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Children differ widely in their early language development, and this variability has
important implications for later life outcomes. Parent language input is a strong
experiential factor predicting the variability in children’s early language skills. However,
little is known about the brain or cognitive mechanisms that underlie the relationship.
In addressing this gap, we used longitudinal data spanning 15 years to examine the
role of early parental language input that children receive during preschool years in
the development of brain structures that support language processing during school
years. Using naturalistic parent–child interactions, we measured parental language input
(amount and complexity) to children between the ages of 18 and 42 months (n = 23). We
then assessed longitudinal changes in children’s cortical thickness measured at five time
points between 9 and 16 years of age. We focused on specific regions of interest (ROIs)
that have been shown to play a role in language processing. Our results support the
view that, even after accounting for important covariates such as parental intelligence
quotient (IQ) and education, the amount and complexity of language input to a young
child prior to school forecasts the rate of change in cortical thickness during the 7-year
period from 51/2 to 121/2 years later. Examining the proximal correlates of change in brain
and cognitive differences has the potential to inform targets for effective prevention and
intervention strategies.

Keywords: MRI, language acquisition, brain structure, parental language input, language development, cortical
thickness

INTRODUCTION

Language skills are fundamental for children’s later life outcomes (e.g., Duncan et al., 2007;
Marchman and Fernald, 2008; Bleses et al., 2016). Variability in children’s language skills early
in life has been linked to variability in children’s home environments. Indeed, one of the best-
established findings in the developmental literature is that variability in children’s early language
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skill is influenced by the quantity and quality of language
input they receive from their parents (e.g., Huttenlocher et al.,
1991, 2002; Hart and Risley, 1995; Weizman and Snow, 2001;
Hoff, 2003; Rowe and Goldin-Meadow, 2009; Rowe et al., 2009;
Cartmill et al., 2013). Variability in early child language skills have
also been shown to predict variability in later structural brain
differences in language areas. For example, vocabulary growth
measured at age 14–58 months predicts cortical thickness in
the left supramarginal gyrus (SMG) at age 8 to 10 years old
(Asaridou et al., 2017). However, less is known about the relation
between children’s experiential factors early in life and change
in later brain structures. Here, we attempt to bridge this gap
using a unique longitudinal data set spanning 15 years. We ask
whether parental language input during preschool years predicts
changes in later (mid-adolescent) cortical structures that subserve
language processing, over and above possible covariates such as
parental socioeconomic status (SES) or intelligence quotient (IQ).

PARENTAL LANGUAGE INPUT AND
CHILD LANGUAGE DEVELOPMENT

Previous behavioral work highlights the role of parental cognitive
stimulation, and the role of parental language input more
specifically, in shaping children’s cognitive outcomes. One of the
most frequently reported findings in the developmental literature
is the association between early parental language input and
language development (e.g., Huttenlocher et al., 1991, 2002; Hart
and Risley, 1995; Weizman and Snow, 2001; Hoff, 2003; Rowe
and Goldin-Meadow, 2009; Rowe et al., 2009). Language input
more strongly predicts child language outcomes than SES or a
variety of other characteristics of parent–child interactions, such
as parental affect. Measures of language input often focus on its
quantity, such as the number of word tokens parents produce
(Huttenlocher et al., 1991; Hart and Risley, 1995; Weizman and
Snow, 2001; Rowe, 2008, 2012; Barnes, 2011; Weisleder and
Fernald, 2013; Demir-Lira et al., 2019; Rowe and Snow, 2020).
More recent research has also highlighted the complexity of
language input, such as parental use of rare words or talk about
abstract topics, as a predictor (e.g., Demir et al., 2015; Rowe and
Snow, 2020; see also Cartmill et al., 2013). In the current paper, to
gain a comprehensive view of children’s input, we consider both
the quantity and complexity of early parental input in predicting
later child brain structure.

BRAIN AREAS ASSOCIATED WITH
LANGUAGE DEVELOPMENT

A wide set of networks in the brain supports language
development. One network, particularly specialized for language,
includes (among other regions) the superior temporal gyrus
(STG), superior temporal sulcus (STS), middle temporal gyrus
(MTG), SMG, and inferior frontal gyrus (IFG; pars opercularis
and pars triangularis) (Wilke et al., 2009; Friederici and Gierhan,
2013). Among other roles, STG is thought to be involved in
speech perception (Hickok and Poeppel, 2007), MTG in semantic

processing (Price, 2012), the SMG in phonological processing
(Rodríguez-Fornells et al., 2009), and the IFG in speech
processing and lexical competition (Davis and Gaskell, 2009;
Rodríguez-Fornells et al., 2009; Price, 2010, 2012; Fedorenko
and Thompson-Schill, 2014; Li et al., 2014). Brain structure
in these regions of interest (ROIs) is related to children’s
language skills. For example, left IFG, MTG and STG volumes
differentiate typically-developing children from children with
language disorders (e.g., Badcock et al., 2012; Lee et al., 2020).

