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Physiologically based neural field theory of the corticothalamic system is used to calculate

the responses evoked by trains of auditory stimuli that correspond to different cortical

locations via the tonotopic map. The results are shown to account for standard and

deviant evoked responses to frequent and rare stimuli, respectively, in the auditory

oddball paradigms widely used in human cognitive studies, and the so-called mismatch

negativity between them. It also reproduces a wide range of other effects and variants,

including the mechanism by which a change in standard responses relative to deviants

can develop through adaptation, different responses when two deviants are presented

in a row or a standard is presented after two deviants, relaxation of standard responses

back to deviant form after a stimulus-free period, and more complex sequences. Some

cases are identified in which adaptation does not account for the whole difference

between standard and deviant responses. The results thus provide a systematic means

to determine how much of the response is due to adaptation in the system comprising

the primary auditory cortex and medial geniculate nucleus, and how much requires

involvement of higher-level processing.

Keywords: evoked response, mismatch negativity, neural field theory, adaptation, modeling

1. INTRODUCTION

Evoked responses (ERs) to short impulse-like stimuli are commonly used to probe human
cognitive processes. These responses are usually measured using electroencephalography (EEG)
or magnetoencephalography (MEG), most often in auditory experiments, although other sensory
modalities are also used (Luck and Kappenman, 2011; Niedermeyer and Lopes da Silva, 2011; Luck,
2014). Trains of ERs show a rich repertoire of effects in response to any violation of regularity—
changes in frequency, location, duration, and intensity (Näätänen, 2003; Luck and Kappenman,
2011; Luck, 2014). Such effects are most often elicited in so-called oddball paradigms in which
frequent standard (S) stimuli are interspersed with rarer deviants (D), which elicit very different
ERs in general, so long as they are discriminable (Sams et al., 1985; Näätänen, 2003; Garrido et al.,
2013), as seen in Figure 1. Deviants that are only marginally discriminable give an intermediate
response (Sams et al., 1985; Garrido et al., 2009a). Here and throughout this paper we denote stimuli
with calligraphic font to distinguish them from responses, which are written in italic font.

Deviant responses D are believed to reflect a response to novelty and, indeed, at the beginning
of a stimulus train, all stimuli evoke D responses, but standard (S) responses evolve over a few
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FIGURE 1 | Examples of typical standard (S, solid line) and deviant (D, dashed

line) evoked responses to auditory stimuli in an auditory oddball experiment

(Kerr et al., 2009). The traditional phenomenological “components” (peaks and

troughs) are labeled, where N1 and P2 indicate a negative deflection around

100 ms and a positive one around 200 ms, respectively, for example.

presentations to their limiting form S∞ as their preponderance
becomes established (Näätänen, 2003; Garrido et al., 2009a,
2013; Luck and Kappenman, 2011; Luck, 2014); since a typical
interstimulus interval is ∼ 1 s, this sets an adaptation timescale
of several seconds. Similarly, after a pause in stimulation, S
responses return to the D form over a few seconds, again
indicating that the effects responsible for the difference between
the two have a lifetime of seconds (Cowan, 1984; Winkler et al.,
1993; Loveless et al., 1996; Näätänen, 2003). Likewise, bothD and
S responses differ from their usual forms if two D stimuli occur
consecutively or an S follows two Ds (Sams et al., 1984). This
implies that the different responses at least partly reflect recent
stimuli rather than their long-term average probabilities.

At a more complex level, a D response is seen to a repeated
tone in a descending sequence of tones, where there is no
repeated S stimulus (Näätänen et al., 1989a; Tervaniemi et al.,
1994; Näätänen, 2003; Garrido et al., 2009b, 2013); likewise, a D
response occurs after a stimulus that is omitted or changed in
duration or intensity (Näätänen et al., 1989b, 2007; Yabe et al.,
1997; Näätänen, 2003; Salisbury, 2012); and, more abstract, high-
level, irregularities such as violations of grammatical categories
or phonemic regularities in a sequence can elicit D responses
(May et al., 1999; Nelken, 2004; Garrido et al., 2013). Frequency-
deviant and random-frequency stimuli elicit an increasing
proportion of D responses as the overall frequency range of the
ensemble of stimuli increases well beyond the discriminability
threshold (Sams et al., 1985; Garrido et al., 2013) and it has been
argued that the brain can thus encode information about the
statistical distribution of stimuli (Garrido et al., 2013).

The difference between S and D responses is often quantified
via the mismatch negativity (MMN), which is mathematically
constructed by subtracting the S response from the D one
(Näätänen, 2003; Luck and Kappenman, 2011; Luck, 2014). A
longstanding debate is whether the MMN (i) reflects differences
in responses due to adaptation of the primary sensory system
(relevant thalamic relay nuclei and primary sensory cortex,
although few references discuss thalamic participation) to

repeated stimuli, with the part of the system that processes
S stimuli being driven further from its starting parameters
than the part that processes D stimuli (Jääskeläinen et al.,
2004; Näätänen et al., 2005; Garrido et al., 2009b; May et al.,
2015); (ii) a reflection of separate, possibly memory-related
or internal-model dependent, stimulus-comparison processes in
primary cortex or higher-order cortical areas (Atienza et al.,
2001; Näätänen, 2003; Jääskeläinen et al., 2004; Garrido et al.,
2009b); or (iii) a combination of both adaptation and stimulus-
comparison. The more abstract cases of D responses appear
to point to the latter interpretation (Näätänen, 2003; Näätänen
et al., 2005; Garrido et al., 2009b), but basic biophysics, the
evolution of S and D responses during long trains, the decay
of their distinction during a few-second stimulation pause, and
the existence of MMN in coma imply a role for the former
explanation (Schröger, 1998; Näätänen, 2003; Jääskeläinen et al.,
2004; Sussman et al., 2014; May et al., 2015). In this work we
take the viewpoint that both types of mechanisms are likely
to be simultaneously in play, so the issue we address is which
cases can be accounted for by adaptation—potentially the other,
more abstract, cases then involve higher cortical areas in further
processing and top-down feedback. We note that adaptation
is likely to be involved in responses of nonhuman animals
without involvement of language processing, as exemplified by
stimulus specific adaptation studied in rats Malmierca et al.
(2009), Szymanski et al. (2009), Pérez-González and Malmierca
(2014); however, we restrict attention to parameters appropriate
to humans in the present work.

A weakness of traditional phenomenological analyses of ER
time series is that they are usually recorded at hundreds of
samples per second, but quantified by noting only the amplitudes
and timings of a few peaks and troughs in the waveform, or of
underlying “components” that sum to produce them (Luck and
Kappenman, 2011; Luck, 2014); each component is asserted to be
produced by a particular “generator” with a given location and
sign, normally assumed to correspond to a group of excitatory
or inhibitory neurons that respond with a fixed post-stimulus
delay and temporal profile (Luck and Kappenman, 2011; Luck,
2014). Hence, the MMN is often assumed to correspond to
a separate component and corresponding underlying set of
MMN neurons. Whilst components have characteristic timings
and associated spatial structures (Luck, 2014), this procedure
commonly commences analysis by omitting almost all the data
points that have been recorded, which is a questionable procedure
to include as a key step in any data-analysis pipeline, especially
as it makes component timings very sensitive to noise near
extremums. Moreover, it has been shown that these timings
evolve with age, and the extremums even invert polarity during
development (Kerr et al., 2010), so the very use of timings
and polarities to designate features is problematic in itself. For
example, use of traditional components has tended to limit
adaptation theories to qualitative conclusions that particular
components are attenuated by adaptation without changing their
timing or polarity (Näätänen et al., 2007; Garrido et al., 2009b).

Once it is recognized that the brain is a physical system,
whose dynamics generate EEG and MEG signals, including ERs,
new analysis and modeling avenues are opened and it is quickly
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revealed that components are not fundamental building blocks
of the dynamics (Freeman, 1975; Rennie et al., 2002; Kerr et al.,
2008, 2011); rather they reflect damped physical oscillations of
brain activity in natural modes (Demiralp et al., 1998; Rennie
et al., 2002; vanAlbada et al., 2010; Başar, 2012;Mukta et al., 2019;
Babaie-Janvier and Robinson, 2020). In particular, it has long
been noted that these signals depend on the average responses of
large numbers of neurons that are detected by a given electrode
or coil (Nunez, 1995; Nunez and Srinivasan, 2006; Niedermeyer
and Lopes da Silva, 2011).

Neural field theory (NFT) has been developed by many
authors to predict mean neural activity at scales of tenths
of a millimeter and above by starting from physiological and
anatomical parameters (Beurle, 1956; Wilson and Cowan, 1972,
1973; Nunez, 1974, 1995; Freeman, 1975; Lopes da Silva et al.,
1976; Amari, 1977; Wright and Liley, 1994; Jirsa and Haken,
1996; Steyn-Ross et al., 1999; Robinson et al., 2002, 2004;
Deco et al., 2008; Bressloff, 2012; Coombes et al., 2014; Sanz-
Leon et al., 2018). In normal regimes of moderate activity,
measurable signals have been shown to be approximately linearly
related to perturbations of underlying neural activity from
its overall mean (Nunez, 1995; Robinson et al., 1997; Deco
et al., 2008). In particular, ERs reflect the activity produced
by near-impulsive stimuli and the conditions of the brain that
generate them can be inferred by fitting model predictions to
data (Rennie et al., 2002; Kerr et al., 2011). Most significantly,
the strengths of connections, or gains, between excitatory and
inhibitory populations in the cortex and thalamus prove to be
primary determinants of the forms of ERs and other activity
phenomena (Rennie et al., 2002; Kerr et al., 2008, 2011; van
Albada et al., 2010; Babaie-Janvier and Robinson, 2020). For
reviews of NFT and its use in a wide range of contexts see Deco
et al. (2008), Coombes et al. (2014), and Sanz-Leon et al. (2018)
for example.

