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Convolutional neural networks (CNNs), which automatically learn features from raw

data to approximate functions, are being increasingly applied to the end-to-end

analysis of electroencephalographic (EEG) signals, especially for decoding brain states

in brain-computer interfaces (BCIs). Nevertheless, CNNs introduce a large number

of trainable parameters, may require long training times, and lack in interpretability

of learned features. The aim of this study is to propose a CNN design for P300

decoding with emphasis on its lightweight design while guaranteeing high performance,

on the effects of different training strategies, and on the use of post-hoc techniques to

explain network decisions. The proposed design, named MS-EEGNet, learned temporal

features in two different timescales (i.e., multi-scale, MS) in an efficient and optimized

(in terms of trainable parameters) way, and was validated on three P300 datasets.

The CNN was trained using different strategies (within-participant and within-session,

within-participant and cross-session, leave-one-subject-out, transfer learning) and was

compared with several state-of-the-art (SOA) algorithms. Furthermore, variants of the

baseline MS-EEGNet were analyzed to evaluate the impact of different hyper-parameters

on performance. Lastly, saliencymaps were used to derive representations of the relevant

spatio-temporal features that drove CNN decisions. MS-EEGNet was the lightest CNN

compared with the tested SOA CNNs, despite its multiple timescales, and significantly

outperformed the SOA algorithms. Post-hoc hyper-parameter analysis confirmed the

benefits of the innovative aspects of MS-EEGNet. Furthermore, MS-EEGNet did benefit

from transfer learning, especially using a low number of training examples, suggesting

that the proposed approach could be used in BCIs to accurately decode the P300

event while reducing calibration times. Representations derived from the saliency maps

matched the P300 spatio-temporal distribution, further validating the proposed decoding

approach. This study, by specifically addressing the aspects of lightweight design,

transfer learning, and interpretability, can contribute to advance the development of deep

learning algorithms for P300-based BCIs.

Keywords: electroencephalography, P300, convolutional neural networks, transfer learning, decision explanation,
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INTRODUCTION

The P300 response is an attention-dependent event-related
potential (ERP) first reported in electroencephalographic (EEG)
signals by Sutton et al. (1965). This wave is characterized
by a positive deflection that peaks within the time window
between 250 and 500ms after stimulus onset, and it is mostly
distributed on the scalp around the midline EEG electrodes (Fz,
Cz, Pz), increasing its magnitude from the frontal to the parietal
sites (Polich, 2007). The P300 can be evoked in an oddball
paradigm (Farwell and Donchin, 1988), where an infrequent
deviant stimulus immersed in a sequence of frequent standard
stimuli is presented to the user while he/she is attending to
it (e.g., by counting how many times a rare event occurs).
Rare events induce the P300 response; this response can be
used as a neural signal in EEG-based brain-computer interfaces
(BCIs), enabling direct communication between the brain and
surroundings without the involvement of peripheral nerves or
muscles (Nicolas-Alonso and Gomez-Gil, 2012). One of the
first P300-based BCIs was developed by Farwell and Donchin
(1988) using a visual stimulation in the oddball paradigm. These
systems could be especially beneficial for patients suffering from
motor neuron disease (Rezeika et al., 2018) to provide alternative
ways of communication. Furthermore, they may represent viable
training tools for patients with attention deficits as recently
reported in Amaral et al. (2018) where a P300-based BCI
paradigm was tested in patients suffering from autism spectrum
disorder (ASD) to improve their social attention.

Of course, a crucial aspect of a P300-based BCI is the
decoding algorithm that translates brain signals into classes
(e.g., P300 and non-P300 classes). Machine learning (ML)
techniques have been recognized to be powerful tools in
learning discriminative patterns from brain signals. In recent
years, deep learning, a branch of ML originally proposed
in computer vision (Guo et al., 2016; Ismail Fawaz et al.,
2019), has been applied to decoding problems of physiological
signals, such as electroencephalography, electromyography,
electrocardiography, and electrooculography (Faust et al., 2018).
At variance with more traditional ML approaches characterized
by a separation between feature extraction, selection and
classification stages (LeCun et al., 2015), deep learning techniques
automatically learn features from raw or light pre-processed
inputs to maximize between-class discriminability and finalize
the decoding task in an end-to-end fashion.

Among deep learning techniques for classification,
convolutional neural networks (CNNs) are widely used.
These are specialized feed-forward neural networks involving
the convolution operator to process data with a grid-like
topology and are inspired by the hierarchical structure of
the ventral stream of the visual system. Stacking neurons
with a local receptive field on top of others creates receptive
fields of individual neurons that increase in size in deeper
layers of the CNN and increases the complexity of the
features to which the neurons respond (Lindsay, 2020),
realizing different levels of feature abstraction. This way,
CNNs automatically learn hierarchically structured features
from the input data, finalized to the classification. However,

CNNs have some weaknesses: they introduce a large number
of trainable parameters (consequently requiring a large
number of training examples), they introduce many hyper-
parameters (i.e., parameters that define the functional
form of decoder), and learned features are difficult to
be interpreted.

The field of EEG classification (and in particular P300
classification) has been widely exploiting the advantages of
CNNs (Faust et al., 2018; Craik et al., 2019). At the same time,
solutions to mitigate the weaknesses of these algorithms have
been proposed within this field, as reported in the state-of-the-art
(SOA) description below.

In CNN-based EEG classification, EEG signals can be
arranged into a 2D representation with electrodes along a
dimension and time steps along the other, and fed as input to
the CNN that predicts the corresponding label. CNN designs
for EEG classification include both shallow and deep neural
networks, and solutions have been proposed either by performing
spatial and temporal convolutions together (i.e., mixed spatio-
temporal feature learning) or separately (i.e., unmixed spatio-
temporal feature learning). Among the latter, several have been
successfully applied to P300 classification (Cecotti and Graser,
2011; Manor and Geva, 2015; Lawhern et al., 2018; Liu et al.,
2018; Shan et al., 2018; Farahat et al., 2019) and generally
have been proved to outperform traditional ML approaches.
Cecotti and Graser (2011) designed a CNN comprising two
convolutional and two fully-connected layers to decode the
P300 event. Remarkably, this was also the first attempt of
CNN-based P300 decoding. Extensions of this architecture
mainly focused on the increase of depth, and inclusion of
batch normalization and dropout (Manor and Geva, 2015; Liu
et al., 2018). Moreover, Farahat et al. (2019) proposed a dual-
branched CNN (BranchedNet) that learns temporal features in
two different timescales with parallel temporal convolutions,
reporting an increase in performance with respect to a single-
scale convolution. While these CNNs performed better than
traditional ML techniques in P300 decoding, two aspects
deserve attention: (i) they learn spatial features (i.e., spatial
convolution, performed across electrodes) and then temporal
features in the next layers (i.e., temporal convolution, performed
across time samples); (ii) they do not address the challenge
of reducing the number of trainable parameters. Regarding
the first aspect, Shan et al. (2018) pointed out that these
architectures may lose useful raw temporal information related
to the P300 event since temporal features are learned from
spatially filtered signals instead of from raw inputs. The authors
proved that an architecture with the first layer performing
a mixed spatio-temporal convolution (OCLNN) improved the
decoding performance compared with the architecture proposed
by Cecotti and Graser (2011) and other variants (Manor and
Geva, 2015; Liu et al., 2018). Regarding the second aspect,
recently, Lawhern et al. (2018) have designed a shallow CNN
for EEG decoding, which is also applied to P300 detection
(EEGNet). This design, besides performing temporal convolution
in the first layer, uses separable and depthwise convolutions,
i.e., convolutions specifically devoted to reducing the number of
trainable parameters (Chollet, 2016).
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Remarkably, recently, we have proposed a CNN (Borra et al.,
2020a) based on the design of EEGNet that won the P300
decoding challenge issued by the International Federation of
Medical and Biological Engineering (IFMBE) in 2019, where
the dataset (BCIAUT-P300) was a large multi-participant and
multi-session collection of data. The solution of the authors
outperformed significantly a CNN derived fromManor and Geva
(2015) with a spatial convolutional layer as the first layer, long
short-term memories, and traditional ML approaches (Simões
et al., 2020). These results further substantiate that CNNs, which
include a temporal convolutional layer as the first layer, can
represent advantageous solutions for P300 decoding compared
with traditional approaches and other CNN designs.