The focus of the current paper is on brain structure,
specifically, cortical thickness, because underlying cellular
components of cortical thickness are amenable to change as a
result of postnatal experience and learning (Diamond et al.,
1964; Black et al., 1990; Anderson et al., 1994; Kleim et al.,
1996). Cortical thickness is measured by the distance between
the boundary of white and cortical gray matter, and gray matter
and the pia mater. Cortical thickness varies roughly between 2
and 4 mm, with frontal and occipital poles being thinnest and
temporal and insular cortices being thickest (Ribeiro et al., 2013).
Although, as a general trend, cortical thickness decreases over
childhood and early adolescence, ultimately plateauing in early-
to mid-adulthood, development varies across cortical regions.
Some regions, such as temporal areas, exhibit less linear and more
quadratic patterns of development than other areas (Sowell et al.,
2003; Raznahan et al., 2011; Mutlu et al., 2013; Mills et al., 2016).

PARENTAL LANGUAGE INPUT AND
BRAIN AREAS ASSOCIATED WITH
LANGUAGE DEVELOPMENT

Discussions of the role that parental input plays in language
development rarely include the underlying neural basis of this
development. When experiential factors have been considered
in relation to the neurobiological basis of language processing,
parental SES (typically measured by family income, parental
educational attainment, and/or parental occupational prestige)
has been the focus (Duncan and Magnuson, 2012). For example,
SES disadvantage has been associated with reduced volume (e.g.,
Jednoróg et al., 2012; Hair et al., 2015), thickness (Mackey et al.,
2015), and surface area (Noble et al., 2015) in cortical regions
underlying language comprehension, including perisylvian areas
(e.g., STG) and ventrolateral prefrontal areas (e.g., IFG; Noble
et al., 2012; Piccolo et al., 2016). SES-related differences are also
observed in white matter structures, and in functional brain
systems, involved in language processing (Raizada et al., 2008;
Gullick et al., 2016; Younger et al., 2019). However, parental
SES is a complex construct of many components (e.g., parental
income, education, and neighborhood characteristics). Any one
of these components of SES could be influencing children’s
academic outcomes via more day-to-day interactions, such as
parental language input.

A few recent studies have begun to examine the associations
between parental language input and brain structure and
function for language processing. Avants et al. (2015) found
associations between HOME, an observational measure of the
home environment, and later cortical thickness in areas central
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to language processing. Using naturalistic recordings of parent–
child conversations in the home, Romeo et al. (2018a) showed
that, in 4 to 6-year-old children, the number of conversational
turns with adults in the home environment (a measure of input
complexity), predicts left IFG activation during a story-listening
task completed at the same age, and that number of turns
mediates the relation between SES and children’s language skill,
as well as white matter connectivity in left arcuate and superior
longitudinal fasciculi, also at the same age (Romeo et al., 2018b).
Building on this work, Merz et al. (2020) found that the greater
the input quantity (number of adult words) and complexity
(number of conversational turns) in 5- to 9-year-old children, the
greater left perisylvian cortical surface area in these children at
the same age. The input quantity and complexity measures were
highly correlated and revealed similar associations.

We add to this small but growing literature in several ways.
First, previous investigations examined concurrent relations
between parental input and child brain structure. However,
to explore predictive relations, we need to examine parental
input early in development, and child brain structure later in
development in the same children – the focus of this paper.
Second, previous studies measured brain structure at a single time
point, but parental input might have different effects on child
measures if those measures are taken longitudinally (e.g., Rowe
et al., 2012, with respect to behavioral measures; Piccolo et al.,
2016, with respect to brain measures). Here, we assess changes
in brain structure over time during development. Third, existing
studies rely on recording devices (e.g., LENA devices) that
provide automatized measures, but do not produce transcription
of audio recordings. Past studies leveraged conversational turns
as a measure of input complexity, which is automatically
calculated by LENA. However, conversational turns do not reveal
the specific linguistic features that are predicting later outcomes.
Here, we consider measures not only of input quantity, but
also of input complexity, which requires hand-coding. Fourth,
the youngest children included in previous studies of parent
language input–child brain structure relations were 4 years old;
however, by 4, children already vary greatly in their language
skills (Fenson et al., 1994). Recent work shows that early
parental input may predict later child outcomes better than input
in later preschool years (Rowe et al., 2012). Here, we focus
on parental input beginning at child age 18 months. Finally,
we examine the relation of this early parental input to child
brain structure in mid-adolescence, a much later age than has
typically been studied.

CURRENT STUDY

Ours is the first study to examine predictive, longitudinal
relations between early parental language input and changes in
child brain structure over time. We examine the relation between
two measures of early parental input – quantity and complexity –
between child age 18 and 42 months, and changes in child cortical
thickness between 9 and 16 years of age. To do so, we gathered
a range of input measures collected directly from naturalistic
interactions in the home at child age 18–42 months, when

children already show great variability in language development.
We then assessed children’s brain structure at five different time
points between 9 and 16 years of age. We focus on brain regions
that have been shown to play a particularly strong role in language
processing. We also focus on cortical thickness as our measures
of brain structure. Cortical thickness is tied to the number of
neurons in a cortical column, the amount of glial and capillary
support, and dendritic branching (Rakic, 1988, 2009), all of which
are amenable to change as a result of postnatal experience and
learning and thus deem cortical thickness as particularly sensitive
to environmental experiences (Black et al., 1990; Anderson
et al., 1994; Kleim et al., 1996). Our main research question
is how parental language input during preschool years relates
to changes during mid-adolescence in child brain structures
involved in language processing. Based on prior behavioral and
neuroimaging literature, we hypothesize that parental language
input will positively predict both average cortical thickness and
changes in cortical thickness, controlling for parent background
variables, such as parent income, education and IQ.