NFT impulse-response models of S and D ERs have been
successfully fitted to data from cohorts of up to 1,500 subjects
(Kerr et al., 2011). Notably, the inferred prestimulus parameters
for S and D responses prove to be quite different from one
another, and from those of background EEG (van Albada et al.,
2010; Kerr et al., 2011). NFT has since been used to analyze
the dynamics of stimulus prediction and automatic attention
in the corticothalamic system (Babaie-Janvier and Robinson,
2018, 2019, 2020). This work showed that stimulus-driven gain
changes due to a variety of processes such as adaptation and
facilitation can improve prediction by increasing the gains
that relate to salient stimuli, thereby implementing a form of
attention and providing a basis to progress to higher order
cognitive processes such as top-down feedback within the cortex
(Gazzaley et al., 2005; Friston, 2010, 2011; Babaie-Janvier and
Robinson, 2020). Moreover, it has been shown that S and D
responses can be separately reproduced as impulse responses
from the background EEG state when attentional gain dynamics
is taken into account (Babaie-Janvier and Robinson, 2019,
2020). These results have also been interpreted in terms of
engineering control theory (Ogata and Yang, 1970; Freeman,
1975; Babaie-Janvier and Robinson, 2020). In these physically
based approaches the building blocks of responses are the same

damped corticothalamic oscillations that account for ongoing
EEG characteristics and other phenomena.

In the present work we develop a unified NFT theory,
including adaptation, that can account for S and D responses to
sequences of simple stimuli, including development of distinct
response characteristics. This both simplifies and reduces the
number of parameters required and enables a wide range of
experimental conditions to be reproduced from a single model.
Moreover, it predicts the entire waveform, not just peaks and
troughs, and incorporates changes in amplitudes and timings of
oscillations due to changes in corticothalamic parameters. It can
thus potentially be fitted to experiment to determine brain-state
parameters, as has been donewith prior variants (Kerr et al., 2011;
Babaie-Janvier and Robinson, 2020).

The structure of this paper is as follows: In section 2, we
generalize our prior NFT model to calculate corticothalamic
transfer functions and resulting ERs to arbitrary stimuli in the
absence of higher-order cognitive processes, but incorporating
adaptation effects and stimulus feature dependence. In section 3,
we calibrate the model parameters by requiring that it reproduce
D responses at the background EEG baseline state, and S
responses when repetitively driven by impulsive stimuli that
move the system away from the background state via adaptation.
This provides the basis to analyze responses to arbitrary stimulus
sequences. In the remainder of section 3, we test the theory’s
predictions for a range of experimental sequences to begin to
explore which phenomena can be explained by adaptation and
which likely require higher-order processing, but we stress that
the literature is too vast to address all possibilities in the present
work. Section 4 summarizes the main findings and outlines
directions for future work.

2. MATERIALS AND METHODS

In this section we first review how ERs represent impulse
responses of a linear approximation to brain dynamics and that
these are directly related to system transfer functions (Freeman,
1975; Rennie et al., 2002; Kerr et al., 2008, 2011; Babaie-Janvier
and Robinson, 2020). This approach has proved to be successful
in the past, and has been extensively tested against experimental
results (Kerr et al., 2011).We then briefly review the existing NFT
corticothalamic model that is used in the analysis and generalize
its dynamics to include slow adaptation processes that reflect a
“memory trace.” A feature map such as the tonotopic map in
auditory cortex is then incorporated.

2.1. ERs as Transfer Functions
Cortical evoked responses (ERs) and magnetoencephalographic
(MEG) analogs are generated primarily by perturbations in
the activity φe of pyramidal excitatory cells due to dynamics
in the corticothalamic system (Nunez, 1995). In the simplest
approximation, we can write

φ(1)e (t) =
∫ t

−∞
T(t − t′)φ(1)n (t′)dt′, (1)
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for a purely temporal response, where T is the system linear
response function, which is zero for t < t′ to preserve

causality, and φ(1)n is the incoming non-corticothalamic stimulus
to the corticothalamic system. The form in Equation (1) can
be generalized to include spatial aspects but here we focus on
the temporal domain in order to bring out the main aspects
without undue complexity; generalization to include multiple
spatial eigenmodes can be carried out in a similar way (Kerr
et al., 2008; Mukta et al., 2019). Equation (1) can be Fourier
transformed to yield

φ(1)e (ω) = T(ω)φ(1)n (ω), (2)

If the input in (1) is a delta function φn(t′) = δ(t′ − t0), one finds

φ(1)e (t) = T(t − t0), (3)

whence we see that the ER to a delta input and the transfer
function are one and the same. More generally, subsequent
physical phenomena such as volume conduction, measurement
effects, and post-processing also need to be taken into account
in the overall transfer function from stimulus to measurement,
but we omit discussion of these issues for simplicity because they
do not strongly affect the time course of ERs, which is our main
focus here.

In general, the transfer function itself can be changed by the
stimulus, owing to a variety of fast and slow dynamical effects
(Koch, 1999; Rennie et al., 1999, 2000, 2002; Robinson and Roy,
2015; Babaie-Janvier and Robinson, 2019), but to treat such
effects, we must first introduce neural field theory and a model
of the corticothalamic system.

2.2. Neural Field Theory of the
Corticothalamic System
The baseline model that we generalize in the present work has
been developed and successfully applied over many years, as
mentioned in section 1. The specific formulation used here is
the one from Babaie-Janvier and Robinson (2019, 2020), which
we outline and generalize. Note that some of the descriptions of
model elements in sections 2.2 and 2.3 are identical to those in
these prior works to avoid introducing errors and ambiguities by
changing the wording simply for the sake of change.

The baseline model, shown in Figure 2, incorporates the
cortex and thalamus and their connectivities; each includes
distinct populations of neurons: cortical excitatory pyramidal
(e) and short-range mostly inhibitory (i) neurons, the thalamic
reticular nucleus (TRN) (r), thalamic relay neurons (s), and
non-corticothalamic neurons that provide external inputs (n).
In this study, the relevant relay nucleus is the medial geniculate
nucleus, whose projections are to primary auditory cortex.
Excitatory projections to the TRN exist from thalamocortical
feedforward axons and corticothalamic feedback axons, and
there are inhibitory projections from the TRN onto thalamic
relay neurons.

The state of each neural population a, is represented by the
local mean cell-body potential Va(r, t) relative to resting, the
mean firing rate Qa(r, t), and the outgoing axonal pulse rate field

φa(r, t). NFT averages over spatial scales below a few tenths of a
millimeter to obtain equations for evolution of these dynamical
variables (Wilson and Cowan, 1973; Freeman, 1975; Deco et al.,
2008).

Themean firing rateQa has a sigmoidal response to increasing
Va, which can be approximated as (Wilson and Cowan, 1973;
Freeman, 1975; Deco et al., 2008)

Qa(r, t) = S[Va(r, t)] =
Qmax

1+ exp
{

−[Va(r, t)− θ]/σ ′} , (4)

where θ is the mean neural firing threshold and σ ′π/
√
3 is the

standard deviation of the difference between the steady state
soma voltage of individual neurons and their thresholds.

The potential Va(r, t) results from all afferent neural synaptic
receptors of types b and is given by

D̂α(t)Va(r, t) =
∑

b

Nabsab(r, t)φb(r, t − τab), (5)

D̂α(t) = 1

αβ

d2

dt2
+

(

1

α
+ 1

β

)

d

dt
+ 1, (6)

where the differential operator D̂a governs the temporal response
of Vab to afferent pulse rate fields φb, encapsulating the rates
β and α of the rise and fall, respectively, of the response at
the cell body, which are assumed equal for all ab here; Nab

is the mean number of synapses on neurons a from neurons
of type b; sab is the mean time-integrated strength of soma
response per incoming spike; and φb(r, t − τab) is the mean
spike arrival rate from neurons b, delayed by τab due to
discrete anatomical separations between different populations.
The overall connection strength to neural population a from b is

νab(r, t) = Nabsab(r, t). (7)

Outgoing neural pulses within each population are averaged over
short scales to form a field φa(r, t) whose source is Qa(r, t).
This field propagates at the characteristic axonal velocity va
and approximately obeys the damped wave equation (Jirsa and
Haken, 1996; Robinson et al., 1997),

D̂a(r, t)φa(r, t) = Qa(r, t), (8)

D̂a(r, t) =
1

γ 2
a

∂2

∂t2
+ 2

γa

∂

∂t
+ 1− r2a∇2, (9)

where the damping rate γa satisfies γa = va/ra, where ra is the
characteristic range of axons a. In the corticothalamic system,
only axons of excitatory cortical pyramidal neurons are long
enough to cause significant propagation effects in Equation (9).
In the other populations, we assume the axonal lengths are near
zero (i.e., ra ≈ 0) so Da ≈ 1 which results in φa(r, t) = Qa(r, t)
for these populations.

We set νie = νee, νii = νei, and νis = νes because the number
of cortical synapses is very nearly proportional to the numbers of
source and target neurons (Wright and Liley, 1996; Braitenberg
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FIGURE 2 | Physiologically based corticothalamic neural field model. Arrowheads represent excitatory effects while circles depict inhibitory ones. The populations are

cortical excitatory (e) and inhibitory (i) neurons, the thalamic reticular nucleus (TRN, r), thalamic relay neurons in the medial geniculate nucleus (MGN, s) that project to

the primary auditory cortex (A1), and non-corticothalamic neurons responsible for external inputs (n).

and Schüz, 1998), assuming that synaptic types are determined
by the source neurons. Forward time delays are τes = τis ≈ 20 ms
for thalamocortical signals and feedback delays are τse = τre ≈
60 ms for corticothalamic signals, while the other τab are zero;
time delays in the long-range excitatory axons in the cortex are
included via Equation (9).

