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Essential tremor (ET) is a highly prevalent neurological disorder characterized by action-
induced tremors involving the hand, voice, head, and/or face. Importantly, hand tremor
is present in nearly all forms of ET, resulting in impaired fine motor skills and diminished
quality of life. To advance early diagnostic approaches for ET, automated handwriting
tasks and magnetic resonance imaging (MRI) offer an opportunity to develop early
essential clinical biomarkers. In this study, we present a novel approach for the
early clinical diagnosis and monitoring of ET based on integrating handwriting and
neuroimaging analysis. We demonstrate how the analysis of fine motor skills, as
measured by an automated Archimedes’ spiral task, is correlated with neuroimaging
biomarkers for ET. Together, we present a novel modeling approach that can serve as a
complementary and promising support tool for the clinical diagnosis of ET and a large
range of tremors.

Keywords: essential tremor, fine motor skills, neuroimaging, handwriting, early management

INTRODUCTION

Essential tremor (ET) is a highly prevalent movement disorder that greatly impacts an individual’s
quality of life. ET affects both males and females equally (Louis, 2010; Louis and Ferreira, 2010;
Benito-Leon, 2014). While ET can affect the voice, head, and lower extremities (Avecillas-Chasin
et al., 2018), hand tremor is the predominant concerning symptom as it occurs in nearly all cases.
Specifically, hand tremor produces a deterioration of fine motor skills due to a presumed cerebellar
neurodegenerative process (Brittain and Brown, 2013; Jellinger, 2014; Louis, 2018; Louis et al.,
2020; Sepúlveda and Fasano, 2020).

Recently, an international task force defined tremors as an involuntary, rhythmic, oscillatory
movement of a body part (Bhatia et al., 2018). It is important to note that the limbs and
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head, when unsupported, exhibit minimal tremor, referred to
as physiological tremor. Physiological tremor is generally not
visible or symptomatic unless it is enhanced by fatigue or
anxiety, whereas pathological tremor is usually visible and
persistent. Several movement disorders need to be differentiated
from tremor. ET has a prevalence of 4.6% among people aged
65 and older (Louis and Ferreira, 2010) and is defined as
requiring at least a 3-year history of tremor and excludes isolated
head and isolated voice tremors. Moreover, a 3-year history is
included to reduce the odds of subsequent development of other
neurological signs (e.g., dystonia, parkinsonism, or ataxia). Even
with this safeguard, patients with ET may ultimately develop
other symptoms, subsequently defined as a combined tremor
syndrome, not ET, which represents a major diagnostic challenge
(Amlang et al., 2020).

The Archimedes’ spiral is the ‘‘the gold standard’’ reference
test for the clinical diagnosis of ET (Pullman, 1998). Initially,
these analyses were carried out offline, without the use of
any technological tools. Today, technological devices such as
digitized tablets and pens are low-cost tools that can be used
in clinical practice to complement the diagnosis and monitoring
of ET. The first use of such technologies appeared in the 1990s
(Elble et al., 1996; Riviere et al., 1997; Pullman, 1998), with
rapid developments in more recent times (Miralles et al., 2006;
Zeuner et al., 2007; Haubenberger et al., 2011; Louis et al., 2012).
These new devices analyze not only classical features, such as the
cartesian coordinates (x, y) of features but also others such as
pressure and grip, providing a comprehensive set of biomarkers
from in-air and on-surface trajectories (Faundez-Zanuy, 2007;
Sesa-Nogueras et al., 2012; Likforman-Sulem et al., 2017). As part
of a larger cross-sectional study for characterizing ET, our group
has previously demonstrated how nonlinear biomarkers from
handwriting (Lopez-de-Ipina et al., 2016, 2018) can be used as a
tool for developing an automatic classification of ET toward early
diagnosis. Additionally, Solé-Casals et al. (2019) demonstrated
how new biomarkers from drawings and handwriting can be
utilized from discrete cosine transformations (DCT).

Motor skills can be divided into two groups: gross motor
skills, which include larger movements of the arms, legs, feet, or
the entire body (crawling, running, and jumping), and fine motor
skills (FMS), which are smaller actions, such as grasping an object
between the thumb and a finger or using the lips and tongue to
taste. In the drawing precision of Archimedes’ spiral, FMS areas
are critically involved and regulated by the cerebellum (Miall
et al., 2001). Both types of motor skills usually develop together
because many activities depend on the coordination of gross and
fine motor skills. However, studies have generally shown that
a broader definition of FMS, focusing on skill at performing a
range of FMS requiring manual dexterity (e.g., pegboard and
bead-threading tasks), relates to cognition above and beyond
pure speed-driven tasks (e.g., key tapping) or broader hand–eye
coordination tests (Brookman et al., 2013; Martzog, 2015). In
addition, FMS includes graphomotor skills (GS) including the
control and strength of the muscles (Levine, 1987) requiring
hand–eye coordination, transformation of a visually perceived
object into motor output, skills involved in writing, and even
handwriting (Bart et al., 2007).