MATERIALS AND METHODS

Participants
Twenty-three children (12 female) participated in the study. All
were native speakers of American English and were studied
over a 15-year period. The children were drawn from a sample
of 64 children participating in a larger, longitudinal study of
children’s language development in the greater Chicago area
(see Goldin-Meadow et al., 2014). Participants were recruited
from the Chicago area via mailings to families in targeted zip
codes and via an advertisement in a free parent magazine.
A subset of the 64 children from the original sample agreed to
participate in the neuroimaging component of the larger study
(n = 23); these are the families described in this study. Each
parent gave written informed consent following the guidelines
of the Institutional Review Boards for the Division of Biological
Sciences at The University of Chicago, and the Office of Research
at the University of California, Irvine, which approved the study.
Children gave verbal assent. All participants reported normal
hearing and normal or corrected-to-normal vision. No parent
reported any history of neurological or developmental disorders
in their child. Handedness was assessed using the Edinburgh
handedness inventory (Oldfield, 1971).

Parent language input measures were collected at the 18, 30,
and 42 month behavioral visits (see procedure below). A total of
30 participants were tested in the Magnetic resonance imaging
(MRI) component over the 5 years between 9 and 16 years of
age. Seven participants were excluded from the analyses because
they did not have the early parental input data, resulting in a
final sample of 23 families. As described below, children were
scanned a maximum of five times – a number of individual MRI
sessions were excluded because the child failed to complete the
session or moved excessively (more than 10% of the total number
of volumes).

According to parent report, 19 children were White, 2 were
African–American, and 2 were of mixed race. In terms of
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ethnicity, 3 of the children were reported to be Hispanic and 20
were non-Hispanic. Parent education (in years) was coded on a
categorical scale (10 = less than high school degree, 12 = high
school degree, 14 = some college or associate degree, 16 = college
degree, 18 = more than college). In this sample of 23 children,
average parent education was 15.6 years (SD = 2.4, range = 10–
18) and average family income was $59,456 (SD = $30,738,
range = $7500–$100,000). For 22 children, mother was the
primary caregiver; for 1 child, father was the primary caregiver.
All but 3 of the families reported the education level of a
secondary caregiver as well. For these 20 families, education levels
for the primary and secondary caregivers were highly correlated,
r = 0.57, p = 0.008. Because family income and caregiver
education were highly correlated, the two were combined using
a principal components analysis (PCA), which returned a single
composite measure for SES. Correlation between SES composite
and education is ρ = 0.86, and correlation between SES composite
and income is ρ = 0.69. SES captured 47% of the variability
between education and income.

Behavioral Procedure
The parental language input included in this study was collected
as part of the larger longitudinal study described previously (see
Goldin-Meadow et al., 2014). We coded videotapes of parents
interacting with their children for approximately 90 min during
home visits that occurred every 4 months between child ages
14–58 months. Parents were not given any specific instructions
and were asked to engage in their normal daily activities. Typical
activities included toy play, book reading, and eating meals and
snacks. In the current study, three visits were chosen (visits at
child age 18, 30, and 42 months). We focused on these three time
points for multiple reasons: (1) previous research using data from
the larger sample showed significant relations between input
provided at these three time points and later child outcomes,
highlighting the role of children’s early experiences (Rowe et al.,
2012); (2) the earlier the ages, the lower the possibility of children
directing the input parents provide to them, (3) recent work has
shown that parents tend to be stable in their input in these early
years (Silvey et al., 2021); and finally, (4) input in earlier preschool
years, compared to the entire preschool period up to 58 months,
reveals similar relations to later outcomes (Rowe et al., 2012).

Behavioral Measures
Parent Language Input Measures
All parent and child speech in the videotaped sessions were
transcribed. Only speech directed to the child was used in the
current analyses based on previous work suggesting that language
directed to the child might be more strongly related to child
language development than overheard speech (Shneidman et al.,
2013; Weisleder and Fernald, 2013). The unit of transcription
was the utterance. An utterance was defined as any sequence
of words that was preceded and followed by a pause, a change
in conversational turn, or a change in intonational pattern.
Transcription reliability was established by having a second
individual transcribe 20% of the videotapes with a reliability
criterion of 95% agreement on utterance transcription. Our
measures of input consisted of three different components: (1)

the number of word tokens, (2) number of rare words, and
(3) decontextualized utterances parents produced at child age
18, 30 and 42 months during the 90-min visits. Word tokens
were the total number of words parents produced. Rare words
were identified using the method described by Beals and Tabors
(1995) (see also Weizman and Snow, 2001). We removed all non-
dictionary words from the corpus of spoken parent words and
the most common words (and all their inflected forms) known
by fourth graders, as judged by teachers, and compiled in the
Dale-Chall word list (Dale and Chall, 1948; Chall and Dale,
1995). The remaining words in the parent input corpus were
considered rare words. Decontextualized language utterances
produced by parents and children were identified and coded as in
Rowe (2012). Categories of decontextualized language included
narrative, pretend, and explanation (see Rowe, 2012; Demir et al.,
2015; for detailed definitions of each category). All utterances
marked as narrative, pretend or explanation were considered
decontextualized. Since effectiveness of specific input features
varies by child age, we focused on features of the input that
have been shown to predict child language outcomes during
the period observed (Rowe and Snow, 2020; Silvey et al., 2021).
We also excluded interactional aspects of the input, such as
conversational turns, that might reflect broader characteristics
of the parent–child interactions, such as parent sensitivity or
parent–child synchrony.