Techniques have been proposed for interpreting and
understanding what the CNN has learned (Montavon et al.,
2018); in the field of EEG classification, they are fundamental
to validate correct learning, checking that the learning system
does not rely on artifactual sources but on neurophysiological
features. These techniques explain the decoding decision taken
by the CNN, i.e., features on which the CNN mainly relies
to discriminate among classes. In this way, they represent
tools to explore and analyze the underlying neurophysiology
potentially characterizing new features (unknown so far)
and gaining insights into neural correlates of the underlying
phenomena. Montavon et al. (2018) provided a definition for
explanation of CNN decision: “the collection of features of the
interpretable domain, that have contributed for a given example
to produce a decision (e.g., classification or regression).” Among
the explanation techniques proposed in the computer vision
domain (Montavon et al., 2018), saliency maps (Simonyan
et al., 2013), simple representations reporting the gradient of
a target class score with respect to each input pixel, have been
recently transposed to P300 decoding (Farahat et al., 2019).
Furthermore, other techniques were adopted to understand
CNNs for P300 decoding, such as temporal and spatial kernel
visualizations (Cecotti and Graser, 2011; Lawhern et al., 2018),
and kernel ablation tests (Lawhern et al., 2018). In addition to
these techniques, interpretable layers (where the learned features
are directly interpretable without the need for ad hoc techniques)
were recently applied to EEG decoding tasks (Zhao et al., 2019;
Borra et al., 2020b,c).

Within this field of research, the aim of this study is to
further contribute to the development of CNNs for EEG-based
P300 decoding and to their analysis, with particular emphasis on
the following aspects: keeping limited the number of trainable
parameters (also referred to as model size) to realize lightweight
CNNs suitable also for small datasets; assessing the effects of
different learning strategies (including transfer learning) in view
of the practical usage of these algorithms in BCIs; explaining the
CNN decision i.e., the neurophysiological aspects that resulted in
an optimal discriminability between classes. Specifically, themain
contribution points are the following:

i) The realization of a CNN named MS-EEGNet combining
two designs previously proposed in the literature with
unique characteristics but treated separately, with the aim
of jointly exploiting their respective strengths (see section
MS-EEGNet). On one hand, we adopted a branched

architecture in order to extract features in two different
timescales, since this may improve the performance of P300
decoding (as suggested by Farahat et al., 2019). On the
other hand, the branched solution would tend to increase
the number of convolutional layers (since convolutions are
replicated along each branch) and consequently the number
of trainable parameters. Therefore, we adopted solutions
to keep limited the number of trainable parameters by
limiting the overall number of convolutional layers (designing
a shallow network) and at the same time implementing
computationally efficient convolutions, such as depthwise
and separable convolutions (as adopted by Lawhern et al.,
2018). The latter are characterized by a reduced number of
required multiplications, hence by a lower computational
cost, and by a reduced number of trainable parameters
compared with conventional convolutions (as those adopted
by Farahat et al., 2019). In addition, learning compressed
temporal representations in MS-EEGNet helped to further
reduce the overall model size. In this way, we proposed
a multi-scale lightweight design. The so obtained network
was then thoroughly analyzed to evaluate its performance
and potentialities in view of practical applications (see
points below).

ii) Analysis of the main hyper-parameters of the architecture,
evaluating variant designs to investigate the role of multi-
scale temporal feature learning (see section Alternative Design
Choices of MS-EEGNet: Changing Hyper-parameters in the
MST Block).

iii) Application of MS-EEGNet to three different datasets, to
evaluate the proposed approach on variable-sized datasets
and on differently elicited P300 responses, comparing the
performance with other SOA algorithms, including both
CNNs and a traditional ML pipeline (see sections Data and
Pre-processing and State-of-the-Art Algorithms).

iv) Training of MS-EEGNet with different strategies that include
transfer learning. Transfer learning is of relevance as it could
provide important benefits in practical BCI applications,
alleviating the need for a large training set and reducing
training times when using the CNN on a new user (see
section Training).

v) Application of an explanation technique based on saliency
maps to derive the spatial and temporal features that drove
MS-EEGNet decision (see section Explaining P300 Decision:
Gradient-Based Representations).

MATERIALS AND METHODS

In this section, first, we introduce the problem of EEG decoding
via CNNs. Then, we describe the proposed architecture in its
baseline and variant versions, P300 datasets, re-implemented
SOA algorithms, training strategies, and CNN explanation.
Lastly, we illustrate the adopted statistical analyses.

Convolutional neural networks were developed in PyTorch
(Paszke et al., 2017) and trained using a workstation equipped
with an AMD Threadripper 1900X, NVIDIA TITAN V, and 32
GB of RAM. Codes of MS-EEGNet are available at https://github.
com/ddavidebb/P300_decoding_MS-EEGNet.
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EEG Decoding via CNNs
Let us consider an EEG dataset collected from many participants
and recording sessions. Each single participant- and session-
specific dataset is composed of many trials collected by epoching
the continuous EEG recording with respect to the onset of
the stimulus (e.g., standard or deviant stimulus). Thus, each
trial is associated with a specific class (e.g., non-P300 or P300
class), with a total of Nc classes. Indicating with M(s,r) the total
number of trials for the s-th subject and the r-th recording
session, the corresponding dataset can be formalized as: D(s,r) =
{(

X
(s,r)
0 , y

(s,r)
0

)

, . . . ,
(

X
(s,r)
i , y

(s,r)
i

)

, . . . ,
(

X
(s,r)

M(s,r)−1
, y

(s,r)

M(s,r)−1

)}

.

X
(s,r)
i ∈ R

C×T represents the pre-processed EEG signals of
the i-th trial (0 ≤ i ≤ M(s,r) − 1), with C indicating
the number of electrodes and T indicating the number

of time steps. y
(s,r)
i is the label associated with X

(s,r)
i , i.e.,

y
(s,r)
i ∈ L = {l0, . . . , lNc−1}. In the particular case of P300
decoding, i.e., discrimination between standard and deviant
trials, Nc = 2 and L =

{

l0, l1
}

= {“non− P300, “P300′′}.
The objective decoding problem can be formalized as the

optimization of a parametrized classifier f implemented by a

CNN, f
(

X
(s,r)
i ; θ

)

:R
C×T → L, with parameters θ , learning

from a training set to assign the correct label to unseen EEG

trials. Therefore, in the following, we refer to X
(s,r)
i as the CNN

input, represented as a 2D matrix of shape(C,T) with time steps
along the width and electrodes along the height. Lastly, each
dataset D(s,r) was divided into a training set used to optimize
the parameters contained in array θ , and a test set used to
evaluate the algorithm on unseen data. Furthermore, a separate
validation set needs to be extracted from the training set to
define a stop criterion of the optimization. As described in section
Data and Pre-processing, here, we used three datasets: dataset
1 was a large public dataset where each participant performed
different recording sessions, while datasets 2 and 3 were two
small private datasets where each participant performed a single
recording session.