In the case of ET, the impairment of fine motor control can
be assessed in handwriting and drawing tasks due to pathological
overactivity in the cerebello-thalamo-cortical loop (Klaming and
Annese, 2014). This overactivity could appear in motor control
trajectory, pressure, and/or their combinations. Thus, tracking
these subtle differences in phenotype could be useful for early
detection and correlation with brain structural changes (Figure 1;
Lopez-de-Ipina et al., 2018; Solé-Casals et al., 2019).

This study presents a novel approach to diagnosing ET based
on the automatic analysis of the Archimedes’ spiral task and
structural neuroimaging of the motor circuit and functional
networks in the cerebellum (Figures 1, 2). We analyzed the
correlation between the indirect signal from a digital tablet
and the structural changes in subcortical areas involved in the
putative tremor–genesis circuit (cerebellum, thalamus, and basal
ganglia), white matter (cerebellar and cerebellum), motor and
premotor cortices, and functional networks (Figure 1). This

FIGURE 1 | This study analyzed the correlation between the indirect signal from a digital tablet and the structural changes in cortical and subcortical areas in the
brain. (Left) Cortical homunculus with details of primary somatomotor and motor cortex involved in ET and handwriting. (Right) Diagram of integration of
neuroimaging and handwriting analysis for clinical assessment.
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FIGURE 2 | Motor circuit involved in essential tremor: subcortical areas
(cerebellum, thalamus and basal ganglia), white matter (cerebellar and
cerebellum), motor and premotor cortices.

article is organized as follows: the first section contains the
Introduction, the second section describes the Materials and
Methods, the third section presents the Results, and in the fourth
section, the Discussion is developed. Finally, the Conclusions is
presented in the last section.

MATERIALS AND METHODS

Participants
Fifty patients with ET (EtG) and 25 healthy controls (CoG) were
recruited from a descriptive study of familial and sporadic ET
cases conducted at the Movement Disorders Unit at the Donostia
University Hospital, San Sebastian, Spain, from January 2015 to
June 2017. All participants were diagnosed by a movement
disorder specialist based on the established clinical criteria (Fahn
et al., 1993; Hallett, 1998; Bergareche et al., 2015). Historical data,
including age, age at onset (AAO), gender, handedness, disease
duration, and clinical symptoms, were collected using standard
questionnaires.

All participants in this study underwent a series of
structured questionnaires and a comprehensive neurological and
neuropsychological assessment conducted by three experienced
movement disorder specialists. Each patient received a diagnosis
of ET after the first evaluation from a neurologist specializing in
movement disorders. This diagnosis was subsequently confirmed
by consensus with the clinical team based on a review of
the available data and electrophysiological records from the
second evaluation using the established diagnostic criteria. The
Fahn–Tolosa–Marin rating scale score, the Tremor Rating Scale

(TRS; Fahn et al., 1993; Tuite and Dagher, 2013), was used to
assess patients with ET. The TRS is a widely accepted general
scale used in clinical trials. This scale contains three sections:
A, to assess the amplitude of the resting, postural, and kinetic
tremor at specific anatomical locations; B, for the writing,
drawing, and pouring tremor; and C, for activities of daily
living. It also has a global assessment by the patient and the
examiner, and each item is rated on a scale of 0 to 4. Healthy
controls were excluded if they had any neurological illness
or family history of ET after clinical evaluation and medical
records review. After being given a complete description of the
study, all participants provided written and verbal informed
consent prior to any procedures. Demographic and clinical
data from EtG are summarized in Table 1. No significant
differences were found in age, gender, or cognitive performance
measured with the Montreal Cognitive Assessment (MoCA)
among the CoG and EtG groups in the whole dataset. The
study was approved by the Ethics Committee of the Donostia
University Hospital.

In this work, the sample consisted of 19 individuals with ET
(EtG-HW, N = 19, age = 62.12 ± 15.68, range = 36–81 years).
All of the subjects were selected from the full dataset (EtG)
and were able to perform the handwriting trial. In order to
obtain a balanced dataset, a wide range of tremor severity in
patients was selected. The other subjects excluded could not
complete the task due to the intensity of the tremor. As larger
brains are more likely to exhibit increased gray matter volumes
(Zhang and Sejnowski, 2000), associations between regional
volumes and tremor level were established using Pearson’s
partial correlation (PC) after control for total brain volume
effects. This modeling strategy has been extensively used for
determining meaningful associations between regional metrics
and behavioral phenotypes (O’Brien et al., 2011). There was
no significant relationship between tremor level and age across
ET patients (PC = 0.357, p-value = 0.134) between level and
age. In this work, brain volume was used as a control variable
in PC.