Table 1 lists nominal values of model parameters (Robinson
et al., 2004) for resting EEG. These values were estimated
for normal adults and they have been extensively used in the
comparison with experiments, as mentioned in section 1.

2.3. Corticothalamic Transfer Functions
The above NFT equations are nonlinear in general. By setting
all spatial and temporal derivatives in these equations to zero,
we find spatially uniform steady-states of the system, which
are interpreted as characterizing the baseline of normal activity,
with firing rates that are in accord with experiments (Robinson
et al., 2002, 2004). Linear perturbations from these steady states
represent time dependent brain activity by which numerous
experimental phenomena have been reproduced, including
evoked responses (Robinson et al., 1997, 2002, 2004, 2005; Rennie
et al., 2002; O’Connor and Robinson, 2004; Kerr et al., 2008, 2011;
van Albada et al., 2010; Roberts and Robinson, 2012; Abeysuriya
et al., 2015).

2.3.1. Perturbation Expansion
We expand the equations in section 2.2 to first order in
perturbations relative to the steady state, denoting steady-state
and perturbed quantities by the superscripts 0 and 1, respectively,
and neglecting second- and higher-order terms. We also omit
the r dependence from this point on, although its retention up
to the present point was necessary to correctly account for the
parameters γa. These steps give

Q(0)
a + Q(1)

a (t) = S
[

V(0)
a

]

+ ρaV(1)
a (t), (10)

D̂α(t)
[

V(0)
a + V(1)

a (t)
]

=
∑

b

[

ν
(0)
ab

+ ν(1)
ab

(t)
]

×
[

φ
(0)
b

+ φ(1)
b
(t − τab)

]

,(11)

D̂a(t)
[

φ(0)a + φ(1)a (t)
]

= Q(0)
a + Q(1)

a (t), (12)

ρa = dQa

dVa

∣

∣

∣

∣

Va=V
(0)
a

, (13)

D̂a(t) = 1

γ 2
a

∂2

∂t2
+ 2

γa

∂

∂t
+ 1, (14)
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TABLE 1 | Estimated brain parameters for normal adult humans in the alert, eyes-open state.

Quantity Description Resting EEG (P) ER Resting EEG Unit

Qmax Max firing rate 250 250 250 s−1

θ Firing threshold 15 15 15 mV

σ ′ Threshold spread 3.3 3.3 3.3 mV

γe Cortical damping rate 116 200 116 s−1

α Inverse decay time 80 45 80 s−1

β Inverse rise time 320 180 320 s−1

τes Forward delay time 20 32 20 ms

τse Feedback delay time 60 32 60 ms

φ
(0)
e Firing rate e neurons 16 16 16 s−1

φ
(0)
s Firing rate s neurons 16 16 16 s−1

φ
(0)
r Firing rate r neurons 16 16 16 s−1

φ
(0)
n Firing rate n neurons 16 16 16 s−1

ρe For e neurons 4,200 4,200 4,200 V−1 s−1

ρs For s neurons 4,200 4,200 4,200 V−1 s−1

ρr For r neurons 6,300 6,300 6,300 V−1 s−1

G
(0)
ee Gain to e from e 5.9 3.1 6.8 −

G
(0)
se Gain to s from e 2.5 1.18 2.5 −

G
(0)
ii Gain to i from i −8.1 −10.8 −8.1 −

G
(0)
sr Gain to s from r −1.9 −2.8 −1.9 −

G
(0)
es Gain to e from s 1.7 0.74 1.7 −

G
(0)
sn Gain to s from n 0.8 0.8 0.8 −

G
(0)
ie Gain to i from e 5.9 3.1 6.8 −

G
(0)
re Gain to r from e 1.3 3.4 1.0 −

G
(0)
ei Gain to e from i −8.1 −10.8 -8.1 −

G
(0)
rs Gain to r from s 0.19 0.28 0.19 −

G
(0)
is Gain to i from s 1.7 0.74 1.7 −

The first two columns give the symbol and description of each quantity. The third column shows resting-EEG values corresponding to the P state; these are also used as the initial values

for ERs in which the gains adjust dynamically as part of the response. The fourth column lists static-gain ER values adapted from Table 1 of Kerr et al. (2008), previously used to match

standard ERs using static gains. The fifth columns lists resting-EEG values used in previous work (Babaie-Janvier and Robinson, 2020). The final column gives units.

To zeroth order Equations (10)–(12) yield

Q(0)
a = S

[

V(0)
a

]

, (15)

V(0)
a =

∑

b

ν
(0)
ab
φ
(0)
b
, (16)

φ(0)a = Q(0)
a . (17)

Equations (15) and (17) can be used to eliminate the other

variables in favor of the V(0)
a , which yields the nonlinear steady-

state equation (Robinson et al., 2002, 2004)

V(0)
a =

∑

b

ν
(0)
ab

S
[

V
(0)
b

]

, (18)

where b runs over all populations, including n.
The first order terms in Equations (10)–(12) give

Q(1)
a (t) = ρaV

(1)
a (t), (19)

D̂α(t)V
(1)
a (t) =

∑

b

[

ν
(0)
ab
φ
(1)
b
(t − τab)+ ν(1)ab

(t)φ(0)
b

]

, (20)

D̂a(t)φ
(1)
a (t) = Q(1)

a (t), (21)

Operation with D̂α(t) on both sides of Equation (21), and
substitution of (19) and (20) into the result, yields

D̂α(t)D̂a(t)
[

φ(1)a (t)
]

= ρaD̂αV
(1)
a (t), (22)

=
∑

b

[

G
(0)
ab
φ
(1)
b
(t − τab)+ G

(1)
ab
(t)φ(0)

b

]

,

(23)

G
(0)
ab

= ρaν
(0)
ab

= ρaNabs
(0)
ab
, (24)

G
(1)
ab
(t) = ρaν

(1)
ab

(t) = ρaNabs
(1)
ab
(t)., (25)

The gain Gab(t) represents the differential change in output spike
rate from neurons a per unit change in input spike rate from
neurons b. The net gains of populations of neurons connected
serially are denoted by Gabc = GabGbc and Gabcd = GabGbcGcd.

2.3.2. Modulation of Synaptic Gains
Many biophysical processes can modulate neuronal coupling

strengths, and hence s
(1)
ab

in Equation (25), dependent on
current or recent activity, including plasticity, long-term
potentiation/depression, adaptation, facilitation, habituation,
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and sensitization (Koch, 1999; Rennie et al., 2000; Robinson and
Roy, 2015; Babaie-Janvier and Robinson, 2019). We employ a
general mathematical form of modulatory processes that can be
applied to a broad range of specific mechanisms (Koch, 1999;
Rennie et al., 1999; Robinson et al., 2002; Robinson and Roy,
2015), in which presynaptic neuronal activity locally modulates
neuronal gains (dynamics driven by postsynaptic firing rate is
postponed to future work, but can be treated in a similar way
Rennie et al., 1999; Robinson and Roy, 2015), with

G
(1)
ab
(t) = [gabF(t)+ habH(t)]⊗ φ

(1)
b
(t), (26)

where the symbol ⊗ indicates a temporal convolution. Here F(t)
describes the temporal dynamics of the fast gain modulation on
timescales of up to a few hundred ms and gab is its strength,
whereasH(t) is a slow adaptation process on timescales of several
seconds, and hab is the corresponding strength.

Equation (26) assumes that the perturbations are small
enough that a linear equation is a reasonable approximation.
Furthermore, the modulation is assumed to be local in space, so
the gab and hab are constant and the functional forms of F(t)
and H(t) do not vary with position or time. For the temporal
dependence of the modulation we use

F(t) = η exp(−ηt), (27)

H(t) = µ exp(−µt), (28)

when t ≥ 0 and F(t) = H(t) = 0 for t < 0 to enforce
causality. The positive rate constants η and µ characterize the
timescales of the modulatory processes and the forms (27) and
(28) are normalized to unit integral over time. Previous work
found that η = 25 s−1 is a reasonable choice (Rennie et al., 1999;
Babaie-Janvier and Robinson, 2019), while we set µ = 0.65 s−1

because of the several-second timescales over which S response
characteristics develop and decay.

2.3.3. Transfer Functions
The transfer function is the ratio of the output of a system to
its input in the linear regime. Either the Laplace or Fourier
transform can be used to determine transfer functions; we use
the former with the definitions

L[g(t)](s) =
∫ ∞

0
g(t)e−stdt. (29)

Application of Equation (29) to Equation (26) gives

D̂b(s)
[

φ(0)a + φ(1)a (s)
]

= L(s)
∑

b

[

G
(0)
ab

+
{

gabF(s)+ habH(s)
}

φ
(1)
b
(s)

]

×
[

φ
(0)
b

+ φ(1)
b
(s) exp (−sτab)

]

, (30)

D̂b(s) = (1+ s/γb)
2, (31)

L(s) = (1+ s/α)−1(1+ s/β)−1. (32)

Hence, to first order

D̂b(s)φ
(1)
a (s)

= L(s)
∑

b

[

G
(0)
ab
e−sτab + φ(0)

b

{

gabF(s)+ habH(s)
}

]

φ
(1)
b
(s),

(33)

F(s) = η/(s+ η), (34)

S(s) = µ/(s+ µ). (35)

Equation (33) expresses two types of first order responses: the
first term in the square brackets represents the part of response
that would occur without change to the steady-state gains, while
the second term is the response due to stimulus-induced gain
changes acting on the steady-state activity.