The Proposed Convolutional Neural
Network and Its Variants
MS-EEGNet
The proposed shallow architecture was composed of three
fundamental blocks, each consisting of many layers. A schematic
representation of the CNN is reported in Figure 1. The spatio-
temporal (ST) block extracted temporal and spatial features from
the input EEG signals via temporal and spatial convolutional
layers, respectively. Downstream, the multi-scale temporal
(MST) block used lightweight parallel temporal convolutions
to extract temporal patterns in different scales from the
feature maps provided by the previous block. Lastly, multi-scale
activations were provided to the fully-connected (FC) block that
finalized the decoding task using a single fully-connected layer.

In all the layers except for the last two, the output was a
collection of spatio-temporal feature maps and its shape can
be described by a tuple of three integers, with the first integer
indicating the number of feature maps, and the second and

third integers representing the number of spatial and temporal
samples within each map, respectively. In the following, to
describe the CNN, we will refer to the hyper-parameters of
the involved layers. Each convolutional layer is characterized
by the number of convolutional kernels (K), kernel size (F),
stride size (S), and padding size (P). In addition, depthwise
convolution introduced also a depth multiplier (D) specifying the
number of kernels to learn for each input feature map. Hyper-
parameters will be denoted by a superscript and a subscript.
The superscript indicates the specific block to which the layer
belongs using acronyms “ST,” “MST0,” “MST1,” and “FC,” where
the index in the MST block discriminates between the two scales
(in general MSTi, where 0 ≤ i ≤ Nb − 1 and Nb denotes
the number of parallel branches). The subscript indicates to
which convolutional layer inside the block the hyper-parameters
refer (convolutional layers inside each block were labeled with
an increasing index, starting from 0). Lastly, pooling layers
were described by pool size (Fp) and pool stride (Sp), with the
corresponding superscript. Both convolutions and poolings were
2D; therefore, F, S, P, Fp, and Sp were tuples of two integers:
the first referred to the spatial dimension, while the second
referred to the temporal dimension. Lastly, the number of time
samples changed across pooling operators and was denoted with
Tp. Regarding the single fully-connected layer included in the
classification block, the number of neurons was denoted with
NFC and represented the number of classes to decode (Nc).

MS-EEGNet was analyzed in a baseline version and in many
variants by adopting a post-hoc hyper-parameter evaluation
procedure on the main MST block hyper-parameters. The
baseline version is described in the current section, where the
structure and function of each block are presented, while the
variants are described in section Alternative Design Choices of
MS-EEGNet: Changing Hyper-parameters in the MST Block.

i. Spatio-temporal block. This was designed to learn temporal
and spatial features separately. At first, a temporal
convolutional layer was included, learning K0

ST = 8
temporal kernels with filter size F0

ST = (1, 65), unitary stride
and zero padding P0

ST = (0, 32) to preserve the number of
input temporal samples. Then, the D1

ST = 2 spatial filters
of size (C, 1) were learned for each temporal feature map in
a spatial depthwise convolutional layer, with unitary stride
and without zero padding (Lawhern et al., 2018; Borra et al.,
2020a). Thus, a total number of K1

ST = K0
ST · D1

ST = 16
spatial filters were learned and constrained to have a norm
upper bounded by c = 1 (kernel max-norm constraint) as
in previous studies (Lawhern et al., 2018; Borra et al., 2020a;
Vahid et al., 2020). The feature maps of this layer were not
fully connected with the feature maps of the previous layer.
This not only reduced the number of trainable parameters
but also allowed more straightforward spatio-temporal
feature learning. Indeed, each group of D1 spatial filters was
related to a specific temporal filter (Lawhern et al., 2018)
(i.e., to specific spectral information). Furthermore, the
output activations of the temporal and spatial convolutional
layers were normalized via batch normalization (Ioffe
and Szegedy, 2015). Downstream the spatial depthwise

Frontiers in Human Neuroscience | www.frontiersin.org 4 July 2021 | Volume 15 | Article 655840

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Borra et al. Lightweight MS-CNN for P300 Decoding

FIGURE 1 | Structure of MS-EEGNet. Layers are represented by colored rectangles, reporting the layer name and main hyper-parameters. The tuple outside each

rectangle represents the output shape of each layer. For all outputs except the last two (Flatten and Fully-connected + Softmax), the tuples are composed of three

numbers representing the number of feature maps (channel dimension), number of spatial samples, and number of temporal samples within each map. The input layer

provides an output of shape
(

1, C,T
)

, as it just replicates the original input matrix with shape (C,T ), providing a single feature map as output. The temporal dimension

changed from T to T//32 along the entire CNN (where the symbol // indicates the floor division operator) due to average pooling operations. See sections EEG

Decoding via CNNs and The Proposed Convolutional Neural Network and Its Variants for the meaning of symbols, and see Table 1 for further details.

convolution and its associated batch normalization, the
neurons were activated via an exponential linear unit (ELU)
non-linearity (Clevert et al., 2015), i.e., f (x) = x, x > 0 and
f (x) = α

(

exp (x) − 1
)

, x ≤ 0. We adopted this activation
function, since it was proved to allow faster and more
noise-robust learning than other non-linearities (Clevert
et al., 2015) and to outperform other activation functions
when using CNNs with EEG signals (Schirrmeister et al.,
2017). The α hyper-parameter controls the saturation value
for negative inputs, and α = 1 was set here. Then, an
average pooling layer was introduced to reduce the size of

the activations along the temporal dimension from T to
Tp

ST , with a pool size of Fp
ST = (1, 4) and pool stride of

Sp
ST = (1, 4), providing activations sampled in 1/4 of the

sampling frequency of the signals (32Hz when using signals
extracted from dataset 1 and approximately 31.3Hz from
datasets 2 and 3). Lastly, a dropout layer (Srivastava et al.,
2014) (with a different dropout rate p depending on the
training strategy adopted, see section Training) was added.

ii. Multi-scale temporal block. This block was designed to learn
how to summarize along the temporal dimension the feature
maps provided by the ST block. Differently from EEGNet
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where features in a single timescale were learned at this stage,
here the features were learned in Nb different timescales,
inspired by the design of the Inception modules (Szegedy
et al., 2015). In the baseline MS-EEGNet Nb = 2, thus,
two different sets of short and large kernels were separately
learned in the two parallel branches. This was accomplished
via two parallel temporal depthwise convolutional layers
with a unitary depth multiplier, i.e., D0

MST0 = D0
MST1 =

D0
MST = 1 and K0

MST0 = K0
MST1 = K0

MST = K1
ST ·D0

MST ,
and with different kernel sizes in the two branches extracting
a summary of roughly 150ms [F0

MST0 = (1, 5)] and 500ms
[F0

MST1 = (1, 17)], for each input feature map. That is, each
output feature map was a sort of weighted moving average
of the input feature map using moving windows of two
different lengths, ∼150 and 500ms (referred to as scales).
The large kernel size was chosen to match the temporal
kernel size used in the single-scale branch of EEGNet (Borra
et al., 2020a). The small kernel size was chosen so that the
ratio between the small and large kernels was approximately
the same as that in BranchedNet (rMST = 1

4 ), keeping
odd kernel size (i.e., 500 ms/4 = 125ms = four samples at

32Hz, approximated to five samples to have an odd integer).