Imaging Acquisition and Processing
All participants were scanned on a 3-T MRI scanner
(MAGNETOM Trio Tim, Siemens Medical Systems, Germany)
at the Donostia University Hospital and CITA Alzheimer
Foundation in Donostia, Spain. This system used an image
matrix coil (TIM) with 32 RF channels providing high-quality
image with integrated parallel acquisition techniques.
High-resolution T1-weighted images were acquired with
the MPRAGE 3D protocol (repetition time, TR = 2,300 ms; echo
time, TE = 30 ms; inversion time, TI = 900 ms; field-of-view,
FOV = 244 × 244 mm2; 1 mm iso-tropic voxels). For the
Archimedes’ spiral test, 19 patients with a long range of tremor
were selected.

TABLE 1 | Demographic data for handwriting and neuroimaging.

CoG (N = 25) EtG (N = 50) EtG-HW (N = 19)

Age 60.04 ± 13.73 61.16 ± 13.52 62.12 ± 15.68
Gender (M:F) 14:11 25:25 9:8
Tremor level 0 ± 0 13.68 ± 6.45 17 ± 14.18
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An overview of the image preprocessing pipeline is given
in Figure 3. Images were processed by FreeSurfer to estimate
regional cortical thickness (CT) and cortical volume (CV) from a
three-dimensional cortical surface model derived using intensity
and continuity information for cortical and subcortical areas
(Fischl and Dale, 2000; Smith et al., 2004; Sharifi et al., 2014;
Rosen et al., 2018).

Next, each individual’s cortex was parcellated in the regions
defined in the Desikan–Killiany atlas (DSK; Desikan et al.,
2006). The result was 308 regions of approximately equal size
(500 mm2 each) were obtained. This parcellation atlas was
constructed with the standard FreeSurfer template (fsaverage)
by a backtracking algorithm that subdivided the regions in
DSK so that the final parcels were constrained by the original
anatomical boundaries (Romero-Garcia et al., 2012; FreeSurfer,
2020). The parcellation was spatially mapped from the standard
stereotactic coordinate system of the Montreal Neurological
Institute (MNI) to each individual’s MPRAGE acquisition space
using surface-based markers. This approach provides better
alignment of cortical landmarks than volume-based registration
(Andersson and Smith, 2007; Douaud et al., 2007). Moreover,
registering patient’s brains to a common space does not result in
an age-associated bias making it feasible to accurately compare
structural properties and patterns (Ghosh et al., 2010). Finally,
the cerebellum was parcellated by the Yeo 7 and 17 functional
networks (Buckner et al., 2011; Yeo et al., 2011).

Handwriting Processing
The data acquisition system was hosted on a digitizing tablet: the
Intuos WACOM 4 2017 (Figure 4), which captured the spatial

coordinates (on the surface and in the air), the azimuth and
altitude angles of the pen on the tablet, and the pressure is exerted
on the surface. The sampling frequency was set to 100 Hz. From
the handwriting data, we could extract other variables such as
acceleration and speed (Jain et al., 1999; Sadikov et al., 2014).
The analysis was done in Matlab using in-house custom software
(MATLAB, 2020).

Statistical Analysis
The statistical design of the study involved Pearson’s PC using
SPSS (SPSS Statistics, 2020) software. A partial correlation
is the correlation between an independent variable and a
dependent variable after the linear effects of other variables
have been removed from both the independent variable and
the dependent variable (SPSS-PC). In this work, brain volume
was used as the control variable. Then, two experiments were
carried out:

1. Level and handwriting features. The spatial coordinates (x,
y), the pressure, the azimuth and altitude angles, and their
variations (delta), and the variation of the variation (delta
delta) were recorded and calculated. The variation was
calculated as the differences between adjacent elements in
the time series. Variations are needed to obtain information
such as acceleration, speed, instantaneous trajectory angle,
instantaneous movement, tangential acceleration, curvature
radius, and centripetal acceleration (Lopez-de-Ipina et al.,
2016, 2018). Mean and standard deviation (std) were
calculated for all these features and evaluated by PC to assess
the control of fine movements (Figures 4, 5).

FIGURE 3 | Diagram of the image processing pipeline.
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FIGURE 4 | Diagram of the handwriting acquisitions system and example of recorded signals.

