

All EEG data acquired during the training session were used to
construct a classifier that was used in the two subsequent online
sessions. The procedure of the signal processing is presented in
Figure 2.

First, the raw EEG was down-sampled from 2,048 to 512Hz
and re-referenced by the common average reference. This signal
was spectrally (0.5–10Hz) and temporally filtered (200–600ms
based on cue onset) to extract the only interesting section of
the signal. Then, baseline correction and down-sampling to
128Hz were performed. The amplitudes of each epoch over all
32 channels were converted into a long feature vector and the
significant features were determined through the stepwise feature
selection with the ordinary least square method (p < 0.05). In
the training session, the selected amplitude features were used to
train a linear classifier. In the online sessions, the same process
was followed to produce a long-feature vector consisting of
selected amplitudes overall time and channels. Then, this feature
vector was fed into the constructed classifier in the training

session. The classifier output for each blink has a hard label of 0
(nontarget) or 1 (target). All the outputs from the classifier across
the blinks were summed per button, and a selection (place) with
the highest value was chosen as a target. In this procedure, no
artefact detection or rejection was performed; thus, all the epochs
were used in the following analysis.

Analysis
Each subject played 24 selections (six continents and six place
selections in each session) during the two online sessions.
We counted the number of selections that were correctly
classified through EEG and used the percentage value obtained
by dividing the number of total selections as a final online
performance. In each selection process, there were six stimuli
and 20 epochs per stimulus, resulting in a total of 120 epochs
(target: 20, nontarget: 100). The number of epochs per stimulus
is tremendously important for the system response time. Thus,
we also investigated accuracy by decreasing the different number
of epochs (or blinks of each stimulus) per selection. To calculate
the simulated accuracy, we first set N as the number of epochs
that were used in the classification. Then N number of epochs
were randomly selected from all the epochs in each selection
and evaluated for target versus nontarget classification. This
process was repeated 10 times and consequently yielded 10
accuracy estimates over the selection problems. Finally, the
offline accuracy for N was calculated by averaging the 10
estimates. We calculated the offline accuracy with different Ns,
which were 1, 5, 10, 15, and 20.

RESULTS

BCI World Tour System
All of the source codes and documents for the WTS can be
found in the Github repository (BCILab, 2020). In addition,
the repository includes the user manual of the application, so
that any developer or researcher can easily modify and play the
WTS for research or entertainment purposes. In the following
section, we describe the developed application using state and
system diagrams.

Figure 3 describes a state diagram of the developed
application. The system starts with the initial state and the
username is input. Then, the resting and training scenes are
started. Once the training mode is completed, then the user can
play through the play (online) mode. In the online mode, the
map is positioned in the background, and the stimuli indicating
the continents and touristic places are overlaid. To provide the
new travel experience to the user, the background scene was
designed to have touristic images (e.g., sky, airplane, world map,
and tourist sites). However, during selection, the background
changes to the same dark blue screen used in the training session.

The application viewed from the side of the developer is
as follows: in the online mode, the user looks at the target
stimulus to choose a continent while all the six stimuli randomly
blink. Whenever a stimulus blinks, this moment is marked
and transmitted to the Python module in OpenViBE. When
the blinking period is done, the pre-trained stepwise linear
discriminant analysis (SWLDA) algorithm from the training
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FIGURE 2 | Procedure of the signal processing.

FIGURE 3 | The WTS state diagram.

mode classifies the given EEG signal and determines the
continent. Based on the predicted continent, Unity 3D switches
from the continental scene to the corresponding destination
scene. Subsequently, the scene presents the new map of the
chosen continent and the stimuli of six locations (country or
city). Once a target place is determined by the same procedure
used in continent selection, the corresponding video is played.
The system diagram of the WTS is shown in Figure 4.

The WTS has the following features. First, it works with
various EEG devices, because OpenViBE supports many different
EEG devices. Second, customized algorithms can be used.
OpenViBE provides a box “Python Scripting” that allows it to
execute Python code (Bonnet, 2012). The box is used to process
data entering, preprocessing, and leaving OpenViBE. This means
that any algorithm implemented in Python can be reused in the

WTS. Although SWLDA was used in this study for evaluation,
developers can implement their own algorithm in Python script
and use it for the main signal-processing code in the WTS.
The sample code for signal processing is provided in the WTS
repository. Third, video clips can be updated. Since the video
source is independently managed, it can be replaced by longer,
shorter, or even different multimedia sources. By updating the
video sources, playing may provide different experiences.