The small and large temporal filters should be able to learn
high and low-frequency patterns from the input, respectively

(Supratak et al., 2017). Here, unitary stride and zero-padding

of P0
MST0 = (0, 2) and P0

MST1 = (0, 8) were adopted,

preserving the number of the input temporal samples.
After each depthwise convolutional layer, a pointwise
convolutional layer [F1

MST0 = F1
MST1 = F1

MST =

(1, 1)] was added to learn how to optimally combine the
feature maps in a specific timescale with unitary stride
and without zero-padding. At variance with BranchedNet
(Farahat et al., 2019) where convolutions were not designed
to keep limited the number of trainable parameters, the
proposed multi-scale temporal block was designed using
separable convolutions (i.e. depthwise convolution followed
by pointwise convolution) with the specific aim of reducing
the training parameters. In this same perspective, the number
of output feature maps was set as low as K1

MST0 =

K1
MST1 = K1

MST = 2 in each branch, learning a
compressed representation of the input feature maps (i.e.,
the 16 input feature maps provided by the depthwise
convolutional layer were recombined into only two different
feature maps, for each branch). Then, for each branch, the
output activations of the pointwise convolutional layer were
normalized via batch normalization (Ioffe and Szegedy, 2015)
and activated with an ELU non-linearity (α = 1). Finally,
an average pooling layer was introduced with a pool size

of Fp
MST0 = F

p

MST1
= Fp

MST = (1, 8) and pool stride

of Sp
MST0 = Sp

MST1 = Sp
MST = (1, 8) to reduce the

temporal dimension from Tp
ST to Tp

MST , followed by a
dropout layer (Srivastava et al., 2014) (with different dropout
rate p depending on the training strategy adopted, see
section Training).

iii. Fully-connected block. This block was devoted to produce
output probabilities from the feature maps provided by the

multi-scale temporal block. The input feature maps were
concatenated together along the feature map dimension and
unrolled along a single dimension via a flatten layer. Then,
this multi-scale feature vector was given as input to a fully-
connected layer with NFC = Nc = 2 neurons (associated
with the P300 and non-P300 classes). These two outputs
were transformed via a Softmax activation function to obtain
conditional probabilities p

(

lk

∣

∣

∣
X

(s)
i

)

, k = 0, 1.

A more detailed description of the structural hyper-parameters
and of the number of trainable parameters of the baseline version
of MS-EEGNet can be found in Table 1. The overall number of
trainable parameters (or model size) and the training time (or
computational time) of the baseline MS-EEGNet are reported in
Table 2. Note that in this table, these variables are reported also
for the variant designs of MS-EEGNet (see section Alternative
Design Choices of MS-EEGNet: Changing Hyper-parameters in
the MST Block) and for the examined SOACNNs (see section
State-of-the-Art Algorithms).

Alternative Design Choices of MS-EEGNet: Changing

Hyper-Parameters in the MST Block
In addition to the baseline MS-EEGNet described previously,
we evaluated other alternative designs to better investigate
the behavior of the proposed MST block by modifying some
hyper-parameters (HPs) one at a time. In the following, the
alternative designs are described and indicated via the modified
HP: HPvariant vs. HPbaseline.

i. Nb = {1, 3} vs. Nb = 2: use of one or three branches. In
this post-hoc analysis, we studied whether the proposed dual-
scale temporal feature learning was beneficial compared with
the traditional single-scale learning (Nb = 1) and which scale
was able to learn more relevant class-discriminative temporal
features. To this aim, MS-EEGNet was modified either by
removing the short scale (scale 0), leaving only the large-scale
branch [Nb = 1(large)] or the large scale (scale 1) leaving
only the short-scale branch [Nb = 1(short)]. It is worth
noticing that single-scale variant design Nb = 1 (large) did
not correspond to the EEGNet adaptation used in Borra et al.
(2020a), since here we adopted compressed representations
in separable convolutional layers. In addition, we studied
whether a third timescale (Nb = 3) could be useful by
modifying MS-EEGNet by the inclusion of an additional
timescale between the ones of the baseline version: and this
variant learned summaries of about 125, 250, and 500ms,
corresponding to kernel sizes in the MST block of F0

MST0 =

(1, 5), F0
MST1 = (1, 9), and F0

MST2 = (1, 17), respectively.
ii. F0

MST0 = (1, 9) vs. F0
MST0 = (1, 5): enlarging the kernel

size in the short-scale branch (scale 0 in Table 1). This was
performed to evaluate the effect of a different ratio between
the short- and large-scales of the MST block compared with
the one adopted in the baseline MS-EEGNet. Specifically,
rMST = 1

2 vs. rMST = 1
4 leading to 500 ms/2 = 250ms =

eight samples at 32Hz, approximated to nine samples to have
odd integer.
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TABLE 1 | Architecture details of MS-EEGNet.

Block Layer name Hyper-parameters Number of trainable parameters

Input K0 = 1 0

ST Conv2D K0
ST = 8, F0

ST = (1, 65), P0
ST = (0, 32) F0

ST [0] ·F0
ST [1] · K0

ST · K0

BatchNorm2D m = 0.99 2 · K0
ST

Depthwise-Conv2D D1
ST = 2, K1

ST = K0
ST · D1

ST ,

F1
ST = (C, 1), kernel max norm=1

F1
ST [0] ·F1

ST [1] · K0
ST · D1

ST

BatchNorm2D m = 0.99 2 · K1
ST

ELU α = 1 0

AvgPool2D Fp
ST = Sp

ST
= (1, 4) 0

Dropout p = 0.25 or p = 0.5 0

MST scale 0 Depthwise-Conv2D D0
MST0 = 1, K0

MST0 = K1
ST · D0

MST0 ,

F0
MST0 = (1, 5), P0

MST0 = (0, 2)

F0
MST0 [0] · F0

MST0 [1] · K1
ST · D0

MST0

Pointwise-Conv2D K1
MST0 = 2, F1

MST0 = (1, 1) F1
MST0 [0] · F1

MST0 [1] · K1
MST0 ·K0

MST0

BatchNorm2D m = 0.99 2 · K1
MST0

ELU α = 1 0

AvgPool2D Fp
MST0 = Sp

MST0 = (1, 8) 0

Dropout p = 0.25 or p = 0.5 0

MST

scale1

Depthwise-Conv2D D0
MST1 = 1, K0

MST1 = K1
ST · D0

MST1 ,

F0
MST1 = (1, 17), P0

MST1 = (0, 8)

F0
MST1 [0] · F0

MST1 [1] · K1
ST · D0

MST1

Pointwise-Conv2D K1
MST1 = 2, F1

MST1 = (1, 1) F1
MST1 [0] · F1

MST1 [1] · K1
MST1 ·K0

MST1

BatchNorm2D m = 0.99 2 · K1
MST1

ELU α = 1 0

AvgPool2D Fp
MST1= Sp

MST1 = (1, 8) 0

Dropout p = 0.25 or p = 0.5 0

FC Concatenate

Flatten

0

Fully-Connected NFC = 2 NFC · (Tp
MST0 ·K1

MST0 + Tp
MST1

·K1
MST1 + 1)