Parent IQ
Parent verbal IQ was measured using Wechsler Abbreviated
Scale of Intelligence (WASI-II, Wechsler, 2011) when children
were in 5th grade. Average parent IQ was 113.5 (SD = 18.4,
range = 80–149).

Child Peabody Picture Vocabulary Test
To examine the impact of early parent language input on later
child brain imaging, above and beyond the child’s language skill at
the time of imaging, we included a measure of children’s language
skill (Peabody Picture Vocabulary Test, PPVT III; Dunn and
Dunn, 1997), administered at 4th grade during the period when
the imaging was done. The PPVT is a widely used measure of
vocabulary comprehension with published norms. Average PPVT
score was 113.61.

Neuroimaging Procedure
Children were scanned in five waves from 9 to 16 years of age. As
in other large-scale studies focusing on brain development during
childhood, this age span was selected to capture a rapid period of
brain development during late childhood and adolescence when
high individual variability is observed (e.g., Sowell et al., 2001,
2002; Casey et al., 2018). For a detailed summary of the number of
children that participated in each year and their age, see Table 1.
Not all children participated in all scanning sessions and each
child contributed 1–5 scans. Six children were scanned once, 3
children were scanned twice, 4 three times, 2 four times, and 8 five
times. On average children were scanned 2.9 times, and we had a
total of 83 scans. Although the sample size is modest (n = 23),
it is important to highlight that, according to a recent review on
neuroimaging studies on structural brain development, only 16
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TABLE 1 | Descriptive statistics for child age at MRI scanning session.

Age

M (SD) Range n

Year 1 9.31 (0.54) 8.66–10.29 16

Year 2 10.47 (0.60) 9.71–11.32 11

Year 3 11.44 (0.50) 10.79–12.19 13

Year 4 13.94 (0.59) 13.21–15.29 19

Year 5 15.97 (0.28) 15.48–16.40 14

Descriptive statistics include mean age (M), standard deviation (SD), and sample
size per year with valid measurements (n).

prior studies had on average more than 2 scans per participant,
and only 3 prior studies had included three or more scans on
average per participant (Vijayakumar et al., 2018).

MRI Acquisition
The first to third waves of imaging data were acquired on
a 3T Siemens Trio scanner with a 32-channel head-coil at
Northwestern University’s Center for Translational Imaging
in Chicago. A T1-weighted structural scan was acquired for
each participant (1 mm × 1 mm × 1 mm resolution;
sagittal acquisition). T1-weighted 3D spoiled gradient echo
(MP-RAGE) sequences were obtained with TR = 2,300 ms,
TE = 2.91 ms, flip angle = 9◦, inversion time = 900 ms,
and 256 contiguous slices (slice thickness = 1 mm, voxel
size = 1 mm × 1 mm × 1 mm, matrix size = 256 × 256).
The fourth to fifth waves of imaging data were acquired on
a 3T Siemens Prisma Scanner with a 32-channel head-coil,
also at the Northwestern University Center for Translational
Imaging. A T1-weighted structural scan was acquired with
a magnetization-prepared rapid gradient echo (MP-RAGE)
sequence (TR = 2300 ms, TE = 1.86 ms, flip angle = 7◦,
Inversion Time = 1180 ms, 208 contiguous sagittal slices, slice
thickness = 0.8 mm, voxel size = 0.8 mm × 0.8 mm × 0.8 mm,
matrix size = 320 × 320). Head motion was minimized
using foam padding around the head, and scanner noise was
minimized with earplugs.

Freesurfer Processing: Cortical
Parcelation
Cortical reconstruction of white and pial surface models was
performed using Freesurfer version 5.3.01 (see Dale et al., 1999;
Fischl et al., 1999). The cortical surface models were manually
reviewed and edited for technical accuracy. We also performed
quality assurance using the Freesurfer QA Toolbox v1.2. Sulcal
and gyral structures were identified automatically (Fischl, 2004)
and parcellated using the Destrieux cortical atlas for anatomical
labeling (Destrieux et al., 2010). This parcelation scheme results
in 148 cortical regions (74 per hemisphere). Cortical thickness
was estimated as the average distance between the white and the
pial surface reconstructions (Fischl and Dale, 2000).

1See http://surfer.nmr.mgh.harvard.edu/ for details on the Freesurfer surface-
based pipeline.