Experimental Results
None of the subjects had a neurological or mental disease, and
three of them (S1, S5, S6) have previous experiences with the
P300 experiment. The mean sleeping time was 5.15 h per night.
None of the subjects smoked a cigarette, and only a subject (S4)
consumed alcohol 10 h before the experiment. In the following
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FIGURE 4 | The WTS system diagram.

TABLE 4 | Questionnaire results.

Question items S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Mean(std)

Pre Depression (1–5 Depressed) 2 3 3 4 3 3 1 1 2 1 2.3 ± 1.00

Mood (1–5 Excited) 3 3 3 3 3 3 3 3 3 3 3.0 ± 0.00

Expectation (1–5 Interested) 4 5 5 4 3 4 5 5 5 3 4.3 ± 0.78

Post Mood (1–5 Excited) 3 2 3 1 2 2 3 3 3 3 2.5 ± 0.67

Follow (1–5 Well) 5 3 4 5 5 3 5 3 5 4 4.2 ± 0.87

Control (1–5 Easy) 5 5 3 5 5 5 5 3 5 5 4.6 ± 0.80

Length (1–5 Long) 3 4 3 4 3 3 4 3 3 4 3.4 ± 0.49

Comfort (1–5 Comfortable) 5 5 3 5 5 5 5 3 5 3 4.4 ± 0.92

Completeness (1–5 Complete) 2 4 2 5 1 3 5 3 4 2 3.1 ± 1.30

Enjoyment (1–5 Enjoyed) 3 4 1 4 2 3 4 4 3 2 3.0 ± 1.00

Note that a score of 3 means “Neutral.”

section, the results from the questionnaire survey and online
session are presented.

Questionnaire Results
The results of the questionnaires that were answered during
the experiment are shown in Table 4. The subjects answered
with an average score of 4.3 ± 0.78 (Expectation) for the pre-
experimental question about the expectation of the WTS and an
average score of 3 ± 1 (Enjoyment) for the post-experimental
question about whether it was fun. The mood of the subjects
before the experiment was close to neutral, showing an average
score of 3, while it decreased to 2.5 ± 0.67 after the experiment.
The subjects responded with average scores of 4.2 ± 0.87 for
Follow and 4.6 ± 0.8 for Control, 3.1 ± 1.3 for Completeness,
and 4.4± 0.92 for Comfort. When asked about the overall length
of the application, they answered with an average score of 3.4 ±
0.49, which is slightly higher than 3 (Neutral). For more details,
please refer to the discussion section.

Results From Online Experiment
Ten subjects successfully participated in one training and two
online sessions. As we have mentioned previously, the EEG
signals acquired during the training session were first analyzed,
and then the classifier was constructed. Figure 5A is the picture
of a representative subject in a prior pilot experiment. Figure 5B

shows the target and nontarget ERP signals at the Cz channel
averaged over epochs. Along with the Pz channel, the Cz channel
is known for dominant occurrence of P3a (Johnson Jr, 1993).
P3a is a subcomponent of P300 that occurs in the perceptual
process when the P300 component is divided into perceptual
and cognitive processes (Polich, 2007). To ensure that there is
a significant difference between target and nontarget amplitudes
in training data, the permutation test was performed (parametric
two-sided t-test, alpha 0.05, 10,000 iterations) and false discovery
rate (FDR) correction was performed (family-wise error rate =
0.05) for multiple testing correction (Benjamini and Yekutieli,
2005). As shown, significant clusters appeared in the ERP of all
subjects except one (S8).

In the online sessions, the accuracy of each session was
calculated. The subjects achieved a 95.8% average in the first
session and 98.3% in the second session. The overall average
accuracy was 96.6%. All subjects successfully played online
sessions and eight subjects achieved 100%. The detailed accuracy
for each subject is summarized in Table 5.

Offline Analysis
We conducted two offline analyses to check the significant
channels and the influence of the number of blinks on BCI
performance. The number of selected features during the
training session varied across the subjects. Thus, to examine the
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FIGURE 5 | (A) Pictures of training and online sessions from one representative subject in prior pilot experiment. (B) Averaged ERP signals at the Cz channel in the

training session. Each plot shows the mean and standard error of the signal. In addition, positive and negative areas showing significant difference between target and

nontarget epochs are shown at the bottom of each figure.

significant channels, we simply counted the number of selected
features per channel. This procedure provides a histogram per
subject. By summing up the histograms across all the subjects, we
could obtain the result representing the degree of contribution
to classification per channel. Figure 6 represents the summed
counts across all the subjects. As a result, an increasing tendency
from frontal to occipital areas is observed. When checking the
midline channels, this tendency becomes clearer (Fz < Cz < Pz
< Oz), which means that parieto-occipital channels are the main
contributor in ERP classification.