Softmax 0

Each layer is provided with its name, main hyper-parameters and the number of trainable parameters. See sections EEG Decoding via CNNs and The Proposed Convolutional Neural

Network and Its Variants for the meaning of symbols. The total number of trainable parameters was 1,154 when using signals from dataset 1 and 1,210 when using signals from datasets

2 and 3. In all layers, unless otherwise noted stride (S) and padding (P) were set to (1, 1) and (0, 0), respectively.

iii. K1
MST = {1, 8, 16} vs. K1

MST = 2: different number of
feature maps in the pointwise convolutions. In particular,
K1

MST was set to 1 in each branch in order to analyze
whether the learning of a single recombination of the input
feature maps was enough to provide an accurate decoding
performance. In addition, K1

MST was set to 8 in each branch
in order to analyze another compressed representation, while
maintaining the total number of feature maps across the two
different timescales unchanged as in theMST input (i.e., eight
feature maps in each branch, resulting in 16 feature maps
across the two scales, as in the input of the MST block).
Lastly, K1

MST was set to 16 in each branch, corresponding to
a condition where no compressed representation was learned
in either branch.

iv. Deep MST vs. MST: increasing the depth of the MST block.
This was performed to evaluate the effect on the performance
of an increased depth in the MST block (and thus, learning
more non-linear dependencies) while maintaining the same
overall receptive field of the neurons in the temporal domain.
In each branch, we added another depthwise convolutional
layer after the first one. However, in order to maintain
the same receptive field as when using a single depthwise
convolutional layer in the baseline MST block, the kernel

size of each depthwise convolutional layer was halved with
respect to the baseline values, i.e., F0

MST0 = F1
MST0 =

(1, 3) and F0
MST1 = F1

MST1 = (1, 9). After the second
depthwise convolutional layer, the pointwise convolutional
layer was added [F2

MST0 = F2
MST1 = F2

MST = (1, 1)],
and the rest of the block was maintained unchanged as in the
baseline version.

Overall, eight variants were designed by changing a specific
hyper-parameter value of MS-EEGNet while keeping all the
other hyper-parameters as in the baseline MS-EEGNet. These
alternative designs were trained with a within-participant and
within-session strategy (as it is the most common strategy
adopted in the literature) and compared with MS-EEGNet
trained with the same strategy. Lastly, the number of trainable
parameters and training time are reported in Table 2 for each
variant design.

Data and Pre-processing
Dataset 1
The first dataset is BCIAUT-P300, a public benchmark dataset
released for the IFMBE 2019 scientific challenge (available
at https://www.kaggle.com/disbeat/bciaut-p300) (Simões et al.,
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TABLE 2 | Number of trainable parameters, also denoted as model size in the

text, and training time (referred to the WS strategy), also denoted as

computational time, of the baseline MS-EEGNet, MS-EEGNet variants, and SOA

CNNs when using signals from dataset 1 and datasets 2–3.

Algorithm Trainable parameters Training time

(dataset 1/datasets 2–3) (dataset 1/datasets 2–3)

Value 1 Value 1

(%) (ms/epoch) (%)

Baseline MS-EEGNet 1,154/1,210 – 220/45.5 –

MS-EEGNet variants

Nb = 1(large) 1,022/1,082 −11.4/−10.6 195/38.1 −11.4/−16.3

Nb = 1(short) 830/890 −28.1/−26.5 172/38.4 −21.8/−15.6

Nb = 3 1,350/1,402 17.0/15.9 282/50.8 28.2/11.6

F0
MST0 = (1, 9) 1,218/1,274 5.5/5.3 221/46.3 0.5/1.8

K1
MST = 1 1,102/1,162 −4.5/−4.0 224/45.0 1.8/−1.1

K1
MST = 8 1,466/1,498 27.0/23.8 287/46.1 30.5/1.3

K1
MST = 16 1,882/1,882 63.1/55.5 240/45.0 9.0/−1.1

deepMST 1,202/1,258 4.2/4.0 295/47.0 34.1/3.3

SOA CNNs

EEGNet 1,386/1,418 20.1/17.2 186/40.5 −15.5/−11.0

BranchedNet 5,418/7,954 369/557 250/50.3 13.6/10.5

OCLNN 1,650/1,874 43.0/54.9 96.2/22.9 −56.3/−49.7

These values were reported for deep learning-based decoders to provide amore complete

comparison between the proposed CNN and SOA CNNs. For each CNN, between

dataset 1 and datasets 2–3, the different number of parameters resulted from the different

number of EEG channels (C = 8 for dataset 1 and C = 12 for datasets 2–3, see section

Data and Pre-processing) and time samples considered (T = 140 for dataset 1 and

T = 113 for datasets 2–3, see section Data and Pre-processing), while the different

training time resulted from the different number of training examples (1,280 trials and

240 trials for each participant and each session, respectively, for dataset 1 and datasets

2–3, see section Data and Pre-processing). In addition, the percentage difference (1)

of trainable parameters and training time between SOA CNNs or MS-EEGNet variants

(“other” condition) and the baseline MS-EEGNet (“baseline” condition) is reported, i.e.,

100 · (valueother − valuebaseline )/valuebaseline.

2020) consisting of a larger number of examples than other public
benchmarks (Blankertz et al., 2004, 2006) or private (Lawhern
et al., 2018; Farahat et al., 2019; Solon et al., 2019) datasets. Signals
were recorded from 15 participants (all males, age of 22± 5 years,
mean ± standard deviation) with ASD during seven recording
sessions (for a total of 4 months) while testing a P300-based BCI
(Amaral et al., 2018). The paradigm consisted of the participants
paying attention to one of eight objects randomly flashing in a
virtual scene, with P300 stimuli corresponding to the flashing
of the attended object (this was repeated several times for each
different attended object). For each participant and recording
session, 1,600 trials were recorded during the calibration stage
(training set), and 2,838 trials were recorded during the online
stage (test set), on average.

Signals were recorded at 250Hz from eight electrodes: C3, Cz,
C4, CPz, P3, Pz, P4, and POz. The reference was placed at the
right ear and the ground at AFz. These signals were acquired
notch filtered at 50Hz and then pass-band filtered between 2 and
30Hz (Simões et al., 2020). EEG signals were pre-processed as
in previous studies (Amaral et al., 2017; Borra et al., 2020a). In
particular, epochs were selected from −100 to 1,000ms relative
to the event stimulus, and signals were downsampled to 128Hz

to reduce the number of time steps to be processed in the CNN.
Architectures were trained as described in section Training using
the training set of the competition for each session, while the
test set was used to test the algorithms. From each participant-
and session-specific training set, a validation set of 20% of the
total training set was extracted (corresponding to 320 trials) to
perform early stopping, while the remaining percentage of the
total training set (corresponding to 1,280 trials) was used to
optimize the architectures.

Datasets 2 and 3
The second dataset was collected from seven participants (all
males, age 25 ± 8 years) recorded in an auditory oddball
study during a single recording session, and the third dataset
was collected from seven participants (5 males, age 22 ±

0.4 years, different from dataset 2 participants) recorded in a
visual oddball study during a single recording session. All the
participants were healthy volunteers not reporting psychological
or hearing disorders. Both experiments were approved by
the Bioethics Committee of the University of Bologna (file
number 29146, year 2019) and were conducted in a controlled
laboratory environment.