FIGURE 5 | Handwriting processing. (Left) Example of Archimedes’ spiral of
an ET patient, trajectory on the surface (blue) and in-air (red), and pressure
chart based on the time-stamp. (Right) Pressure chart across time.

2. Significant handwriting features and region of interest (ROI)
were evaluated by PC. In the putative motor circuit previously
defined, correlations were tested for EtG-HW in cortical (CV
and CT) and subcortical regions (CV). Finally, a hypothesis-
driven ROI analysis of the motor Yeo functional networks in
the cerebellum was tested (see ‘‘Introduction’’ section).

RESULTS

Handwriting Analysis
This subsection describes the handwriting features: spatial
features, pressure, and their variation. Table 2 summarizes the
results of partial correlation bilateral analysis, with brain volume

TABLE 2 | Significant handwriting features assessed by Pearson’s partial
correlation controlled for brain volume; significant values for p-value < 0.01 and
p-value < 0.05 (bilateral).

std-p std-∆p std-∆∆p

Level PC 0.717 0.563 0.552
p-value 0.001 0.015 0.018

correction, for the handwriting analysis and the tremor level.
Significant features were the pressure standard deviation (std-
p) and its variation and second variation (std-∆p, std-∆∆p),
which were directly related to the control of fine movements
and plasticity, with a correlation of 0.719, 0.516 and 0.510,
respectively. Figure 6 shows the details of: (i) std of pressure and
(ii) std of pressure variation.

Neuroimaging vs. Handwriting Biomarkers
This subsection describes the correlation between neuroimaging
biomarkers and tremor level.

Table 3 summarizes the results of partial correlation bilateral
analysis, with brain volume correction, for the structure of
cortical areas with pressure and pressure variations. Significant
areas with regard to the level appeared in the precentral
area and mainly in the CT. Significant correlations appeared
between the left precentral and std of the variation and control
of pressure.

Table 4 summarizes the results of bilateral analysis of
Pearson’s partial correlation for the structure of subcortical
areas with pressure and pressure variations for the left
hemisphere (lh) and the right hemisphere (rh). There were
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FIGURE 6 | Scatterplots of handwriting features against tremor level with the best linear line fit, determined using ordinary least squares (OLS, SPSS): (left) standard
deviation (std) of the pressure; (right) std of the pressure variation.

TABLE 3 | Significant areas in Pearson’s partial correlation (PC) analysis with brain volume correction for the motor cortex (DSK 308 parcellation); significant values for
p-value < 0.01 and p-value < 0.05 (bilateral): CV and CT.

Level std-p std-∆p std-∆∆p

lh_precentral_part7 PC −0.513 −0.355 −0.590 −0.524
p-value 0.030 0.148 0.010 0.026

lh_precentral_part9 PC −0.449 −0.447 −0.520 −0.501
p-value 0.061 0.063 0.027 0.034

rh_precentral_part7 PC −0.312 −0.413 −0.479 −0.452
p-value 0.208 0.089 0.044 0.059

lh_ct_precentral_part7 PC −0.518 −0.393 −0.198 −0.196
p-value 0.028 0.107 0.431 0.436

rh_ct_precentral_part1 PC −0.507 −0.432 −0.248 −0.297
p-value 0.032 0.073 0.321 0.232

rh_ct_precentral_part4 PC −0.468 −0.316 0.051 −0.036
p-value 0.050 0.201 0.841 0.886

rh_ct_precentral_part6 PC −0.477 −0.405 −0.101 −0.149
p-value 0.046 0.095 0.690 0.556

rh_ct_precentral_part7 PC −0.561 −0.487 −0.314 −0.317
p-value 0.015 0.040 0.205 0.199

no significant subcortical areas with regard to the tremor
level. However, significant correlations appeared with std
of pressure and variations and basal ganglia (lh_Caudate,
rh_Caudate, lh_Putamen, and rh_Putamen) as well as
in rh_Thalamus.

Table 5 summarizes the results of Pearson’s partial correlation
(bilateral) analysis for Yeo 7 and 17 functional motor networks
in the cerebellum and the pressure and pressure variations. The
most significant areas with regard to tremor severity appeared in
lh_Somato_Motor_A for Yeo 17 functional networks. Significant
correlations appeared in the cerebellum among std of pressure
and variations and lh_Somato_Motor, rh_Somato_Motor, and
lh_Somato_Motor_A.

Figure 7 shows examples of significant Pearson correlations
for handwriting features and neuroimaging biomarkers by
scatterplots: (i) std of pressure and rh_Thalamus and (ii) std

of pressure variation and lh_Somato_Motor_A network in the
cerebellum.