Given our overall modest sample size, we focused on six
ROIs that have been shown to play a particularly important
role in language processing. Based on the previous literature
on neurobiological basis of language development and our own
work, which has found a relation between children’s own early
language skills and their later cortical thickness in the children
observed in this study (Asaridou et al., 2017), we examined
cortical thickness in six ROIs in each hemisphere (12 regions
in total): STG, STS, MTG, SMG, IFG (pars opercularis and
pars triangularis) in each of the hemispheres (e.g., Price, 2010;
Li et al., 2014).

Statistical Analysis Plan
To address our research question, we built two sets of models. For
the first set of models, we ran traditional, frequentist analysis of
the data using linear mixed models. Given the sample size, we also
performed the model fitting process under a Bayesian paradigm
to complement the frequentist analyses (McNeish and Stapleton,
2016). The second set of analyses can be found in Supplementary
Tables 1, 2 and Supplementary Figure 1. The direction of
effects for parameters of interest was consistent across the
frequentist and Bayesian models. For the frequentist approach,
linear mixed models were built in R using the lmer package (R
Core Team, 2017). The dependent variable was cortical thickness.
We started with a parsimonious model of fixed effects including
variables which, on theoretical grounds, we wanted to control for
independent of effect size. These variables included a measure for
parent SES composite, maternal IQ, sex, age, and an indicator
for the fMRI scanner used (which changed after the 3rd scan).
As measures for body size were unavailable, a mean thickness
from 5 occipital regions of the brain (middle occipital gyrus,
superior occipital, occipital pole, occipital sulcus, and parieto-
occipital sulcus), typically not associated with auditory language
processing, were used to control for brain size (Price, 2010). As we
were interested in change in thickness over time, the minimum
age value was subtracted from all ages, thus centering age at
the beginning of the first scan. Similar to other longitudinal
studies, this was done so that the zero-time point (the beginning
of first scan) was included in the range of the model, and so
that age-related coefficients could be interpreted as one-year
increases in age from the onset of the scans. Further, by doing
so, we can interpret the intercept term as cortical thickness at
the beginning of the study. Additionally, exploratory analyses
suggested that the largest difference in mean thickness between
high and low language input groups (partitioned by the sign of
the first principal component) occurred at younger ages. Setting
the adjusted age to start at zero allowed this time to serve as a
baseline for model covariates. Model covariates for IQ, language
input composite, SES composite, mean occipital thickness were
all centered and scaled.

Previous studies (e.g., Vijayakumar et al., 2016) indicate that
change in brain thickness during the 9–16 year period, especially
in the areas we focus on, could follow a quadratic pattern. Since
our null hypothesis was that linguistic input does not have relate
to brain thickness over time, we included a quadratic interaction
between age and model covariates. Specifically, in addition to
the hypothesized quadratic change in thickness over age, we
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FIGURE 1 | Individual trajectories of cortical thickness (A) mean observed cortical thickness by group and (B) model fit by group. For visualization purposes only,
high and low language groups are separated by median language input PCA value. In both figures the solid line represents the Loess curve fit on the observation.
The six children who participated in only one MRI session are represented with a single point in the figure.

attempted to account for the fact that linguistic input itself (as
well as other covariates) may have a quadratic effect on cortical
thickness. Inclusion of input for language, as well as quadratic
interactions of all variables with age, were determined by Akaike
information criterion (AIC). Random effects for the model were
used to account for correlation between observations, and were
selected based on the restricted maximum likelihood (REML)
criterion. Random effects selected include random intercepts
for subject, brain region, and laterality. A residuals analysis
was performed on the final models to verify the assumption of
normality for the model error. Reported p-values were computed
with Satterthwaite approximation in the R package lmerTest
(Kuznetsova et al., 2016).

RESULTS

Descriptive Analyses
Parents showed variability in the quantity and complexity of
language input at 18, 30, and 42 months (see Table 2). For
example, some parents produced no decontextualized utterances
at all; others produced over 600 during their 90-min visits. We

included in this study only those children who took part in the
MRI study. The numbers for the subsample who were included
in the study were representative of the results based on the full
sample discussed in other publications (e.g., Rowe, 2012). Parent
input measures on our subsample at different time points were
significantly correlated with each other, with correlations ranging
from 0.19 to 0.74, and an average correlation of 0.48 – consistent
with our work with the full sample showing that parents are
relatively stable in their input over time (Silvey et al., 2021). See
the Supplementary Materials for correlations between different
time points separately (Supplementary Table 3).

Because the primary goal of the current study was to gather an
overall view of children’s early language input, we used PCA to
create a single composite measure of language input. The decision
to focus on a composite input measure was further justified by
the high degree of collinearity between the different measures.
Measures of parental input were significantly correlated with
each other (mean word tokens and decontextualized utterances,
r = 0.81, p < 0.001; mean word tokens and rare words, r = 0.59,
p < 0.001; mean decontextualized utterances and rare words,
r = 0.45, p < 0.001). However, including rare words in the PCA
decreased the variance explained by the first principal component

Frontiers in Human Neuroscience | www.frontiersin.org 6 August 2021 | Volume 15 | Article 650152

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-650152 August 2, 2021 Time: 13:31 # 7

Demir-Lira et al. Input and Child Cortical Structure

TABLE 2 | Descriptive statistics for parental input measures including mean (M), standard deviation (SD), and min–max range (n = 23).