The auditory oddball paradigm consisted of 400 tones
presented to the participants through a speaker, with the standard
and deviant stimuli differing by the frequency of tones (500 and
1,000Hz, respectively). The visual oddball paradigm consisted of
400 stimuli presented to the participants through a bicolor LED
with the standard and deviant stimuli differing by the LED color
(blue and red, respectively). In both paradigms, each stimulus was
reproduced for 56ms followed by a pause of 944ms (inter-stimuli
interval); thus, each trial lasted 1 s. This paradigm was similar to
the one adopted by Justen and Herbert (2018). Furthermore, in
each paradigm, a total number of 325 standard and 75 deviant
stimuli were presented to participants in a randomized order.
Thus, for each participant, a total number of 400 trials were
available, with a class imbalance ratio of 75:325 for the P300 and
non-P300 classes. While listening to the tones or while looking
at the LED, the participants were seated in a comfortable chair
in front of a button with their eyes opened, and they were
instructed to respond to the deviant stimuli by pressing a button
with their right index finger as quickly as possible, minimizing
other movements.

Signals of both datasets 2 and 3 were recorded at 125Hz
using a portable EEG recording system (OpenBCI system, using
Cyton and Daisy Biosensing boards) from 12 electrodes: C3,
Cz, C4, CP5, CP1, CP2, CP6, P3, Pz, P4, PO3, and PO4.
The reference was placed at the right earlobe and the ground
at the left earlobe. The same pre-processing was adopted for
datasets 2 and 3. In particular, signals were band-pass filtered
between 2 and 30Hz with a zero-phase second-order filter, and
epochs were extracted from −100 to 800ms relative to the
stimulus onset. For datasets 2 and 3, the architectures were
trained as described in section Training using a 4-fold cross-
validation scheme. Therefore, in each fold, each participant-
specific dataset was divided into a training (75%) and a test (25%)
set, corresponding to 300 and 100 trials, respectively. Lastly,
a validation set of 20% of the training set (corresponding to
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60 trials) was extracted to perform early stopping, while the
remaining percentage (corresponding to 240 trials) was used to
optimize the architectures.

As described in section EEG Decoding via CNNs, X
(s,r)
i ∈

R
C×T represented the CNN input. From the previous dataset

descriptions, C = 8 for dataset 1 and C = 12 for datasets 2 and 3,
while T = 140 for dataset 1 and T = 113 for datasets 2 and 3.

State-of-the-Art Algorithms
The proposed baseline architecture was compared with other
SOA algorithms, such as the winning algorithm of the
IFMBE 2019 challenge based on EEGNet (Borra et al., 2020a),
BranchedNet (Farahat et al., 2019), and OCLNN (Shan et al.,
2018). The first was a single-branched CNN performing
the temporal convolution in the first layer. The second
one, was a dual-branched CNN exploiting parallel temporal
convolutions but at variance with the architecture proposed here,
performed spatial convolution in the first layer and did not
use optimized convolutions aimed to keep limited the number
of trainable parameters, resulting in a less parsimonious multi-
scale CNN. OCLNN was a CNN performing a mixed spatio-
temporal convolution in the first layer without using optimized
convolutions. To allow for a more complete comparison
between MS-EEGNet and other deep learning-based decoders,
the number of trainable parameters and training time of SOA
CNNs are summarized in Table 2.

In addition to these SOA CNNs, we re-implemented
xDAWN+RG, an ML pipeline for P300 decoding. In particular,
this solution included a combination of xDAWN spatial filtering
(Rivet et al., 2009; Barachant and Congedo, 2014), Riemannian
Geometry (Barachant et al., 2012), L1 feature regularization, and
classification based on an Elastic Net regression.

Details about SOA CNNs and xDAWN+RG can be found in
sections 1 and 2 in Supplementary Materials.

Training
MS-EEGNet was trained with different training strategies.

i. Within-participant and within-session training (WS). For
each participant and session, EEG signals (see section
Data and Pre-processing) were used to train, validate, and
test a participant-specific and session-specific CNN. In
addition, we also trained CNNs using only a fraction of
the participant- and session-specific training set, simulating
practical cases of reduced numbers of available calibration
trials, and investigated how the performance changed; this
is an important issue from the perspective of limiting the
calibration time in practical applications. Reduced training
sets were defined by extracting 15, 30, 45, and 60% of the total
training set in the corresponding session (corresponding to
192, 384, 576, and 768 training trials for dataset 1, and 48,
96, 144, and 192 trials for datasets 2 and 3, maintaining
the class imbalance characterizing each dataset. For each
architecture, 105 (15 participants ∗ 7 sessions per participant)
CNNs were trained for dataset 1, while seven (7 participants
∗ 1 session per participant) CNNs were trained for datasets
2 and 3. The WS strategy (with 100% of training trials)

was adopted also with SOA algorithms to perform post-hoc
hyper-parameter evaluation.

ii. Within-participant and cross-session training (CS). This
training strategy was adopted only for the dataset 1 because
of its multi-session dimension and used in the winning
solution of the authors in the IFMBE 2019 challenge
(Borra et al., 2020a) using the same dataset. For each
participant, an overall training set and an overall validation
set were obtained by considering all the session-specific
training and validation sets belonging to that particular
participant. Then, these overall sets were used to train
and validate a participant-specific CNN incorporating inter-
session variability. It is worth noticing that this participant-
specific CNN was then tested separately over each session-
specific test set (relative to that participant) for consistency
with the test procedure adopted in i). For each architecture,
15 CNNs were trained for dataset 1. This strategy was
adopted also with SOA algorithms.

iii. Leave-one-subject-out training (LOSO). The EEG signals of
one participant (i-th participant) were held back, and the
training and validation sets were obtained by collecting EEG
signals from all the session-specific training and validation
sets of the remaining participants (j-th participants ∀j, j 6=
i). Thus, for each held back participant (∀i) an architecture
was trained and validated with signals extracted from 14
participants for dataset 1 and from six participants for
datasets 2 and 3. The so obtained network was then tested
separately over each session-specific test set of the held back
participant, consistently with the testing procedure in (i) and
(ii). The residual signals of the held back participant not
used in the testing procedure remained unused (i.e., 0% of
the dataset of the held back participant was used to train
and validate the model); that is, LOSO models did not learn
from the examples of the held back participant. This training
strategy led to a CNN incorporating inter-participant and
(in case of dataset 1) inter-session variabilities. For each
architecture, 15 CNNs were trained for dataset 1, while
seven CNNs were trained for datasets 2 and 3. This strategy
was adopted also with SOA algorithms. Lastly, to design
LOSO models incorporating the knowledge from a variable
number of participants, we additionally performed trainings
extracting signals from a random subset of participants, i.e.,
using 10, six, and two participants for dataset 1, and using
four and two participants for datasets 2 and 3. Thus, the
performed LOSO strategy was named “LOSO-M,” where
M is the number of participants used (M = {14, 10, 6, 2}
when using signals from dataset 1, while M = {6, 4, 2} for
datasets 2 and 3). It is worth noticing that the LOSO-14
strategy for dataset 1 and LOSO-6 strategy for datasets 2
and 3 corresponded to the conventional LOSO strategies for
these datasets.

iv. Transfer learning (TL) on single sessions (WS). As in the
WS strategy (point i), for each participant and session, EEG
signals (see section Data and Pre-processing) were used to
train, validate, and test a participant- and session-specific
CNN. Differently from the WS strategy where the trainable
parameters were initialized randomly, in the TL-WS strategy,
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the parameters were initialized from the ones obtained with
LOSO trainings when the specific participant of interest
was held back. Therefore, the knowledge learned in the
LOSO strategy (using training examples sampled from many
participants except the held back participant) was transferred
to the held back participant. Then, a fraction of the session-
specific training set of the held back participant was used as
training set, using the same percentages as in theWS strategy
(point i). In this way, we compared the performance of the
WS and TL-WS strategies to investigate if and to what extent
the TL-WS strategy outperformed the WS strategy with a
reduced number of calibration trials. For each architecture,
105 CNNs were trained for dataset 1, while seven CNNs were
trained for datasets 2 and 3.