DISCUSSION

In this study, a novel diagnostic approach for ET patients
is presented based on two robust analysis strategies: (i)
noninvasive analysis of Archimedes’ spiral for diagnosis (Lopez-
de-Ipina et al., 2018) and (ii) structural neuroimaging analysis
(Passamonti et al., 2012; Sharifi et al., 2014). The study is based
on a unique dataset aimed at developing tools for early clinical
diagnosis of ET; a range of patient age and tremor severities
were included in order to best capture clinical variation. Analyses
of advanced handwriting datasets are under-represented in the
literature, and thus, our work represents a novel contribution to
the field (Vessio, 2019).
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TABLE 4 | Pearson’s partial correlation (PC) analysis with brain volume correction for subcortical areas; significant values for p-value < 0.01 and p-value < 0.05
(bilateral).

Level std-p std-∆p std-∆∆p

lh_Cerebellum_White_Matter PC −0.296 −0.407 −0.386 −0.334
p-value 0.232 0.094 0.114 0.176

lh_Cerebellum_Cortex PC 0.184 0.136 −0.136 −0.103
p-value 0.466 0.591 0.590 0.685

lh_Thalamus PC −0.131 −0.156 −0.223 −0.266
p-value 0.604 0.537 0.373 0.286

lh_Caudate PC 0.026 0.168 0.480 0.482
p-value 0.919 0.505 0.044 0.043

lh_Putamen PC 0.116 −0.039 0.308 0.326
p-value 0.645 0.878 0.214 0.187

lh_Pallidum PC 0.138 0.032 0.285 0.276
p-value 0.586 0.900 0.252 0.267

rh_Cerebellum_White_Matter PC −0.150 −0.350 −0.367 −0.305
p-value 0.552 0.154 0.134 0.218

rh_Cerebellum_Cortex PC 0.466 0.385 0.020 0.051
p-value 0.051 0.114 0.938 0.840

rh_Thalamus PC −0.539 −0.690 −0.641 −0.573
p-value 0.021 0.002 0.004 0.013

rh_Caudate PC 0.114 0.259 0.517 0.440
p-value 0.654 0.299 0.028 0.068

rh_Putamen PC 0.092 0.220 0.439 0.351
p-value 0.715 0.380 0.068 0.153

rh_Pallidum PC 0.524 0.386 0.441 0.441
p-value 0.026 0.114 0.067 0.067

TABLE 5 | Pearson’s partial correlation analysis with brain volume correction for the Yeo networks in the cerebellum; significant values for p-value < 0.01 and
p-value < 0.05 (bilateral).

Level std-p std-∆p std-∆∆p

lh_Somato_Motor PC 0.715 0.505 0.384 0.420
p-value 0.001 0.032 0.115 0.082

rh_Somato_Motor PC 0.527 0.562 0.338 0.435
p-value 0.025 0.015 0.170 0.071

lh_Somato_Motor_A PC 0.782 0.565 0.508 0.509
p-value 0.000 0.015 0.031 0.031

lh_Somato_Motor_B PC −0.033 −0.086 −0.209 −0.093
p-value 0.898 0.735 0.405 0.713

rh_Somato_Motor_A PC 0.452 0.463 0.277 0.336
p-value 0.059 0.053 0.266 0.172

rh_Somato_Motor_B PC 0.173 0.189 0.175 0.290

Our hypothesis-driven analysis focused on three axes: (i) the
motor circuit and functional networks in the cerebellum,
exploring in detail the structural neuroimaging of the motor
network circuitry: the motor cortex, the cerebellum, the
thalamus, and the basal ganglia; (ii) fine motor skills, analysis
trajectory variations, and pressure, and its fine variations in
Archimedes’ spiral; and (iii) correlation between handwriting
and neuroimaging biomarkers. On the other hand, due to the
controversial role of the cerebellum in the pathophysiology of
ET (Agarwal and Biagioni, 2020), this study also contributes to
increasing evidence of the cerebellum as an important structure
in patients with ET (Sharifi et al., 2014; Latorre et al., 2019).