Equation (33) represents a set of coupled algebraic equations

that interrelate the φ(1)a . It is straightforward to eliminate the
other first order quantities to obtain the transfer function to
excitatory cortical neurons from retinal signals that reach the
thalamus (see Babaie-Janvier and Robinson, 2018 for detailed
derivation), giving

Ten(s) = φ
(1)
e (s)

φ
(1)
n (s)

, (36)

= A(s)

q2(s)r2e
, (37)

A(s) = Xesn

(1− Xei)(1− Xsrs)
, (38)

q2(s)r2e =
(

1+ s

γe

)2

− 1

1− Xei

[

Xee +
Xese + Xesre

1− Xsrs

]

,

(39)

Xab = L(s)
[

G
(0)
ab
e−sτab + φ(0)

b

{

gabF(s)+ habH(s)
}

]

.

(40)

2.4. Loop-Strength Representation
A useful and compact approximate representation of
corticothalamic steady states and dynamics is via the
normalized strengths of the corticocortical, corticothalamic, and
intrathalamic loops in Figure 2. These are defined by (Robinson
et al., 2002; Breakspear et al., 2006)

X = Gee

1− Gei
, (41)

Y = Ges(Gse + GsrGre)

1− GsrGrs
, (42)

Z = −αβGsrGrs

(α + β)2 , (43)

respectively. Originally definedwith steady-state values of theGab

on the right, Breakspear et al. (2006) later used instantaneous
values of the time-varying Gab(t) to parameterize the orbits
of dynamic states. Resonances in these loops are primarily
responsible for the dominant frequencies in resting EEG and ERs
(Kerr et al., 2008, 2011).
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2.5. Control Systems Interpretation
Analysis and interpretation of the transfer function is greatly
facilitated by approximating the quotient of exponential
polynomials in (37) by a rational function of s. Decomposition
into partial fractions then yields

Tab(s) =
n

∑

j=1

rj

s+ pj
; (44)

where the poles of the system are assumed to be distinct, with

pj = Ŵj ± i�j, (45)

where the damping rate is Ŵj and the frequency is�j; the residues
rj = r ± i�r are

rj = lim
s→−pj

(s+ pj)Tab(s); (46)

and n is the number of the poles. Some poles are associated with
heavily damped modes and can be neglected, thereby allowing n
to be kept small. Indeed, a 6-pole approximation (n = 6) has
been found to be accurate to within a root-mean-square (rms)
fractional error of 0.02 for 0–150Hz for the parameters in column
3 of Table 1 (Babaie-Janvier and Robinson, 2018). These partial
fractions then are summed in pairs each of which dominates in
slow/theta (f . 5 Hz), alpha (5 Hz . f . 15 Hz), or beta (15 Hz
. f ) frequency regimes, respectively. This gives

Tbn(s) ≈ Tℓ

bn(s)+ TA

bn + TB

bn(s), (47)

where b = e, i, r, s and Tℓ

bn
, TA

bn
, and TB

bn
are the sums over

the pairs of poles that represent responses in the low, alpha,
and beta frequency ranges, respectively. We denote the three
corresponding partial transfer functions by TF

ab
(s) for F =

ℓ,A,B, with

TF

ab(s) =
rj

s+ pj
+

rj+1

s+ pj+1
, (48)

where the poles j and j + 1 form a pair. Note that the poles and
residues depend on F , a, and b, but we have not shown this
explicitly to avoid unduly cumbersome notation.

Use of the partial fraction representation makes inversion
of the Laplace transform straightforward. Two possibilities
occur: either the two poles represent damped nonzero-frequency
oscillations, and are complex conjugates, or they represent purely
damped responses and are both real. In the oscillatory case,
pj+1 = p∗j and rj+1 = r∗j so that the time-domain response is

real. In this case, for a delta-function stimulus at t = 0,

TF (t) = 2|rj| exp(−Ŵjt) cos(�jt − ψ), (49)

where we have written rj = |rj|eiψ . In the purely damped case,
rj and rj+1 are real but not equal and likewise for pj and pj+1.
This gives

TF

ab(t) = rje
−Ŵjt + rj+1e

−Ŵj+1t (50)

Equation (49), in particular, shows that analyses of ERs in terms
of damped sinusoids (Freeman, 1975; Demiralp et al., 1998;
Başar, 2012) are not just instances of compact phenomenology,
but rest on the dynamics embodied in resonances of the transfer
function. At a deeper level, each pair of poles can be interpreted
as implementing a control systems data filter—specifically a PID
(proportional-integral-derivative) filter—that predicts incoming
signals based on signal value, rate of change, and integrated time
history (Ogata and Yang, 1970; Babaie-Janvier and Robinson,
2018, 2019). Using this formulation, dynamic gain changes
have been interpreted as improving prediction by implementing
attention to salient features (Babaie-Janvier and Robinson, 2019).

2.6. Feature Map
The final generalization we require to the model is to incorporate
different stimulus features, such as frequency. These are mapped
to slightly different locations in the auditory cortex, which will
adapt differently, so we need to distinguish them by a label
σ . Here we assume that the ER measuring electrode responds
equally to all relevant locations, although this is an assumption
that could later be relaxed. In place of Equation (1) we write

φ(1)e (σ , t) =
∫ t

−∞
T(t − t′)

∫

w(σ − σ ′)φ(1)n (σ ′, t′)dσ ′dt′,

(51)

where the weight function w quantifies the discriminability of
stimuli; a suitable form is

w(σ − σ ′) = exp

[

− (σ − σ ′)2

2(1σ )2

]

. (52)

In Equation (51) we have assumed that T does not depend
explicitly on σ , but such a dependence could easily be included.
Aside from the issue of discriminability, and the inclusion of σ ,
the bulk of the above analysis is unchanged. However, the weight
function w implies that stimuli σ ′ within ∼ 1σ influence the
dynamics at σ .

In the case of auditory stimuli, σ can be viewed as the
frequency and a very short sinusoidal stimulus at t0 with
frequency corresponding to σA has

φ(1)n (σ ′, t′) ≈ δ(σ ′ − σA)δ(t′ − t0). (53)

There is no sinusoidal time dependence in Equation (53) because
the input pathway via the cochlea and superior colliculus
translates each frequency to a point in the tonotopicmap, without
retaining its waveform. Using Equation (53), Equation (51)
simplifies to

φ(1)e (σ , t) ≈ w(σ − σA)T(t − t0). (54)

If S andD stimuli are fully discriminable the only relevant values
of w(σ − σ ′) are 1 and 0; i.e., there is no cross-talk.

Note that, although we have assumed that σ is a scalar
here, corresponding to stimulus frequency and the tonotopic
auditory map, more generally it could be a vector of feature
attributes, including frequency, interaural delay, intensity,
and other quantities, with different sensoricortical maps
(Herdener et al., 2013).

Frontiers in Human Neuroscience | www.frontiersin.org 8 August 2021 | Volume 15 | Article 655505

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Robinson et al. Neural Field Theory of Evoked Responses

3. RESULTS

We are now in a position to analyze the different responses to
frequent and rare stimuli, which will ultimately evoke S and D
responses, respectively, in a long sequence. In this section we
assume that these two stimulus types are fully discriminable so
we do not need to include the parameter 1σ of section 2.5 and
simply denote the frequent and rare stimuli by σ = S and
σ = D, respectively. We optionally denote the nth consecutive
stimulus of a given type by the subscript n; i.e., Sn describes the
nth consecutive S stimulus and Dn denotes the nth consecutive
D stimulus. We write the corresponding system responses, which
can differ between presentations of the same stimulus type,
due to adaptation, as Sn(t) and Dn(t) but omit the argument t
when referring to the entire response. Standard responses rapidly
approach a limiting form S∞(t) after a few (typically about n = 5)
presentations of S , with little change thereafter (Cowan, 1984;
Winkler et al., 1993; Loveless et al., 1996). TheMMN between the
nthD response and themth S response, for example, is defined to
be the difference

MMN(Dn, Sm, t) = Dn(t)− Sm(t), (55)

with analogous definitions for other pairs of responses. Most
commonly the MMN is defined to be MMN(D1, S∞, t) the
version obtained by subtracting the limiting form S∞(t) of the
standard response from D1(t). Note that the first responses to
both stimuli are identical because both are novel: S1(t) = D1(t).

In this section we first explain the formulation of differential
adaptation to S and D stimuli. We then calibrate the parameters

gab and hab of the model by matching their predictions for φ(1)e (t)
to typical oddball data before applying the results to a variety
of other stimulus sequences in later subsections. These results
allow exploration of which MMN effects can be accounted for
by adaptation in the primary auditory cortex and the medial
geniculate nucleus of the thalamus.