An offline analysis was conducted to see if a smaller number
of blinks per stimulus also work with reasonable accuracy. We
checked the classification accuracy and information transfer rate
(ITR) by changing the number of blinks from 1 to 20 (maximum).

The result is shown in Table 6. It was revealed that the accuracy
increases with a higher number of blinks, averaging 48.87, 76.5,
89.95, 93.7, and 96.66% for N = 1, 5, 10, 15, and 20, respectively.
These increases were significant (p < 0.05, by Wilcoxon signed-
rank test), but ITR peaks at N = 5 and the statistical test revealed
that there is a significant difference (p < 0.05) between every pair
except for N = 5 and N = 10 (p > 0.05).

DISCUSSION

In this study, we introduced an open-source BCI application,
which uses the P300 BCI control paradigm. Through experiment
and survey, we demonstrated the reasonable performance of
this system and provided the opinion of the user. However,

Frontiers in Human Neuroscience | www.frontiersin.org 9 July 2021 | Volume 15 | Article 647839

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Woo et al. BCI Virtual World Tour Application

TABLE 5 | Classification results from two online sessions.

Selection S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 O O O O O O O O X O O O O O O O O O O O

2 O O O O O O O O O O O O O O O O O O O O

3 O O O O O O O O X O O O O O O O O O O X

4 O O O O O O O O O O O O O O O O O O O O

5 O O O O O O O O O O O O O O O O O O O X

6 O O O O O O O O O O O O O O O O O O O O

7 O O O O O O O O O O O O O O O O O O O O

8 O O O O O O O O O X O O O O O O O O O O

9 O O O O O O O O X O O O O O O O O O O O

10 O O O O O O O O X O O O O O O O O O O O

11 O O O O O O O O O O O O O O O O O O O O

12 O O O O O O O O O O O O O O O O O O X O

Accuracy 100 100 100 100 100 100 100 100 66 91 100 100 100 100 100 100 100 100 91 83

ITR 5.09 5.09 5.09 5.09 5.09 5.09 5.09 5.09 1.71 3.82 5.09 5.09 5.09 5.09 5.09 5.09 5.09 5.09 3.82 3.01

Correctness is marked with O (correct) or X (incorrect) in each selection. Overall accuracies (%) and the corresponding ITR (bit/min) are presented in the last row.

FIGURE 6 | Channel significance. The number of selected features per channel was summed across subjects. The channels are presented from frontal to occipital

lobe for better visibility. The midline channels (Fz, Cz, Pz, and Oz) are marked with blue bar.

there are issues to discuss and limitations to the current version
of the WTS. In the following subsection, we discuss several
points observed in the results about the survey and online/offline
analysis. Also, we present the potential limitations of this WTS
and suggest future directions.

Questionnaire Study
Most BCI studies focus on system performance (e.g.,
classification accuracy), while the subjective opinion of BCI
application is overlooked. However, because subjects are
the potential users of BCI applications, their opinions are

valuable to evaluate the overall usability of a BCI application
and further improving the system. Some studies have used
questionnaires to learn how users feel about BCI systems
(Allison, 2009; Guger et al., 2009; Fazel-Rezai et al., 2012; Ahn
et al., 2014, 2018). In this study, we also used questionnaires
to collect personal information of subjects, system usability,
and mood/enjoyment of users. Depending on the goal of
the evaluation, the question items may vary, but we think
that some general question items may be still useful in
evaluating BCI applications. We suggest the following:
(1) personal information (e.g., age, sex, BCI experience,
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TABLE 6 | Accuracy results across a different number of blinks.