The combination of both automated handwriting and
neuroimaging analytics may represent a promising strategy in
early detection, confirmation, and management of ET patients.
Since there are no clear and specific biomarkers for ET,
neuroimaging analysis may be harnessed to better distinguish ET
from other tremor-related pathologies (Agarwal and Biagioni,

2020). Moreover, misdiagnosis among tremor syndromes is
common and can impact on both clinical care and research
(Jain et al., 2006). To date, no validated neurophysiological
technique is available that has proven to have good classification
performance above and beyond the clinical diagnosis made by a
movement disorders expert. However, a handwriting sample can
be used either as a noninvasive strategy to distinguish Parkinson’s
disease (PD) and ET (Reich, 2020) or as a quantitative tool for
the automated analysis of tremor severity (Elble et al., 1996). In
fact, Archimedes’ spiral is one of the gold standard tests for ET
analysis (Lopez-de-Ipina et al., 2018). Thus, the correlation and
integration of biomarkers of both methodologies are essential.
In this first validation, we explored the spiral as a support tool
by correlating it with the gold standard clinical diagnosis and
imaging alterations described by MRI. Indeed, these imaging
analyses were consistent with the alterations described with the
automated analysis of the spiral parameters. Interestingly, we
showed for the first time in 19 patients with ET that there exists a
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FIGURE 7 | Scatterplots of handwriting features against neuroimaging biomarkers with the best linear line fit, determined using ordinary least squares (OLS, SPSS):
(left) std of pressure and rh_Thalamus; (right) std of pressure variation and lh_Somato_Motor_A, a network in the cerebellum.

significant correlation between the automatic analysis developed
by the Archimedes’ spiral and the structural and functional
changes described in the neuroimaging analysis according to the
level of tremor severity.

Since the early detection of ET and the management of
disease, not only in clinical but also in domestic environments,
there has been a requirement for robust, noninvasive, easy-to-
use approaches for the characterization of the disorder. These
findings enable us to suggest Archimedes’ spiral as a noninvasive
tool with high precision that could be used in supporting
clinicians. Furthermore, the handwriting samples needed are
easily available and can be acquired at low cost from tremor
recordings for brief periods of time as well as provide a context-
independent interpretation. Indeed, systems with automated
analyses are being pursued in several studies with the purpose
of obtaining an accurate and noninvasive diagnosis. On the
other hand, neuroimaging analysis is one of the most robust
assessments in neurological disorders and the automated analysis
of handwriting is a robust and easy tool for use in clinical
practice (Sharifi et al., 2014; Schuhmayer et al., 2017). In this
context, a recent study also proposed the use of machine learning
methods in combination with neuroimaging techniques for the
early diagnosis of ET by measuring cortical thickness (Serrano
et al., 2017). Accordingly, Sengul and colleagues have shown a
correlation between brain microstructural changes of both white
matter and gray matter with cognitive function in patients with
ET, suggesting that other brain structures are related to the
level of cognitive performance above and beyond the cerebello-
thalamo-cortical pathway (Sengul et al., 2020).

Furthermore, it is speculated that the cerebellum plays an
important role in the guidance and control of movement after
receiving sensory information (Koziol and Budding, 2012). In
this regard, a recent study has strongly supported the functional
activity changes in the cerebello-thalamo-cortical network, which

is mainly involved in the coordination of movements (Patel et al.,
2014), in patients with ET during motor task performance. In
fact, the authors suggest in the study that this network is also
altered in rest conditions when tremor is absent (Nicoletti et al.,
2020). Thus, it is fundamental to focus on the structural basis
of the ET in order to functionally elucidate which regions are
involved and altered in its pathophysiology in order to achieve a
correct diagnosis and monitoring of further effects. In particular,
our findings indicated that patients with ET had alterations in the
cerebello-thalamo-cortical motor circuitry that resulted in loss of
fine movement skills.

The results of the analysis support the hypothesis that
the increase in severity of tremor (reflected in variations
in pressure) correlates proportionally with the alteration in
the cerebello-thalamo-cortical connectivity. In 2015, Buijink
and colleagues demonstrated through a connectivity analysis
a modulating effect of tremor variation on the cerebellum-
dentato-thalamic connection and the intrinsic activity of the
thalamus and cerebellum (lobe V). In a similar way to that
described in previous studies (Raethjen et al., 2007), they
found a decrease in cerebellar-cortical functional connectivity
related to the performance of motor tasks. Interestingly,
decreased functional coupling between the primary motor
cortex and the posterior cerebellum was associated with an
increase in tremor severity, and increased tremor intensity
was associated with greater functional connectivity between the
cerebellar lobes I–IV and the motor thalamus. That is, the
altered output activity in the cerebellum would generate an
inadequate thalamic activity, which would be able to interrupt
the physiological connectivity with the motor cortex (Buijink
et al., 2015). These data are consistent with the findings of
the coherence study between EEG–EMG already mentioned
(Raethjen et al., 2007), in which it was shown that cortical
activity can be lost intermittently without changes in tremor
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suggesting that cortical involvement is not crucial in the genesis
of tremor.