3.1. Contribution of Adaptation to
Responses
The central idea used here is that the system initially occupies
the same prestimulation state as the one corresponding to
background EEG in the period before any stimuli have been
presented. We label this P in the schematic space of gains in
Figure 3. In the absence of adaptation, each stimulus causes
transient gain changes due to the term F(t) in Equation (26).
However, because the time constant of H(t) is roughly 40 times
larger, resulting changes due to that process may not have fully
relaxed by the time the next stimulus arrives. Hence, the system
will be pushed to the location corresponding to S∞ by a long
series of S stimuli (blue curve in Figure 3), eventually oscillating
around a point where

1Gab ∼ gab

〈

φ
(1)
b
(t)

〉

η
+ hab

〈

φ
(1)
b
(t)

〉

µ
, (56)

where the angle brackets denote an average over the most recent
time interval of order 1/η or 1/µ, as indicated by the subscript;

these averages are nonzero in general because incoming delta-
function stimuli have a nonzero mean. The first average decays
within tens of ms, and can usually be neglected by the time the
next stimulus arrives, but the second can be significant in a train
of S stimuli. In contrast, in the case of D stimuli, which come
more rarely, the system gains will have time to relax almost to
P in the interim (orange curve in Figure 3). Hence, we argue
that deviant responses occur from near-P conditions, whereas
standard responses occur from a location in parameter space
that shifts gradually toward the parameters of S∞ over several
stimuli. We see from Figure 3 that the S gain response doesn’t
get a chance to relax back to P due to the shortly-spaced stimuli
whereas the D gain response is triggered relatively rarely and
decays back almost to P between stimuli. Both responses to the
first stimulus are the same.

One key point above is that each ER starts from the relevant
time-evolving gains after the previous stimulus, or else all
responses would simply be added with the same functional form.
It might be objected that this amounts to retention of a second
order term in the perturbation expansion and that we should
therefore retain all second order terms. However, although this
point of view is formally correct, it is not necessary to retain
the other second-order terms because the long time constant
of H(t) effectively “promotes” its formally first-order effects by
integrating over several seconds to produce changes that are
comparable with zeroth-order terms. It is only after times &

5− 10 s without stimuli that these changes decay and the system
again approaches the state P. Indeed, Equations (27) and (28)
show that terms arising from H(t) are of order exp[(η − µ)t]
larger than those arising from F(t) a time t after a stimulus; this
can be a very large factor and these terms cannot generally be
neglected relative to zeroth-order gains.

3.2. Parameter Calibration
A comparison of the present pre-stimulus gain parameters G(0)

ab
corresponding to the baseline EEG state (P) with those used in
previous work that reproduced Standard ERs with static-gains
(Kerr et al., 2008) and with modified gains (Babaie-Janvier and
Robinson, 2020) can be done by comparing the third column
of Table 1 with the fourth and fifth columns, respectively. The
present P parameters are identical to those of Babaie-Janvier and

Robinson (2020) except for slight changes in G
(0)
ee and G

(0)
re , and

are mostly larger than those used by Kerr et al. (2008) except for
Grs and Gre. Of course, we do not expect exact correspondence
because the previous studies did not include slow adaptation
via H(t).

Based on previous NFT analysis of standard and deviant
responses (Kerr et al., 2008, 2011) and recent work which
analyzed the role the different gains play in determining ER
features (Babaie-Janvier and Robinson, 2019), we derived static-
gain ERs above by adjusting the G

(0)
ab

in the transfer function
component of Equation (40) and setting gab = 0 and hab = 0.
These served as benchmarks for the S∞ and D responses shown
in Figure 4. The key difference between these two curves is

the relative increase of the corticothalamic loop gains G(0)
es and

G
(0)
se as well as the top-down pathway G

(0)
re for D relative to S,
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FIGURE 3 | Schematic of gain responses of the pre-stimulation (P) state and the trajectories followed by the different parts of the corticothalamic system that process

the S and D stimuli. The vertical axis schematically represents the response of the set of system gains, with starting point P and the asymptotic value in the S∞
response labeled. The horizontal axis indicates time and is labeled with stimulus types and numbers. The blue curve corresponds to stimuli S1, . . . ,S5 and the orange

curve corresponds to D1, . . . ,D3.

FIGURE 4 | Static-gain ERs calibrated to closely approximate typical S and D responses from Kerr et al. (2008), Kerr et al. (2011), and Babaie-Janvier and Robinson

(2019), as indicated in the legend, which were used as benchmarks for the S∞ and D responses (outlined in section 3.2). (A) Benchmark S and D curves used to

derive gain modulations in Table 2. (B) Corresponding MMN(D,S, t).

resulting in the presence of the N2 and P2 features in D. It is
worth noting that a variety of standard and deviant responses are
found in the literature, due in part to slightly varied experimental
conditions, and that our present aim is not to reproduce a
particular set of response curves exactly, but rather to incorporate
common features such as the standard response being reduced
in amplitude and lacking the widely established N2 deflection
that is often seen and interpreted as contributing to the MMN
(Näätänen et al., 1978, 1989a; Sams et al., 1984).

Building on findings and recent estimates of local feedback
modulation in gab that give rise to ERs (Babaie-Janvier and
Robinson, 2019), we calibrate the model parameters gab and
hab by minimizing the error between the benchmark curves
and the model-calculated curves such that the resulting activity
resembled the S benchmark upon a number of closely-spaced,
consecutive stimulation, and resembled the D benchmark upon
less-frequent stimulation. These calibrated parameters are shown
inTable 2 and discussed with respect to their contributions to the
activity responses in the next section.

Here we analyze the local feedback strengths gab and hab,
presented in Table 2, that give rise to successive Sn and Dn

responses. The slow adaptation contributions, parameterized
by the hab, determine the gradual evolution of the baseline of
responses due to a series of stimuli over several seconds, while
fast gain changes parameterized by the gab primarily determine
the shape of the responses on the few-hundred ms scale, with
differences between S∞ and D1 resulting from their different
starting points.

The present work allows us to distinguish the parts of S∞ and
D responses that are specifically due to fast gain modulations
and slower adaptation. Figure 5A shows the static gain baseline
ER (starting at P) along with the fast and slow gain modulation
contributions to the S response,

1gS∞(t) = S∞(t)− S∞(t)
∣

∣

hab=0 , (57)

1hS∞(t) = S∞(t)− S∞(t)
∣

∣

gab=0 , (58)
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TABLE 2 | Characteristic fast and slow gain response parameters and their

percentage change relative to the static baseline parameters G
(0)
ab (which

are dimensionless).

Parameter Value 1|G(0)
ab| (%)

FAST CHANGE CONTRIBUTION

ηgee −0.1157 −2

ηgei 0.7684 9

ηges 0.7419 44

ηgse 0.1047 4

ηgsr −0.1390 7

ηgrs 0.1149 60

ηgre 0.2822 22

ADAPTATION CONTRIBUTION

µhee 0.4390 7

µhei − 1.1180 14

µhes −0.0890 −5

µhse −0.3299 −13

µhsr 0.0053 0.3

µhrs 0.0018 1

µhre −0.0969 −7

In each case, the parameter is multiplied by its inverse timescale to obtain a characteristic

contribution, as seen from Equations (27) and (28).

which are the differences between the total S∞ response and the
S∞ responses due to setting all hab = 0 and gab = 0, respectively.
The combined effect of these individual processes (green broken
line) is calculated according to

1g+hS∞(t) = S∞(t)− S∞(t)
∣

∣

gab=0,hab=0 , (59)

and combines with the baseline ER (blue line) to give the S∞
response (orange line). We note that fast gain modulations
act to decrease the N1 and N2 deflections in the baseline ER,
whereas the adaptation contribution is smaller in magnitude and
predominantly increases the N1 deflection. The overall local gain
modulation contribution decreases the N1 and N2 deflections in
the baseline ER and produces a deflection at≈200–300ms, giving
the S∞ response.

Analogously, Figure 5B shows the static gain baseline
ER (starting at P) alongside the fast gain and adaptation
contributions 1gD and 1hD which sum with the baseline ER
to give the D response. We note that fast gain modulations
exhibit a P2 deflection at a slightly earlier latency compared to
the D response, whereas the adaptation contribution exhibits
small N1 and N2 deflections. The overall local gain modulation
contribution thus slightly increases theN1 amplitude, reduces the
N2 amplitude, and introduces a large P2 deflection at ≈200–300
ms in the baseline ER state to give rise to the D response.

Figure 5C explores how these distinct gain contributions
affect the MMN. Calculating MMN(D − 1gD, S∞ − 1gS∞, t)
isolates the part of the MMN that is caused by fast gain
modulations (broken magenta line) and calculating MMN(D −
1hD, S∞ − 1hS∞, t) exposes the part of the MMN that is
caused by adaptation (broken black line). As expected, without

adaptation there is negligible distinction between the two
responses at the short timescales shown, so theMMN is zero. The
difference between the MMN(D, S∞, t) curve (blue line) and the
adaptation contribution (black broken line) reveals how turning
on the fast gain modulations affects the resultant MMN shape;
the fast gain modulations act to slightly increase the amplitude of
N1 and N2 features of the MMN.

As can be seen in Table 2, the dominant percentage changes
in fast gain dynamics occur in the bottom-up pathways ges and
grs, and to a lesser extent in the top-down pathway gre whereas
the dominant percentage changes in slow adaptation occur in the
cortical and top-down pathways hei and hse, and to a lesser extent
in the cortical, bottom-up, and top-down pathways hee, hes, and
hre. These findings suggest that cortical and top-down pathways
play enhanced roles in adaptation to produce S responses.

These results generalize recent work that only considered fast
change contributions to local feedback modulations gab (Babaie-
Janvier and Robinson, 2019). In agreement with that work,
we find a decrease of the inhibitory cortical and intrathalamic
gains gee and gsr and an increase in top-down corticothalamic
gain gre. Although, in contrast, we found increases in the
cortical inhibitory, top-down corticothalamic, and bottom-up
thalamocortical gains gei, gse, and ges rather than decreases.