Number of blinks (Response

time : ISI + system delay)

Accuracy/ITR

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Mean (std)

1 (6.62 s) Acc. 49.16 50 42.50 66.25 36.25 50.00 52.50 69.58 41.66 30.83 48.87 ± 11.50

ITR 3.66 3.84 2.41 7.97 1.45 3.84 4.39 8.99 2.27 0.79 3.96 ± 2.65

5 (11.37 s) Acc. 83.75 70.83 71.66 93.75 52.08 83.75 86.25 95.85 81.25 45.83 76.50 ± 15.76

ITR 8.27 5.47 5.63 11.10 2.50 8.27 8.91 11.82 7.67 1.75 7.32 ± 3.32

10 (17.75 s) Acc. 95.00 89.16 88.33 100 69.58 98.33 99.16 99.16 90.41 70.41 89.95 ± 10.80

ITR 7.38 6.21 6.06 8.74 3.35 8.19 8.44 8.44 6.44 3.45 6.67±1.98

15 (23.87 s) Acc. 99.58 95 95 100 73.75 98.33 100 100 98.33 77.08 93.70 ± 9.30

ITR 6.37 5.49 5.49 6.50 2.88 6.09 6.50 6.50 6.09 3.21 5.51 ± 1.36

20 (30.5 s) Acc. 100 100 100 100 79.16 100 100 100 100 87.50 96.66 ± 6.92

ITR 5.09 5.09 5.09 5.09 2.68 5.09 5.09 5.09 5.09 3.44 4.68 ± 0.87

Accuracy (and ITR) is presented over different number of blinks (N = 1–20) per subject.

Mean and standard deviation (std) are presented in the last column.

disease history, and sleep hours); (2) system side (e.g.,
controllability, response time, overall completeness, UI/UX,
and instruction); and (3) user side (e.g., mood, enjoyment,
fear, difficulty, familiarity, expectation, and satisfaction).
Perhaps, there may be more items, but we believe that
considering these three categories together will help to better
understand the opinions of users and ultimately further improve
BCI applications.

Opinions of the subjects were obtained through the
questionnaire items, and we can conclude the following based
on the scores: Expectation is high, while Completeness and
Enjoyment were not. As mentioned earlier, usability also includes
helping a given system achieve the goals that users crave,
so to optimize the usability of the system, it must contain
what the user wants to achieve. The high expectation score
supports that the WTS satisfies this condition. Thus, the
WTS may need to be improved in UI/UX rather than system
performance to increase user satisfaction. For example, the city
video playback time was limited to 10 s for a smooth and
short experiment and the content may not be satisfying to
users. Therefore, it is necessary to improve the UI, video clips,
button selection speed, etc. so that it can be more familiar
to users.

Next, because Control and online accuracy are higher than
Follow, it can be assumed that the WTS is effectively using
the BCI system to reflect the intention of the user. Since the
P300 epoch shown in Figure 5 formed through the preprocessing
process preserves the positive and negative components shown
in the previous study (Polich, 2007), we think it has cleared
the doubt of readers about the high system accuracy. Finally,
for the question concerning the length of playing time, most
of the subjects were not satisfied, sharing that they found the
response time to be too long and somewhat boring. Therefore,
offline analysis was performed to reduce the number of blinks;
and in the next version, the reduced number of blinks can
be used to shorten the system response time. However, the
approach of the survey may be limited, since it was designed
to measure simple opinion. Thus, some points might be missed.

We think that the feedback of users is valuable information to
update a BCI system. Also, certain guidelines for system design
(Jeunet et al., 2018) or training protocol (Mladenović, 2021)
would be considered from the initial phase of developing a new
BCI application.

Improving Response Time
In the experiment, we used 20 blinks per stimulus, which led
to a long response time—about 30.5 s for a selection. An offline
analysis was performed to obtain a reasonable number of blinks.
Ideally, the number should be small enough to shorten the
response time but also yield good performance for use in a BCI.
In Table 6, the average classification accuracy close to 90% is
obtained at N = 10, and it yields 17.75 s for the response time for
a selection in the WTS. On the other hand, ITR is relatively high
at N = 5 and N = 10. Statistical test revealed that the two cases
are not significantly different in ITR, but accuracy is statistically
higher inN = 10 than inN = 5. Interestingly, six subjects already
exceeded 90% at N = 10, and two subjects were close to 90%.
Considering these results, we may choose N = 10, since it shows
a relatively good ITR and high classification accuracy that is
around 90%. Then, we can reduce the response time of the WTS
by almost half. A more flexible approach rather than fixing the
number of flashes can be used as introduced in Thomas et al.
(2014) to efficiently running BCI with the aim of shortening the
response time, or other control paradigms, such as steady state
visual evoked potential (SSVEP), can be used for faster response
time. However, visual fatigue should be considered before using
it. SSVEP may cause more eye (or other modality) fatigue than
the P300 because of persistent stimulation (Cao et al., 2014).