Overall, our study has the following key findings:
(i) association between tremor level with pressure and its
variations; (ii) correlation of tremor level to brain structure in
several areas of the motor cortex (specifically, differences in
cortical volume and cortical thickness); (iii) correlation among
fine movement skills, pressure, and variations to subcortical
areas, thalamus, ganglia, and cerebellum; and (iv) functional
variation vs. structural changes analyzed by Yeo networks in the
cerebellum and the correlation appearing in the somatomotor
network with regard to tremor level, pressure, and variations.

Currently, the diagnosis of ET is clinically driven and there are
no specific biomarkers available. In recent years, an important
effort has been made to classify ET with respect to other
diseases and physiological tremor (consensus statement on the
classification of tremors, from the Task Force on Tremor of
the International Parkinson and Movement Disorder Society;
Bhatia et al., 2018). Cases of overt tremors are generally easy
to diagnose, although there are serious problems in reaching
diagnostic certainty when the intensity of the tremor is small.
By refining the diagnostic threshold in the early stages of ET,
we may better conduct studies with oligosymptomatic subjects
in two key areas: (i) research on the segregation of candidate
genes in familial tremor, allowing assessment of the phenotype
in doubtful cases, which is very common in patients, even from
the same family (Magrinelli et al., 2020); and (ii) research study
designs in therapeutic trials for patient selection of participants
and for their follow-up assessment.

The results of this study confirm the concordance of findings
between the clinical examination and neuroimaging results, even
in low amplitude tremors, thus positioning it as a tool to improve
the performance of the neurological diagnosis of difficult cases
(Filip et al., 2020). However, this study has some limitations.
First, the wide range of tremor levels in the sample was selected
at the expense of reduced sample size (N = 19). This sample size
limits the power and full generalizability of the results (futility
study), and hence, results must be validated in larger cohorts
specifically designed for this purpose. However, the selection
of hypothesis-driven biomarkers provides a robust experimental
framework that adds value to the novel methodology and results.

CONCLUSIONS

Essential tremor is a movement disorder of high prevalence that
requires efficient clinical trials not only for early diagnosis but
also for monitoring and appropriate management of treatments.
In this sense, the integration of noninvasive and inexpensive
tools (such as the automatic analysis of handwriting and
drawing) along with robust biomarkers based on neuroimaging
could become powerful support tools in future assessments.
In addition, the correlation of both automated neuroimaging
analysis with clinical findings allows us to consider the
Archimedes’ spiral task as a valuable tool in the diagnosis and
follow-up of ET. Ultimately, this work presents a novel approach
based on automated analysis of Archimedes’ spiral and analysis
of structural neuroimaging. The study involved patients with

a wide range of tremor levels and explored fine variations in
functionality over the motor circuit observed with structural
neuroimaging. Results are promising and give a useful, easy-to-
use, and robust support tool for the management of early tremor
that can be easily integrated into current clinical assessments.
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Sadikov, A., Groznik, V., Žabkar, J., Mozina, M., Georgiev, D., Pirtosek, Z., et al.
(2014). ‘‘Parkinson check smart phone app,’’ in Proceedings of ECAI 2014,
Frontiers in Artificial Intelligence and Applications, Vol. 263, (Amsterdam: IOS
Press), 1213–1214.

Schuhmayer, N., Weber, C., Kieler, M., Voller, B., Pirker, W., Auff, E., et al. (2017).
Task-dependent variability of essential tremor. Parkinsonism Relat. Disord. 41,
79–85. doi: 10.1016/j.parkreldis.2017.05.018

Sengul, Y., Temur, H. O., Corakcı, Z., Sengul, H. S., Dowd, H., Ustun, I.,
et al. (2020). Brain microstructural changes and cognitive function in
non-demented essential tremor patients: a diffusion tensor imaging study.
Int. J. Neurosci. 1–11. doi: 10.1080/00207454.2020.1803859. [Online ahead of
print].

Sepúlveda, M. C., and Fasano, A. (2020). Essential tremor: New advances. Clin.
Parkinsonism Relat. Disord. 3:100031. doi: 10.1016/j.prdoa.2019.100031

Serrano, J. I., Romero, J. P., Castillo, M., Rocon, E., Louis, E. D., and Benito-
León, J. (2017). A data mining approach using cortical thickness for diagnosis
and characterization of essential tremor. Sci. Rep. 7:2190. doi: 10.1038/s41598-
017-02122-3

Sesa-Nogueras, E., Faundez-Zanuy, M., and Mekyska, J. (2012). An information
analysis of in-air and on-surface trajectories in online handwriting. Cogn.
Comput. 4, 195–205. doi: 10.1007/s12559-017-9501-5