3.3. Development and Decay of Responses
Here we analyze the development and decay of the S∞ and D
responses during long trains that are distinguishable by their
different ISIs. Figure 6A shows the evolution of Sn(t) toward
the S∞(t) response for n = 1, . . . 5 with 1 s ISI. As expected,
the initial response to the first standard stimulus S1 is a deviant
response, S1 = D1, which does not exhibit as strong an N2
deflection as the benchmark in Figure 4A and the latency of the
N2 peak is slightly earlier (≈ 10 ms) than the benchmark due to
the effects of the gab and hab. Importantly,D1 contains the N1 and
P2 deflections, as seen in experiments (Garrido et al., 2009b). The
gradual adaptation of Sn with n is also seen; little further change is
found to occur after n = 5. The response S5(t) ≈ S∞(t) shows a
reduction in N1 and N2 amplitudes relative toD1, which has also
been experimentally observed (Sams et al., 1984; Cowan et al.,
1993; Garrido et al., 2009b).

When the ISI is increased to the typical value for D stimuli
in auditory oddball paradigms almost identical Dn(t) responses
emerge, independent of n, as seen in Figure 6B, which shows the
system response to five stimuli with 6 s ISI. This occurs because
there is sufficient time for the parameters to relax very nearly
to the prestimulation state P between stimuli. We thus refer to
deviant responses as D(t) without subscript from now on unless
otherwise specified.

The development of MMN(D1, Sn, t) vs. n, defined in
Equation (55), is seen in Figure 6C. We see that the MMN is
zero at n = 1 and grows with n as adaptation occurs in response
to successive S stimuli. This MMN is positive in the 20–180 ms
range, in agreement with experimental findings (Cowan et al.,
1993; Garrido et al., 2007, 2009b; Näätänen et al., 2007).

The gain dynamics corresponding to the stimulus sequences
in Figures 6A,B, followed by a stimulus-free interval, are
illustrated in the first two columns of Figure 7, which further
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FIGURE 5 | ERs and gain contributions corresponding to different responses. (A) Static gain baseline ER starting from P, fast gain modulation 1gS∞ and adaptation

1hS∞ contributions which, when added together (1g+hS∞) and combined with the baseline ER give the S∞ response. (B) Static gain baseline ER starting from P, fast

gain modulation 1gD, and adaptation 1hD contributions which, when added together (1g+hD) and combined with the baseline ER give the D response. (C)

MMN(D,S∞, t) and the corresponding isolated fast gain modulation (magenta broken line) and adaptation (black broken line) contributions.

FIGURE 6 | Development of responses S∞(t) and D(t) over multiple stimuli due to their different ISIs, with stimulus numbers indicated in the legends. (A) Sn(t) for

n = 1, . . . , 5 with a 1 s ISI. (B) Dn(t) for n = 1, which is indistinguishable on this scale from cases with n > 1 with a 6 s ISI. (C) The MMN(D1,Sn, t) corresponding to the

sequential Sn responses from (A).

underlines how the development of S∞(t) involves the gains
approaching a new baseline as adaptation occurs. In the stimulus-
free interval after t = 5 s the gains decay back to their P-values
on a timescale of roughly 5 s.

Our expectation that D responses should occur from near-P
conditions while S∞ responses occur from a shifted starting point
in parameter space is confirmed by examining prestimulus gains
at themoment of each successive stimulus in the S andD streams
above. Figure 7 (third column) shows these gains just before each
stimulus vs. stimulus number for the S and D streams; it is
evident that the S stream pushes the system further from P while
the D stream allows it to relax back to near P at the time of the
next such stimulus.

We now explore the S and D responses from Figure 6

in XYZ space, illuminating how cortical, corticothalamic, and
intrathalamic feedback loops contribute to such dynamics. We
first analyze the D response from Figure 6B and then explore
the development of S∞(t) from Figure 6A. Figure 8 shows the

sequence of evoked responses and their corresponding X(t), Y(t),
and Z(t) (first column) alongside the trajectory they traverse in
XYZ space, and the XY , YZ, and XZ planes (second column).
A video of this activity is provided in Supplementary Video 1.
As can be most easily seen in the video but also evident in this
figure, each D response follows almost the same path in XYZ
space. Each loop of the trajectory is characterized by an initial
sharp increase of Z from ≈ 0.05 to 0.3 until t ≈ 25 ms post-
stimulus, followed by a decrease of all coordinates. Then Y starts
to increase at t ≈ 70 ms while X and Z continue to decrease
until t ≈ 100 ms, at which point there is a short-lived rise
in Z. Then X increases substantially, taking the system back to
its starting point; Y also increases during this phase, becoming
briefly positive before peaking at t ≈ 380 ms and returning to
the starting value of Y ≈ 0. Around t = 600 ms the trajectory
displays a small excursion from near its starting point as X travels
further in the positive X direction (from X ≈ 0.65 − 0.66, most
evident in the XY and XZ plane plots) before decaying back to
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FIGURE 7 | Evolution of the instantaneous Gab (t) and prestimulus G
(0)
ab gains corresponding to the two cases from Figures 6A,B. The first and second columns show

the gain evolution Gab(t) during the development of the S∞ response (blue to red) and the successive D responses (blue), respectively. The third column depicts the

corresponding pre-stimulus gains G
(0)
ab immediately prior to the successive S and D stimuli vs. stimulus number n.

its starting point by t ≈ 4 s. This is because of the relatively
long-lasting shifts in Gee(t) and Gei(t) [which determine X(t)] in
the second column of Figure 7. This suggests that during ERs,
shifts in intracortical feedback strengths take longer to return to
baseline than corticothalamic and intrathalamic ones.

We now examine the development of the S∞ response from
Figure 6A. As can be seen from the third column of Figure 7, the
development of this response is accompanied by a 7% decrease in
Gee, 13% decrease in |Gei|, 44% decrease in Ges, 12% increase in
Gse, ≈ 0% change in Gsr , 10% increase in Grs, and a 7% increase
in Gre. Figure 9 shows the evoked response corresponding to

the development of S∞(t), the corresponding X(t), Y(t), and
Z(t) (first column) alongside the trajectory it traverses in XYZ
space, and the XY , YZ, and XZ planes (second column), with
arrows indicating the direction of motion. A video of this activity
is provided in Supplementary Video 2. The first thing to note
is that, as expected, the first orbit (deep blue) is identical to
D(t) from Figure 8. As adaptation occurs, the starting point
for activity moves roughly in the positive X direction, as seen
in Figure 9, with smaller shifts in Y and Z. The dominant
shift in X is a consequence of the abovementioned fact that X
takes the longest to decay back to its baseline value; i.e., the
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FIGURE 8 | The D responses from Figure 6B and their associated trajectories in XYZ space (X, Y , and Z are intracortical, corticothalamic, and intrathalamic loop

strengths, respectively). The black dot indicates the start point t = 0. First column shows the sequence of evoked responses at 6 s ISI and corresponding X (t), Y (t),

and Z(t). Second column shows this trajectory in XYZ space and in the XY , YZ, and XZ planes, where the arrows indicate the direction of motion.

starting points for successive stimuli shift further along the X
axis. It also implies that the dominant changes in brain dynamics
occurring during adaptation to S stimuli involve increased
intracortical feedback followed by increased corticothalamic and
intrathalamic feedback, respectively.

3.4. Sequences of Stimuli
Here we move on from investigating the S and D responses
individually and analyze a variety of different sequences of S and
D stimuli that have been implemented experimentally. Recall that
in the present analysis S and D stimuli are fully distinguishable
and there is no cross-talk in Equation (54) so we can model each

response separately. After several consecutive identical stimuli
are interrupted by an occurrence of the other type of stimulus, n is
reset to 1 here, so a given n can correspond to different situations,
depending on what has occurred in the previous 5–10 s. We also
introduce the following additional notation for brevity: a stream
of m consecutive S stimuli is written as (mS). It is important
to note that the responses to individual stimuli in (mS) are not
identical and depend on the history. For example, in the sequence
(mS)D1(mS), the first set of S responses are not identical to the
corresponding members of the second set because the latter start
from a more adapted corticothalamic region than the first. (The
occurrence of the single D1 stimulus does not give enough time
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FIGURE 9 | Development of the S∞ response from Figure 6B and its associated trajectories in XYZ space. The black dot indicates the start point at baseline P and

the red dot indicates the start point S∞. First column shows the evoked response from Figure 6, and the corresponding X (t), Y (t), and Z(t) curves (X, Y , and Z are

intracortical, corticothalamic, and intrathalamic loop strengths, respectively). Second column shows this trajectory in XYZ space, and in the XY , YZ, and XZ planes

where the arrows indicate the direction of motion.

for the next S stimulus to start from the same baseline as the
very first stimulus in the sequence, so the residual adaptation
arising from the first group of S stimuli is still significant when
the second set commences.) The present analysis provides a
firm, physiologically-based footing fromwhich to analyze to what
extent adaptation plays a role in themany different features of the
MMN, and in which case higher-order processes are involved.
Because digitized experimental data are not available from the
literature we cannot fully calibrate our model to individuals, so
the comparisons presented are necessarily semiquantitative.

3.4.1. Sequence of Standards With Occasional Single

Deviants
We first model an early study (Sams et al., 1984) which presented
standard tones (1,000 Hz) 90% of the time and deviant tones
(1,250 Hz) 10% of the time in random order and calculated the
MMN corresponding to the first deviant tone after at least four
standard tones. Each block contained 500 tones with 1 s ISI and
the ERs to standard and deviant tones were separately averaged.
We simulate a block by generating sequences of random S andD

stimuli with the above probability distribution, only considering
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FIGURE 10 | Simulations vs. experiment (Sams et al., 1984) for the sequences discussed in section 3.4.1. (A) Model S and D (see legend), each averaged over all

presentations during the typical sequence of standards with occasional deviants. (B) Corresponding experimental findings from this same sequence, adapted from

Sams et al. (1984), where D is indicated with the thin line and D is indicated by the bold line. The experimental scale bar at right is 10 µV in length. (C) Model findings

for the MMN(D1,S5, t) and MMN(S1,S5, t) (see legend) corresponding to the sequence (4S )S5D1S1. (D) Model findings for the MMN(D2,S5, t) and MMN(S1,S5, t)

corresponding to the sequence (4S )S5D1D2S1.

cases where a D stimulus immediately follows at least four
S stimuli.