18 months 30 months 42 months

M (SD) Range

Word tokens 3.435 (2.176) 360–9.227 3.603 (1.825) 1.096–7.673 3.634 (1.923) 488–9.087

Decontextualized utterances 18.87 (22.23) 0–73 62.3 (67.01) 0–301 84.13 (133.09) 0–628

Rare words 25.57 (19.52) 1–83 30.09 (15.59) 10–76 37.35 (22.72) 6–100

to 32%, a net loss even after considering the addition of three
measures (one for each time point), suggesting that including rare
words increased noise that may, or may not, be related to our
outcome of interest. We conducted analyses by combining mean
word tokens and decontextualized utterances from the three time
points into a single composite input score. The first principal
component was highly correlated with each of these input
measures and accounted for 62% of the total variance in linguistic
input. Consequently, we focused on the principal component
including word tokens and decontextualized utterances. We
replicated the analysis with models using a principal component
that also included rare word types. These models revealed similar
results, though with a higher AIC, i.e., a worse fit. The results
using the measure of parental input that also included rare words
are included in the Supplementary Table 4.

Linear Mixed Model Approach
To find the best fitting model for cortical thickness, we first
present an empirical plot of children’s cortical thickness between
9 and 16 years. Figure 1A is a plot of the observed individual
trajectories of cortical thickness for each participant. Please
note that language input was measured continuously for the
statistical analyses. For visualization purposes only, we divided
the observations into high/low language input groups separated
by the median language input PCA value. Superimposed on
both of these plots is a solid line for each group representing
the Loess curves fit to the values. Children who participated
in only one MRI session (n = 6) are represented with a single
point in the figure. We see that children with higher language
input had higher values for cortical thickness than their lower
language input peers, while also exhibiting steeper change within
the time period observed. Figure 1B represents the model fit
which we describe next.

To formally test the patterns observed, we ran linear mixed
model analyses. Results are shown in Table 3. Considering our
covariates first, we saw a non-linear effect with age on cortical
thickness. Mean occipital thickness, as expected, was a significant
predictor of thickness in our ROIs. Higher SES was associated
with greater thickness overall, and SES moderated the relations
of age to cortical thickness, where higher SES children had larger
decreases in cortical thickness, compared to lower SES children.
Female sex was both positively related to overall cortical thickness
and negatively associated with change over time. Female sex was
also positively related to the quadratic term. Mother IQ and
scanner type did not predict cortical thickness when accounting
for other factors in the model.

Particularly relevant to our main question, we saw that
language input interacted quadratically with age. Specifically, the
covariates indicate a concave upward parabola for children with
greater language input during the early years than for children
with less language input. This trend suggests that children with
high language input had overall higher cortical thickness at the
beginning of the observed time period, i.e., around 9 years of
age. The signs and effect sizes of the linear and quadratic terms
suggest that children with higher language input experienced
larger decreases in cortical thickness in the 9–16 age range,
compared to children with lower language input, who exhibited
a more attenuated change. Although our sample size is modest,
the direction of effects for parameters of interest is consistent
across the frequentist and Bayesian models (see Supplementary
Table 5). Further, the directions of effects for parameters for
age are also consistent with prior studies (Vijayakumar et al.,
2016, 2018). Importantly, the results remained unchanged when
analyses were repeated on the subsample of 17 children who
had at least two or more scans and we could directly assess
change over time (see Supplementary Materials 5). Since SES
and language input composite are both centered and scaled,
it is possible to compare the effect of the two factors in the
model. The estimates suggest that the effect size of language

TABLE 3 | Results of a linear mixed model analysis for the relationship between
parental language input PCA (word tokens and decontextualized utterances) and
cortical thickness.

Estimate Std. Error 95% L 95% U p-value

Intercept 3.1692 0.1615 2.8527 3.4857 < 0.001*

Age −0.0293 0.0188 −0.0662 0.0077 0.1208

Age2 0.0018 0.0024 −0.0029 0.0064 0.4593

Mean occipital thickness 0.0872 0.008 0.0716 0.1029 <0.001*

Scanner 0.0195 0.0283 −0.036 0.075 0.492

Mother IQ −0.0009 0.0022 −0.0052 0.0033 0.6694

SES composite 0.0205 0.0271 −0.0327 0.0737 0.4572

SES composite × Age −0.0061 0.0025 −0.011 −0.0012 0.0148*

Sex 0.1569 0.0667 0.0261 0.2877 0.0216*

Sex Age −0.0762 0.0315 −0.1379 −0.0144 0.016*

Sex Age2 0.0072 0.0039 −0.0004 0.0148 0.0653

Language input PCA 0.068 0.0369 −0.0044 0.1404 0.069

Language input PCA × Age −0.0378 0.0156 −0.0685 −0.0072 0.0158*

Language input PCA × Age2 0.0042 0.0019 0.0005 0.0079 0.0274*

We controlled for the following covariates: child age, mean occipital thickness, sex,
scanner type, mother IQ, and family SES. Inferential statistics include estimate,
standard error, 95% CI upper and lower limit, and p-value.
*p < 0.05.
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input and age on cortical thickness is comparable to (slightly
larger) than the effect size of SES on cortical thickness. Finally,
to examine the specificity of the relations of later input to later
child cortical thickness, we included children’s PPVT scores
as a covariate in our model; the results were unchanged (see
Supplementary Table 6).