Sharifi, S., Nederveen, A. J., Booij, J., and van Rootselaar, A.-F. (2014).
Neuroimaging essentials in essential tremor: a systematic review. NeuroImage
5, 217–231. doi: 10.1016/j.nicl.2014.05.003

Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E.,
Johansen-Berg, H., et al. (2004). Advances in functional and structural
MR image analysis and implementation as FSL. NeuroImage 23, S208–219.
doi: 10.1016/j.neuroimage.2004.07.051

Solé-Casals, J., Anchustegui-Echearte, I., Marti-Puig, P., Calvo, P. M.,
Bergareche, A., Sánchez-Méndez, J. I., et al. (2019). Discrete cosine transform
for the analysis of essential tremor. Front. Physiol. 9:1947. doi: 10.1016/j.
envpol.2021.117181

SPSS Statistics. (2020). Part vs. Partial Correlation. Available online at: https://
www.ibm.com/support/pages/part-vs-partial-correlation.

Tuite, P. and Dagher, A. (2013). Magnetic Resonance Imaging in Movement
Disorders. Cambridge, MA: Cambridge University Press.

Vessio, G. (2019). Dynamic handwriting analysis for neurodegenerative disease
assessment: a literary review. Appl. Sci. 9:4666. doi: 10.3390/app9214666

Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D.,
Hollinshead, M., et al. (2011). The organization of the human cerebral cortex
estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165.
doi: 10.1152/jn.00338.2011

Zeuner, K. E., Peller, M., Knutzen, A., Holler, I., Münchau, A., Hallett, M., et al.
(2007). How to assess motor impairment in writer’s cramp. Mov. Disord. 22,
1102–1109. doi: 10.1002/mds.21294

Zhang, K., and Sejnowski, T. J. (2000). A universal scaling law between gray matter
and white matter of cerebral cortex. Proc. Natl. Acad. Sci. U S A 97, 5621–5626.
doi: 10.1073/pnas.090504197

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Lopez-de-Ipina, Solé-Casals, Sánchez-Méndez, Romero-Garcia,
Fernandez, Requejo, Poologaindran, Faúndez-Zanuy, Martí-Massó, Bergareche and
Suckling. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Human Neuroscience | www.frontiersin.org 11 June 2021 | Volume 15 | Article 648573

https://doi.org/10.1016/j.jneumeth.2005.08.007
https://doi.org/10.1016/j.jneumeth.2005.08.007
https://doi.org/10.1038/s41598-020-73714-9
https://doi.org/10.1016/j.pscychresns.2011.01.007
https://doi.org/10.7916/D8F76B8G
https://doi.org/10.1016/S1474-4422(13)70213-8
https://doi.org/10.1016/S1474-4422(13)70213-8
https://doi.org/10.1002/mds.870131315
https://doi.org/10.1152/jn.00477.2006
https://doi.org/10.1016/j.cger.2019.09.015
https://doi.org/10.1016/s0165-0270(97)02263-2
https://doi.org/10.1016/j.neuroimage.2011.10.086
https://doi.org/10.1016/j.neuroimage.2017.12.059
https://doi.org/10.1016/j.parkreldis.2017.05.018
https://doi.org/10.1080/00207454.2020.1803859
https://doi.org/10.1016/j.prdoa.2019.100031
https://doi.org/10.1038/s41598-017-02122-3
https://doi.org/10.1038/s41598-017-02122-3
https://doi.org/10.1007/s12559-017-9501-5
https://doi.org/10.1016/j.nicl.2014.05.003
https://doi.org/10.1016/j.neuroimage.2004.07.051
https://doi.org/10.1016/j.envpol.2021.117181
https://doi.org/10.1016/j.envpol.2021.117181
https://www.ibm.com/support/pages/part-vs-partial-correlation
https://www.ibm.com/support/pages/part-vs-partial-correlation
https://doi.org/10.3390/app9214666
https://doi.org/10.1152/jn.00338.2011
https://doi.org/10.1002/mds.21294
https://doi.org/10.1073/pnas.090504197
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles

	Analysis of Fine Motor Skills in Essential Tremor: Combining Neuroimaging and Handwriting Biomarkers for Early Management
	INTRODUCTION
	MATERIALS AND METHODS
	Participants
	Imaging Acquisition and Processing
	Handwriting Processing
	Statistical Analysis

	RESULTS
	Handwriting Analysis
	Neuroimaging vs. Handwriting Biomarkers

	DISCUSSION
	CONCLUSIONS
	DATA AVAILABILITY STATEMENT
	ETHICS STATEMENT
	AUTHOR CONTRIBUTIONS
	FUNDING
	ACKNOWLEDGMENTS
	REFERENCES