Figure 10 shows the model simulation comparison to the
experimental ER findings. Figures 10A,B display the resultant
model averaged S and D responses over all instances of each
stimulus as well as the experimental ERs from Sams et al. (1984),
respectively. The model S and D responses reproduce the main
features of the experimental responses: the S response displays
prominent N1 and P2 deflections with similar latencies to the
experimental S response, whileD has a larger N1 peak than S and
an N2 peak of lower amplitude than N1, which is also the case
experimentally. The model findings for D differ from experiment
in there being a prominent P2 deflection at t > 170 ms which
isn’t seen in the experimental response. This difference could
signify the presence of higher-level feedbacks, or it may merely
indicate that we have not adjusted our parameters to optimize
the fit to this specific experiment. The fact that we see reasonable
agreement between model simulations and experiment without
further adjustments is evidence that adaptation plays a significant
role in the development of the MMN. In future, fits to high-
quality data for multiple experiments done on the same subjects
should resolve this issue. Note that the timings of deflections in
the model responses change depending on model parameters,
unlike the fixed timings of traditional ER components.

In addition to calculating the MMN corresponding to the
first D after four or more S as defined above, the experimental
study tested whether an S stimulus directly following the D

stimulus also caused a MMN with respect to the S preceding

the D. Specifically, they implemented the following sequence
of stimuli: (4S)S5D1S1 and calculated MMN(S1, S5, t). They
found that S1 did indeed yield a nonzero MMN(S1, S5, t), albeit
smaller in amplitude than the MMN(D1, S5, t) (Sams et al., 1984).
Simulation of this sequence yields results in agreement with
these findings. Figure 10C shows MMN(S1, S5, t) alongside the
MMN(D1, S5, t), revealing that the latter is larger in amplitude, in
agreement with experiment.

The extent to which our model reproduces the above
experiments sheds light on the role adaptation plays in these
particular scenarios. Historically, the experimental observation
of the MMN(S1, S5, t) was interpreted via an argument that each
stimulus is associated with its own “neuronal model” such that
D1 not only causes a mismatch process relative to the neuronal
model corresponding to S stimuli, but also initiates a neuronal
model of its own (Sams et al., 1984). The present findings suggest
that adaptation is able to account for the MMN(S1, S5, t) being
smaller in amplitude than MMN(D1, S5, t) in this experiment,
without needing to invoke such higher-order neuronal models
or representations.

3.4.2. Sequence of Standards With Occasional

Double Deviants
The authors from the study examined in the previous section
also explored sequences of the form: (4S)S5D1D2S1, whereby
a second deviant immediately following the first was presented.
They subsequently calculated MMN(D2, S5, t) and found that
it had smaller amplitude than MMN(D1, S5, t). In addition,
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they found that MMN(S1, S5, t) in this sequence had larger
amplitude than MMN(S1, S5, t) from the sequence with only
isolated single D stimuli. Our simulations agree with these
experimental findings, as illustrated in Figure 10D, where the
simulated MMN(D2, S5, t) is smaller than MMN(D1, S5, t) from
Figure 10C, and the MMN(S1, S5, t) is larger in amplitude than
MMN(S1, S5, t) from the previous sequence with occasional
isolated deviants, shown in Figure 10C.

The authors of the experimental study interpreted the
reduced-amplitude MMN(D2, S5, t) and the increased-amplitude
MMN(S1, S5, t), relative to the corresponding cases with a single
deviant, as evidence of the involvement of “neuronal models.”
However, the agreement seen between their findings and the
model simulations in this section suggest that adaptation can
account for these findings. Again we suggest that the “neuronal
models” posited in these early studies correspond to adaptation
of the relevant cortical regions associated with each stimulus, at
least to a first approximation. In favor of this is the way that these
“neuronal models” appear to be strengthened by repeated stimuli
(Sams et al., 1984). The present adaptation process naturally
accounts for this by the fact that repeated stimuli drive greater
adaptation, resulting in a larger mismatch when followed by a
different stimulus.

3.4.3. Sequences of Identical Stimuli With Different

ISIs
Here we consider streams of identical stimuli in order to probe
how adaptation and the resulting S∞ and MMN depend on the
ISI.We also compare the model with an early study that looked at
the ERs to tone-only sequences of infrequent stimuli (Näätänen
et al., 1989a). Due to the development of the S∞ and D responses
illustrated in section 3.3, an ISI on the order of≈ 0.5−1 s should
give rise to an adapted S response, where the number of repeated
stimuli required for S to approach its limiting form S∞ depends
on the ISI. As shown in section 3.3, for an ISI of 1 s, approximately
5 stimuli are required to approximate S∞.

Reducing the ISI increases the number of stimuli that occur
during the ∼ 5 s window before S∞ is reached, as illustrated in
Figure 11, which shows the development of S∞ due to multiple
successive stimuli at varying ISIs; the S∞ parameters are thereby
pushed further from the P state and its profile is modified
accordingly. Figure 11A shows how S∞ is reached only after
11 stimuli spaced at an ISI of 0.5 ms, whereas Figures 11B,C

show that S∞ is reached only after 9 and 6 stimuli spaced at
ISIs of 0.6 and 0.7 ms, respectively. The adapted S∞ response
therefore depends on the ISI. This is illustrated by simulating
sequences of responses at variable ISIs and plotting the limiting
form S∞ of each sequence vs. ISI, shown in Figure 12A along
with the corresponding MMN(D, S∞, t) in Figure 12B. We see
that as the ISI decreases from 1 to 0.5 s, the S∞ response curve
exhibits smaller N1 and P2 amplitudes and the N2 component,
which was small relative to the N1 peak in the 1 s ISI case,
vanishes completely. Furthermore, as the ISI decreases the MMN
amplitude increases, which agrees with experimental findings of
increased MMN amplitudes at shorter ISIs (Ford and Hillyard,
1981; Nordby et al., 1988; Näätänen et al., 1993).

3.4.4. Tone-Only Sequence
In our model completely discriminable stimuli do not affect
one another’s responses via adaptation, as expressed via
Equation (51). As a result, streams of identical D stimuli result
in identical streams of D responses, resembling those shown
in Figure 6B, regardless of whether any fully discriminable S

stimuli are presented in between.
In contrast to our pure-adaptation prediction, experiments

have found that ERs to the infrequent stimuli alone (tone-only
sequence) differed from the case where more frequent S stimuli
occurred in between. Specifically, the tone-only responses did not
exhibit a negative deflection overlapping the N1 and P2 features,
but rather exhibited a larger N1 deflection (Näätänen et al.,
1989a). This implies that effects other than adaptation of distinct
cortical regions, such as higher-order processes and memory
effects, play an important role in the distinction between these
two cases. The present work enables the effects of adaptation to
be separated from the other contributions to allow the latter to be
focused on more specifically.

3.4.5. Well-Separated Trains of Stimuli
We now investigate an experiment that specifically invoked
higher-order processing as a contributing factor to the MMN, in
order to tease apart how much can be explained by adaptation
alone. The experiment (Cowan et al., 1993) investigated the links
between MMN and memory representation by setting out to
measure if a long-term or “silent” memory representation (longer
than the typical decay rate of the S∞ response) of a given S

stimulus persists over a long interval between two well-separated
trains of S stimuli such that a D stimulus occurring in the
second position of the second train elicits an MMN. Because the
inter-train interval was longer than the MMN decay time, they
concluded that any MMN associated with the second-position D

reflects the reactivation of a memory representation that became
dormant during the inter-train interval and was reactivated by
the first S stimulus of the new train (Cowan et al., 1993). Their
findings confirmed the presence of an MMN associated with the
second-position D and led them to interpret this as evidence for
such memory formation, inactivation, and reactivation.

The experimental procedure involved placing a D stimulus in
position 1, 2, 4, 6, or 8 of a nine-item train of standards at an ISI
of 610 ms between tones within a single train and an inter-train
interval of 11− 15 s (Cowan et al., 1993). We use a superscript n
to label the position of the D stimuli within the 9-element train
such that the above cases can be distinguished asD1,D2,D4,D8,
and D8. The authors found that stimuli at positions Dn≥2 were
sufficient to yield an MMN (Cowan et al., 1993).

To model this experiment we simulate the following blocks
of trains: an S-only train: (9S), and nine-element trains of
mostly S stimuli with D stimuli placed at positions listed above:
D(8S), (1S)D(7S), (3S)D(5S), (5S)D(3S), and (7S)D(1S). The
long inter-train intervals mean that there are no cumulative
effects from the adaptation occurring in each train that last until
the next train and thus that such effects can be disregarded,
allowing each train to be studied in isolation. To follow what
was measured experimentally, the MMN corresponding to the
D responses at the positions listed above with respect to the

Frontiers in Human Neuroscience | www.frontiersin.org 17 August 2021 | Volume 15 | Article 655505

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Robinson et al. Neural Field Theory of Evoked Responses

FIGURE 11 | Development of the S∞ response during consecutive stimuli spaced at varying ISIs, with stimulus number indicated in the legends. (A) Sn(t) for

n = 1, . . . , 11 with a 0.5 s ISI. (B) Sn(t) for n = 1, . . . , 9 with a 0.6 s ISI. (C) Sn(t) for n = 1, . . . , 6 with a 0.7 s ISI.