Region-Specific Relations
Given our modest sample size, we refrain from making strong
conclusions about region-specific effects. For completeness, we
report exploratory analyses including intercept, linear, and
quadratic terms for each ROI as fixed factors. The values for non-
region relevant covariates, such as age, SES, and sex matched
the previous main models. Previous analyses did not reveal
strong laterality differences and thus cortical thickness for the
left and right were averaged per region. IFG pars opercularis
showed the strongest relation to language input and STG and STS
revealed non-significant trending associations. No significant
relations were observed in other regions such as IFG pars
triangularis or SMG. For these former three regions, as in the
main model, language input was positively related to thickness
at baseline, negative to slope and positive to quadratic term.
In other words, children with greater early input had a higher
intercept (indicating higher cortical thickness at the beginning of
the study), and a steeper change over the observed time period
than children with less early input. The tentative conclusion that
language input might have a particular impact on IFG, STG,
and STS is supported by previous evidence (e.g., Romeo et al.,
2018a). See Supplementary Materials for region-specific linear
mixed-model analysis (Supplementary Table 7), region-specific
cortical thickness change trajectories (Supplementary Figure 2),
and region-specific Bayesian analysis (Supplementary Table 2).

DISCUSSION

Our results reveal, for the first time, that early parental language
input prior to school predicts changes in children’s language-
related cortical structures during the school years in mid-
adolescence. Cortical thickness decreases during childhood,
particularly from mid-childhood to adolescence (Mills et al.,
2014; Wierenga et al., 2014; Vijayakumar et al., 2016; Tamnes
et al., 2017). Even though there is a general decline in thickness,
the trajectory of change displays substantial individual variability,
and the trajectories vary by region. Vijayakumar et al. (2016)
reported a negative quadratic pattern of cortical thickness change
in temporal areas, which is similar to the pattern observed
here. Individual variability is largest in temporal and frontal
regions across the lifespan (Frangou et al., 2020). These structural
variations can be linked to a wide range of child internal
factors. For example, Asaridou et al. (2017) showed, in the
sample studied here, that differences in children’s early language
development predict differences in later brain structure. The
structural variations can also be linked to a wide range of
experiential factors. For example, SES and parental cognitive
stimulation predict variability in child brain regions supporting
language processing (e.g., Luby et al., 2013; Merz et al., 2020).

To the extent that previous studies explore the relations between
parental language input and child brain structure, they focused
on concurrent relations between input and brain structure. In
contrast, we examined predictive relations between early parental
language input and later child brain structure. The strength of our
approach is that we modeled change in later brain structure using
longitudinal data with multiple observations.

We found unique relations between early parental input and
change in later child cortical thickness, which were stronger than
relations between early parental input and the average level of
later child cortical thickness. Finding stronger relations between
parent input and change over time in child brain structure than
to values at a single time-point dovetails with previous work
showing that the trajectory of cortical thickness, rather than
its value at a given time point, is a good index of individual
variability in performance (Sowell et al., 2001). We found that
the greater the early parental language input, the steeper the
change in child cortical thickness years later. In other words,
change was slower for children at the lower end of the parent
input continuum. Our findings are also consistent with studies
showing extended growth trajectories in children from higher
SES families (Hanson et al., 2013), continued cortical thinning in
children from higher SES families throughout late adolescence,
and early plateauing in children from lower SES families (e.g.,
Piccolo et al., 2016), which is considered a sign of accelerated
development in children from lower SES families (LeWinn et al.,
2017). With respect to cortical thickness, children from higher
SES backgrounds show steady age-related decreases, particularly
in regions related to language processing (e.g., left STG); in
contrast, children from lower SES backgrounds begin to plateau
during late adolescence (Piccolo et al., 2016; McDermott et al.,
2019). We extend previous work by identifying, for the first time,
a direct measure – early parental language input – that predicts
later change in child cortical thickness, over and above SES.

Why might children who have been exposed to a higher
quantity and complexity of language input early in development
exhibit continued change in cortical thickness, whereas low
input children plateau? Certain enriching experiences might keep
the window for structural brain development open, allowing
for additional cortical thinning. In contrast, developmental
thinning might be sped up for individuals who are not as
frequently exposed to enriching experiences, resulting in an
earlier-closing window and less thinning overall. Literature on
severe environmental adversity, such as traumatic childhood
experiences, supports the notion that damaging early life
experiences can derail brain development, specifically leading
to accelerated maturation and narrower windows of plasticity
(Gur et al., 2019; Miskolczki et al., 2019). Here, we focused
on only the role of enriching experiences and variability within
the normative range. However, within the normative range, our
results suggest a comparable profile of extended change for
children exposed to richer experiences, and of restricted change
for children with more impoverished input. Future work is
needed to explore whether negative and positive experiences are
part of the same continuum with respect to brain development.
Another possible explanation for the differences we find between
children coming from homes that provide high versus low
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levels of cognitive enrichment is that children exposed to more
language input might have resources to spare, as evidenced by
their overall greater cortical thickness early in development,
which might lead to continued thinning. In other words, more
parental input might lead to thicker cortex to begin with,
which then supports more protracted thinning. Overall, the
computational properties of a network might be better revealed
by considering its developmental origins and change over time
together (Dündar-Coecke and Thomas, 2019).