Improving Performance
There is another thing to note about the offline analysis results:
The number of required blinks for good BCI performance
seemed to vary across subjects. This may be related to the
variation of ERP peaks across subjects (Won et al., 2019). In
various studies, performance variation is one of the issues to be
resolved (Guger et al., 2003, 2009, 2012; Ahn et al., 2013, 2018;
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Ahn and Jun, 2015; Cho et al., 2015), so an in-depth analysis
of this observation should be done to understand it in more
detail. As noted in Data Acquisition and Processing section, no
artefact rejection was performed in the system; thus, we believe
that introducing a better machine learning technique or artefact
rejection may help to improve the performance while decreasing
the number of blinks for shorter response time and reduce the
performance gap between subjects (Xiao et al., 2019).

User Adaptation
Table 5 presents the online accuracy of each session.
Interestingly, a subject (S5) showed very different accuracies of
66% in the first and 91% in the second session. Since the SWLDA
algorithm used in the WTS is not adaptively updated during
online sessions, we interpret that the subject might adapt to the
WTS. In other words, this result suggests that some users need
time to get used to playing a certain BCI. However, the number
of subjects who show this tendency and the required length
should be investigated with more cases and UX issues in the
BCI application. Furthermore, the standardized experimental
protocols may be helpful for understanding or minimizing the
performance variability among participants (Mladenović, 2021).

Limitations and Future Study
Although we demonstrated the applicability of the WTS, there
are still limitations from a practical viewpoint. First, the number
of commands that can be selected for each step is limited.
Although there are only six continents, each continent has
numerous cities. Therefore, we can increase the number of cities
to choose from for each step. Since this system is open-source,
it will be possible to increase commands for cities. However, as
mentioned in Materials and Methods section, as the number of
commands increases, the distance between adjacent commands
becomes shorter, and an error in which they are misclassified as
targets may occur. There are several studies that can help increase
the number of commands (up to 100) while decreasing their size,
so it is worth considering in future research (Xu et al., 2018,
2020).

Second, in the current version, the interaction between a user
and the system is somewhat limited. There is no “move-back”
or “pause” command. This means users should wait until the
end of a selected video being played. In this sense, the system
may be considered as not dynamical. Currently, the WTS is open
to the public, thus touristic videos/names or command buttons
can be changed for the purpose of the study by updating video
files or source codes. However, the limitation of the interaction
process in the current version should be considered before the
actual use of the system and ultimately updated to provide better
user-friendly UI/UX in the future.

Third, as a typical BCI application, the WTS also requires
training time for generating a classifier to be used in the online
session. However, this is one of the major obstacles hindering
the progress of BCI applications. To be a more practical
application, the training mode should be minimized or removed.
Numerous studies are underway in the field to construct this
general classifier (Kindermans et al., 2014a,b; Verhoeven et al.,
2017; Eldeib et al., 2018; Lee et al., 2020). Usually, however, a
general classifier requires a significant number of data samples,

which can be achieved through transfer learning using data
from one domain for another. Also, more complex machine
learning algorithms (such as random forest, convolutional
neural network, ensemble classifier) may be beneficial. In the
future, we will also collect a large sample and investigate
various models with the aim of achieving a calibration-less
BCI application.

Fourth, the experiment was aimed at testing the system as a
whole and performed with healthy subjects. We believe that the
collected user feedback could be used in updating the system
and this is also important. However, the system should be tested
with the potential target group (e.g., patients) to understand the
practical issues. This is beyond the scope of the present study, and
we will consider this issue in future work. In addition, the current
questionnaire was designed to simply confirm the opinion on
the application using limited objective indicators. Thus, the
result is somewhat limited in a sense like comparing with
other BCI applications. A more systematic standard approach
should be considered for system evaluation in the future (Lund,
2001).

Another limitation is that we only tested theWTS with a high-
quality research purpose EEG device. However, considering that
the BCI application should be easy enough for a naïve user to
play with minimal knowledge and effort, the WTS should also
be evaluated with devices with consumer-grade (cheap, easy, and
possibly lesser channels) devices or dry electrodes.

CONCLUSIONS

We pointed out problems in the current BCI field and drew a
big picture that may help the field to move forward. Also, we
introduced a world tour system that is an open-source-based BCI
application. The applicability of the WTS has been proven with
an online experiment and questionnaire survey. All the codes and
user manual for the WTS can be found in the GitHub repository.
Thus, researchers and developers can easily use it for their own
purposes because it comes with minimum costs (saving time, no
need for platform charge). We hope that the arguments and the
application will contribute to the BCI field, and ultimately, make
many practical BCI applications emerge.
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