The transfer learning strategy reflects a practical situation in
which a new user approaches the BCI system in a new session,
and a calibration phase, as short as possible, is needed to obtain
an accurate participant-specific decoder. Therefore, a pre-trained
model that incorporates both inter-participant and inter-session
variabilities as obtained with the LOSO strategy could be a better
initialization point with respect to the random one (as used in
the WS training strategy), leading to performance improvement
especially when using only a small number of training examples
of a new user in a new recording session.

The adopted training strategies had a different definition of
the training set. However, in all cases, CNNs were tested on the
same participant-specific and session-specific test sets, allowing a
fair comparison across different training strategies. In this study,
the adopted metric to quantify the performance for the P300
decoding task at the trial level was the area under the ROC
curve (AUC), as done previously (Lawhern et al., 2018), and was
computed on each participant- and session-specific test set.

EEG signals of the training, validation, and test sets were
standardized by computing the mean and variance on the
training set. Regarding the TL-WS strategy, the first and second
moments were computed on the training set used to train the
pre-trained models. Except for the TL-WS strategy in which
the trainable parameters were initialized from the pre-trained
models, in the other training approaches, the weights were
randomly initialized by adopting a Xavier uniform initialization
scheme (Glorot and Bengio, 2010), and biases were initialized
to zero.

The optimization was performed by minimizing the negative
log likelihood or, equivalently, the cross-entropy between the
empirical probability distribution defined by the training labels
and the probability distribution defined by the model. Adaptive
moment estimation (Adam) (Kingma and Ba, 2014) was used
as an optimizer with β1 = 0.9, β2 = 0.999 for computing the
running averages of the gradient and its square, and ε = 10−8

to improve numerical stability. The learning rate was set to lr =
10−3for the WS, CS, and LOSO strategies, while for the TL-WS
strategy the optimizer state was the same as the one of the pre-
trained models. To address class imbalance, a single mini-batch
of data was composed by a proportion of 50–50% of the two
classes, randomly selecting the trials within the dataset as done
in Borra et al. (2020a). The mini-batch size and the maximum

number of epochs were set to 64 and 500, respectively, and early
stopping was performed by interrupting the optimization when
validation loss did not decrease for 50 consecutive epochs.

In addition to early stopping, which acts as a regularizer,
other regularizer mechanisms were integrated into MS-EEGNet
as mentioned in section MS-EEGNet, comprising batch
normalization (Ioffe and Szegedy, 2015) with a momentum term
of m = 0.99 and ε = 1e − 3 for numerical stability, dropout
(Srivastava et al., 2014) with a dropout probability of 0.5 for WS
and TL-WS trainings and 0.25 for CS and LOSO trainings, and
kernel max-norm constraint.

Explaining P300 Decision: Gradient-Based
Representations
The MS-EEGNet decision was explained using the saliency
maps and post-hoc (i.e., obtained once the CNN training has
ended) gradient-based representations proposed by Simonyan
et al. (2013) to quantify the importance of neurons belonging
to a target layer of interest (commonly the input layer) for
a specific class. These representations are commonly used to
explain CNN decisions when decoding EEG (Farahat et al., 2019;
Borra et al., 2020c; Vahid et al., 2020) and offer the advantage of
requiring the sole computation of backpropagation. Of course,
other more advanced techniques, such as layer-wise relevance
propagation (LRP), can represent a valid alternative but they
introduce many factors that affect representations, such as the
propagation rule (e.g., αβ rule) and propagation parameters (e.g.,
α and β) (Montavon et al., 2018), whose setting would require
preliminary deep investigations. Hence, we preferred to adopt the
saliency maps. Here, these were computed by backpropagating
the gradient of the P300 class score (i.e., the output related to the
P300 neuron, immediately before Softmax activation) back to the
input layer (i.e., the neurons corresponding to the input spatio-
temporal samples), when P300 trials belonging to the test set
were fed as input to the CNN. Thus, each resulting saliency map
was a spatio-temporal representation associated with a test trial,
quantifying how much each spatio-temporal input sample affects
the P300 class score, i.e., how much the P300 class score changes
with respect to a small change in the input EEG signals. For each
dataset, these representations were computed using MS-EEGNet
trained with the LOSO strategy, as this strategy was more likely
to enhance input samples relevant to the decoding task compared
with WS/CS trainings (Farahat et al., 2019). Indeed, during
LOSO trainings, the models were fed with signals recorded from
multiple participants and multiple recording sessions. Therefore,
the neural networks were more prone to learn optimal inter-
participant and inter-session features to generalize properly.
Conversely, during WS/CS trainings, the neural networks were
more prone to learn optimal session-specific/participant-specific
features. Thus, representations associated with the LOSOmodels
were more likely to visualize general task-relevant spatio-
temporal features, while those related to the WS/CS models were
more likely to include also session-specific/participant-specific
and task-irrelevant features.

The saliency maps were computed for each deviant trial
(containing the P300 response) belonging to each participant-
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TABLE 3 | AUC (% mean ± SEM) obtained with MS-EEGNet and the re-implemented SOA algorithms adopting the WS, CS, and LOSO strategies.

Algorithm Dataset 1 Dataset 2 Dataset 3

WS CS LOSO WS LOSO WS LOSO

MS-EEGNet 83.52 ± 1.67 86.38 ± 1.60 75.40 ± 1.81 89.60 ± 1.73 74.82 ± 3.04 92.63 ± 1.77 86.09 ± 1.88

EEGNet 82.53 ± 1.83

**

85.88 ± 1.63

**

75.76 ± 1.71 87.98 ± 2.65 75.15 ± 3.01 91.22 ± 1.92

*

83.30 ± 2.53

BranchedNet 77.43 ± 1.65

***

84.20 ± 1.82

***

76.03 ± 1.86 83.34 ± 2.12

***

72.39 ± 2.89 91.60 ± 1.53 84.84 ± 1.46

OCLNN 75.95 ± 1.64

***

81.28 ± 1.65

***

71.40 ± 1.42

**

79.92 ± 2.78

***

75.21 ± 3.14 89.01 ± 2.03

***

83.73 ± 1.59

xDAWN+RG 79.17 ± 1.43

***

80.89 ± 1.32

***

67.05 ± 1.71

**

82.63 ± 2.07

***

73.83 ± 2.71 90.03 ± 1.87

*

82.40 ± 2.77

The results of the performed Wilcoxon signed-rank tests (see section Statistics-i) are also reported (*p < 0.05, **p< 0.01, ***p < 0.001, corrected for multiple tests). Within each column,

the bold characters are used to denote the best performance among the tested algorithms.

and session-specific test set. Then, these maps were averaged
across trials and folds (only for datasets 2 and 3), obtaining an
average participant-specific and session-specific representation,
named spatio-temporal representation. Then, by averaging spatio-
temporal representations across sessions (seven sessions for
dataset 1 and a session for datasets 2 and 3), a participant-
specific representation was computed normalized between
[−1, 1], and finally averaged across the participants, resulting
in a grand average (GA) spatio-temporal representation. This
representation could be useful to study similarities between
the temporal course of gradients related to more relevant
electrodes and the grand average ERPs of those specific
electrodes. Additionally, the absolute value of each saliency
map was also computed, and the absolute saliency maps were
then averaged across trials, folds (only for datasets 2 and 3),
and either the spatial or the temporal dimension to obtain
an absolute temporal or spatial representation, respectively,
for each participant and session. Then, by averaging the
absolute temporal/spatial representation across sessions, a
participant-specific representation was computed, normalized
between [0, 1], and finally averaged across the participants,
resulting in a GA absolute temporal/spatial representation. These
absolute representations allowed the evaluation of more class-
discriminative time samples and electrodes for the P300 class.