Three developmental theories have been proposed to explain
apparent cortical thinning in the age range examined: pruning,
myelination and cortical morphology, but not to neuron
generation or loss (Vandekar et al., 2015; Vijayakumar et al.,
2016). Synapse elimination, pruning and myelination continues
well into adulthood (Huttenlocher, 2009). Important underlying
cellular changes include changes in the number of neurons in
a cortical column, the amount of glial and capillary support,
and dendritic branching (Rakic, 1988, 2009). More recent
evidence supports the hypothesis that the cortical thinning
during childhood is primarily due to increased myelination.
The observed thinning is considered to be due to increased
myelination altering the contrast between gray and white
matter in MRI images, which in turn affects the apparent
cortical boundary (Natu et al., 2019). Experiential factors
have been shown to predict myelination (e.g., Hensch, 2004;
Knudsen, 2004). Myelination is also important for concluding
of periods of plasticity (Hensch, 2004; Hensch and Bilimoria,
2012). Taken together, reduced environmental stimulation might
be associated with early narrowing of plasticity associated
with overall lower myelination which might then result in
smaller subsequent changes in cortical thickness, whereas
higher input might keep windows of plasticity longer and
thus might be associated with larger subsequent changes
(Tooley et al., 2021).

The behavioral mechanisms by which early parental input
relates to later child brain development remains an open
question. One possibility is that simply being exposed to rich
language input influences efficiency of language processing (e.g.,
Fernald et al., 2013), which, in turn, is associated with changes
at the neural level. Another possibility is that, when parents
produce rich language, children engage in rich conversations
and it is children producing language that is associated with
differences in brain structure (Romeo et al., 2018a). The two
possibilities are not mutually exclusive, and it is also possible
that the relation between early parental input and later child
behavioral and neurological development varies depending on
the specific brain region considered. We did not have early
measures of children’s general cognitive development, such
as their memory or attention. Measures of general cognitive
development would be needed to establish the specificity of
the relation between early parental language input and later
child neurological development, and to explore whether parental
input might relate to later child outcomes via broader aspects
of cognitive development. Although we emphasize the role of
parental input, children are active participants in this interaction
and might drive the input in different ways. Our recent
work presents novel statistical models that account for the

contribution of the child in eliciting parental input (Silvey et al.,
2021), which we are currently applying to neuroimaging data.
Finally, whether it is early parental input that predicts later
change in child brain structures (which would be consistent
with sensitive period hypotheses, Newport et al., 2001), or
whether parents must continue to provide rich input to
their children to trigger later change needs to be examined
in future studies.

A number of limitations should be considered when
interpreting our results. First, our findings are correlational.
Although we accounted for important covariates, such as parental
education and IQ, we cannot make claims about causation.
Second, we have a modest sample size, which limits our ability
to derive strong conclusions. We also observed multicollinearity
between some covariates. For example, children with greater
language input were more likely to be male and from higher
SES homes, giving us few observations with which to isolate
either of these covariates. Despite the uncertainty in our
models (frequentist and Bayesian), the parameter fits from
the observed data largely match the background literature and
support our hypotheses. Further, we focused on a single factor,
parental language input, following previous work emphasizing
the role of early parental input in predicting later child
behavioral outcomes, and also its role in predicting structural
differences in brain areas subserving language processing at
the same age. One could argue that language input might be
correlated with other factors that predict brain structure –
some of these include general cognitive stimulation, toxins,
sleep differences, and even stress and glucocorticoids during
pregnancy (Kaufman and Charney, 2001; Davis et al., 2013). We
attempted to account for other general differences in children’s
environments by controlling for overall parental SES, as well
as parental IQ. However, we cannot rule out the possibility
that there were unique but related factors that contributed
to differences in later child brain structure. Future work is
needed to compare and contrast the role of other experiential
factors on later changes in child cortical structure. Finally,
although our study might be underpowered and recent reports
suggest that replicable brain-behavior correlations with fMRI
may require larger sample sizes (Yarkoni and Braver, 2010;
Marek et al., 2020) than the one used here, our results
are valuable in that they generate hypotheses to be tested
with larger samples.

In sum, our study leverages a unique longitudinal dataset
combining naturalistic observations of parent–child interactions
and structural neuroimaging measures during a period spanning
15 years. For the first time, we show that early parental language
input prior to school predicts changes in child cortical structure
in mid-adolescence, over and above the contributions of SES
or parental IQ. Our results are consistent with previous work
examining SES-related differences in brain structure, and move
the literature forward by contributing to our understanding
of the mechanisms underlying individual differences in brain
development. Pinpointing specific experiential factors that
predict brain structure has the potential to inform prevention
and intervention strategies designed to draw upon and integrate
early home support.
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