FIGURE 12 | Dependence of S∞ on the ISI, with ISI indicated in the legends. (A) S∞ for ISIs of: 0.5, 0.6, 0.7, 0.8, and 1 s, as indicated in the legend. (B) The

corresponding MMN(D,S∞, t) for each of the cases in (A).

corresponding S response at the same position in the S-only
train, MMN(Dn, Sn, t) was calculated and is shown Figure 13

alongside the corresponding experimental MMN adapted from
Cowan et al. (1993).

We find that MMN(Dn, Sn, t) is zero at n = 1, because
D1 = S1, and that it increases with n because adaptation
effects alone are enough for D2 to elicit an MMN in the
above trains without the need to invoke memory formation
and representation processes. The model detection of a nonzero
MMN(D2, S2, t) reflects the fact that the S2 response in a stream
of standards has already adapted significantly enough to cause
a mismatch with the subsequent D response. The extent of the
adaptation depends on the ISI, as shown in section 3.4.3. Other

similarities between the model MMN(Dn, Sn, t) and experiment
include the presence of N1 and N2 deflections as well as P2 and
P3 deflections emerging as n increases, as well as an increase of
the N1 deflection as n increases. Experimentally, as n increases
the N2 deflection approaches that of N1, whereas their relative
amplitudes remain unchanged in the model simulations. This
could reflect an effect of the memory representation process that
was conjectured to be involved (Cowan et al., 1993), especially
because considerable experimentation with changing the model
adaptation parameters found the N2 peak to consistently remain
smaller in amplitude compared to the N1 peak.

Overall, the level of agreement between model simulations
and experiment for the above sequences suggests that adaptation
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FIGURE 13 | Comparison of model simulations and experimental findings (Cowan et al., 1993) discussed in section 3.4.5. Simulation of the MMN(Dn,Sn, t) for

n = 1, 2, 4, 6, 8 is shown on the left and the corresponding experimental MMN curves adapted from Cowan et al. (1993) on the right. The small vertical mark in each

experimental frame indicates the stimulus time and the first curve gives an indication of noise levels.

can explain key features of the experiment that were previously
assumed to be the result of higher order processes (Cowan
et al., 1993). However, such processes are likely to be needed to
account for the remaining differences between the model and
experimental findings concerning the relative amplitudes of the
N1 and N2 deflections.

4. SUMMARY AND DISCUSSION

We have modeled and analyzed sequences of auditory evoked
responses, used in human cognitive studies, by means of a
physiologically based neural field theory whose predictions
have previously reproduced a wide range of experimental
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data on brain activity and connectivity, as mentioned in
the Introduction. To do so, the theory was generalized
to include corticothalamic adaptation to repeated stimuli
arriving at a given point on the tonotopic map. Repeated
stimulation within the 5–10 s lifetime of adaptation leads
to greater movement of corticothalamic gains away from the
prestimulation baseline and contributes to standard responses
evolving away from deviants.

The central aim of the work is to provide a means of
calculating the response to arbitrary sequences of discriminable
stimuli in order to determine how much of the dynamics
can be accounted for by adaptation and how much might be
ascribable to higher-order top-down memory-related stimulus-
comparison processes—a long-running controversy in the field.
This accords with Occam’s Razor, which dictates that one should
first determine howmuch can be explained by low-level processes
such as adaptation in thalamus and primary auditory cortex
before invoking higher-order aspects. However, we stress that the
latter processes are certainly relevant in many contexts, especially
those involving long-term memory or comparison of abstract
stimulus features.

This work provides a quantitative bridge between biophysical
analysis of brain activity and electrophysiological measurements
of human cognitive processes, in more detail than has previously
been possible. Tools based on this approach should help to clarify
the relative roles of low-level adaptive processes and high-level
feedbacks in determining evoked responses in various situations.

The main outcomes are:

(i) A corticothalamic NFT model of the medial geniculate
nucleus of the thalamus and the primary auditory cortex
was formulated in which ERs are viewed as impulse
responses, with evoked changes occurring both directly in
the activity and indirectly via the system gains, resulting in
a bilinear response that we treated via perturbation theory.
Long-timescale adaptation of gains was also incorporated
for the first time.

(ii) The dynamical building blocks of ERs are damped
oscillations at natural resonant frequencies, usually with
deflections of both polarities. This is in contrast to the
traditional notion of ER components with fixed polarities
and timings and in accord with temporal shifts and
inversions of some features during development (Kerr
et al., 2010).

(iii) Adaptation changes both amplitudes and timings of
ER waveforms. This invalidates common assertions that
adaptation can change only amplitudes of traditional ER
components with fixed timings.

(iv) The MMN is a mathematical entity that is constructed by
subtracting one response from another. Most commonly
the response to a common standard is subtracted from
the response to a rare deviant, but there is no unique
definition. However, if the parts of ERs that are due to
adaptation can be identified and shown to be insufficient to
account for the differences between the two responses (i.e.,
for their MMN), the remainder may well be attributable to
higher-level processes.

(v) Our generalized notation for the MMN between two
responses—e.g., MMN(S3, S5, t) for the third standard
relative to the fifth—highlights the implausibility of there
being a separate dedicated set of neurons that generate
an MMN for every possible comparison that might be
conceived of by experimenters. This is thrown into stark
relief when one notes that any pair of responses whatsoever
can be used to define an MMN—even responses in
different sensory areas at very different times.

(vi) Identification of higher-order processing and other effects
is facilitated by the model. This is because one model
must be able to account for a given subject’s responses
to arbitrary stimulus sequences—ideally with little or no
change in parameters so long as the subject’s physiological
state is unchanged. Hence, once parameters have been
calibrated on sequences of identical stimuli at various ISIs,
for example, they should yield the responses to arbitrary
stimulus sequences, as far as adaptive changes go. Further
differences can then be explored as potentially being due to
other mechanisms.

(vii) Deviant ERs start from a point nearer the corticothalamic
baseline than standard ERs, which begin from a point that
adaptation has driven away from the pre-stimulation state.
Corticothalamic feedforwards and feedbacks change in
strength with adaptation, with the largest changes found to
be in gains involving the cortex, as summarized in Table 2.
This is broadly consistent with theories such as predictive
coding in which top-down predictions are compared with
bottom-up signals and the system adapts to reduce the
discrepancy (Garrido et al., 2009b).

(viii) In oddball paradigms, the model accounts naturally for (a)
the difference between S and D responses, (b) the effects of
consecutiveD stimuli on subsequent S andD responses, (c)
the effect of the position of the stimulus in a long train, and
(d) the development of S responses (starting as identical
with D ones) with repeated presentation, and their decay
after a stimulus-free interval.

(ix) Some aspects of ERs have not been accounted for by
adaptation alone, which points to their likely dependence
on higher-order processes and feedbacks. These include
tone-only sequences which provoke the same model
D responses regardless of whether discriminable S
responses occur in between, which is not in accord
with experimentally observed differences between the
two cases. Likewise, differences between well-separated
stimulus trains with deviants in different positions can be
partly explained by adaptation effects, but late structure has
not been fully reproduced and needs further investigation.
In this context, we again stress that our aim is not to
account for all ER features by adaptation, but to determine
which features can be explained in this manner so as to
focus attention more sharply on those that are produced
by other mechanisms.

Overall, we have shown that adaptation can account for many but
not all features of ERs in various stimulus sequences. This both
highlights the role of such processes in the initial corticothalamic
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stages of signal processing and cognition and points the way
to focus on higher-order aspects, especially in humans. The
formulation in terms of resonances and gains makes immediate
links to control-systems interpretations that tie the results to
the dynamics of prediction and unconscious attention behind
many cognitive processes (Babaie-Janvier and Robinson, 2018,
2019). More generally, the NFT used has accounted for a wide
variety of normal and abnormal brain activity and connectivity
phenomena, as mentioned in the Introduction, so ER dynamics
is thereby also integrated into this broader landscape.

The present work provides a starting point for quantitative
exploration of the role of adaptation in the host of ER sequences
that have been studied in the literature discussed in the
Introduction. This would include analysis of ERs to sequences
of stimuli that are not fully distinguishable, omitted tones,
tones of variable frequency, duration, or amplitude, and other
variants. For optimal outcomes the model should be calibrated
for individual subjects on simple oddball sequences, then used
to predict their responses to more complex stimulus sequences—
something that has previously been done when applying NFT to
a range of other phenomena mentioned in the Introduction. A
key advantage of NFT is that its parameters are closely tied the
physiology, so links to underlying biophysics are more direct and
easier to make than via phenomenological component analysis.

Many further extensions and applications of the model can
be made. A key generalization needed to better probe ERs is to
include spatial aspects of the tonotopic map and the responses
to enable comparison with observations of ER topography. Some
such work has been done on evoked responses using NFT, albeit
without adaptation (Mukta et al., 2019; Robinson et al., 2019) and
the work here will enable it to be generalized by appropriately
modifying the response functions and including the spatial
structure of natural modes of brain activity. Application to ERs
that involve other auditory features (e.g., interaural delays and
directionality), or other sensory modalities, is also an obvious

direction for future work because the present formulation is
certainly not limited to auditory systems. Similarly, one could
apply this approach to evoked responses in nonhuman animals,
although the parameters would need to be recalibrated in that
case. It is also worth noting that the stimuli used do not
have to be impulsive—replacement of a delta-function input
by a periodic drive enables steady-state evoked responses to be
studied, as has previously been done in the absence of adaptation
(Robinson et al., 2008).
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