Statistics
Before performing the statistical analyses, AUCs were computed
for each participant- and session-specific test set and then
averaged across sessions (seven sessions for dataset 1 and
1 session for datasets 2 and 3), in order to compare
the performance metric at the level of participant. The
following statistical comparisons were performed on the
performance metric.

i. Pairwise comparisons between MS-EEGNet and the SOA
algorithms (EEGNet, BranchedNet, OCLNN, xDAWN+RG)
trained with the WS, CS, and LOSO strategies. AUCs were
compared between the contrasted conditions separately for
each dataset.

ii. Pairwise comparisons between the baseline MS-EEGNet and
each of its variants, trained with the WS strategy. The AUCs
were merged together across different datasets and compared
between the contrasted conditions using CNNs trained
with the WS strategy; a similar procedure was adopted in
Schirrmeister et al. (2017) and Borra et al. (2020c) in order to
evaluate the overall effect of the hyper-parameters of interest
with the post-hoc evaluation.

iii. Pairwise comparisons between MS-EEGNet trained with the
WS and TL-WS strategies, for each percentage of training
examples of the new user and for each number of participants
(M) from whom the knowledge was transferred to the new
user (see section Training-iv). This test was performed in
order to evaluate the effect of the TL-WS strategy on the
performance as a function of the percentage of training
examples and M. In these pairwise comparisons, the AUCs
were compared between the contrasted conditions separately
for each dataset.

The statistical analysis performed was the same as that used in
Schirrmeister et al. (2017) and Borra et al. (2020c). In particular,
Wilcoxon signed-rank tests were used to check for statistically
significant differences between the contrasted conditions. To
correct for multiple tests, a false discovery rate correction at
α = 0.05 using the Benjamini–Hochberg procedure (Benjamini
and Hochberg, 1995) was applied.

RESULTS

Performance
MS-EEGNet and State-of-the-Art Algorithms
Table 3 reports the AUCs at the participant level (mean ±

standard error of the mean, SEM) obtained with MS-EEGNet
and with SOA algorithms using WS, CS, and LOSO strategies,
together with the results of the performed statistical tests.

MS-EEGNet scored an AUC of 83.52 ± 1.67%, 89.6 ±

1.73%, and 92.63 ± 1.77% when using signals from datasets 1–3
adopting theWS strategy. The proposed architecture significantly
outperformed all the tested SOA algorithms when using dataset
1, and significantly outperformed BranchedNet, OCLNN, and

Frontiers in Human Neuroscience | www.frontiersin.org 11 July 2021 | Volume 15 | Article 655840

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Borra et al. Lightweight MS-CNN for P300 Decoding

FIGURE 2 | Impact of alternative design choices of MS-EEGNet on the performance metric. The figure reports the difference between the AUC scored with the variant

and the baseline design (i.e., 1AUC = AUCvariant − AUCbaseline) for each condition of the hyper-parameter (HP) tested, reported on the x-axis as “HPvariant − HPbaseline.”

The height of each gray bar represents the mean value across the participants of 1AUC, while the error bar (black lines) represents the standard error of the mean. The

results of Wilcoxon signed-rank tests (see section Statistics-ii) are also reported (*p < 0.05, ** p < 0.01, *** p < 0.001, corrected for multiple tests) on top of the figure.

xDAWN+RG with dataset 2, and EEGNet, OCLNN, and
xDAWN+RG with dataset 3. In addition, adopting the CS
strategy, MS-EEGNet confirmed its decoding improvement
with respect to the SOA, scoring an AUC of 86.38 ± 1.6%,
outperforming significantly all the SOA algorithms. Lastly,
adopting the LOSO strategy, MS-EEGNet scored an AUC of 75.4
± 1.81%, 74.82 ± 3.04%, and 86.09 ± 1.88% when using signals
from datasets 1–3. In this strategy, the proposed solution did
not perform significantly better than the other SOA solutions
(see section Performance of MS-EEGNet and Comparison With
State-of-the-Art Algorithms) except for dataset 1 where MS-
EEGNet outperformed OCLNN and xDAWN+RG.

Design Choices of MS-EEGNet
In the post-hoc hyper-parameter evaluation, we investigated
the effect of particular design aspects of MS-EEGNet on the
decoding performance, by statistically evaluating the difference
in the AUCs between each variant MS-EEGNet and baseline MS-
EEGNet (1AUC = AUCvariant − AUCbaseline). The results are
reported in Figure 2. In particular, the adoption ofNb = 1(large),
Nb = 1(short), K1

MST = 8, K1
MST = 16 significantly worsened

the performance, with an average drop in performance of 1.28,
3.46, 3.51, and 1.72%.

Variable Number of Training Examples:

Within-Session and Transfer Learning Strategies
The performance obtained by MS-EEGNet in the WS strategy as
a function of the percentage of training examples (reported on
the x-axis) is reported in Figures 3A–C (white bars) for datasets
1–3. In all the datasets, a percentage of training trials of 30–45%
was sufficient to obtain performance only a few points below that
obtained with the entire training set, and in particular close or
above 80%.

In addition, the performance obtained by MS-EEGNet in
the TL-WS strategy is also reported as a function of: (i) the
number of participants (M) adopted to design the LOSO-M
model (gray and hatched bars); and (ii) the percentage of training
examples. Lastly, the AUCdifference between the TL-WS strategy
and the WS strategy using the same percentage of training
examples is shown in the lower panels of Figures 3A–C (1AUC =

AUCTL−WS − AUCWS).
In the case of dataset 1, the TL-WS strategy provided

higher performance compared with the WS strategy (see the
distributions of 1AUC reported in Figure 3) for each percentage
of training examples ∀M. This occurred also in the case of dataset
3 except for a couple of conditions (M = 2 using 30 and 60%
of the training examples of the held back participant). Using
dataset 2, TL was found beneficial only with the lowest number
of training examples (i.e., 15%) ∀M and using 60% of training
examples withM = 4.

Explaining P300 Decision: Gradient-Based
Representations
In this section, we analyze the features of the input variables
that most strongly supported the P300 classification decision
in MS-EEGNet.

Spatio-Temporal Representations
Figures 4A–C display the grand average spatio-temporal
representation of MS-EEGNet trained with the LOSO strategy
using signals from datasets 1–3. From these figures, the more
class-discriminative electrodes can be identified, i.e., P4, Pz,
and CP1 for datasets 1–3, respectively. The grand average ERPs
for the standard and deviant stimuli of these representative
electrodes are displayed in Figures 4D–F.
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FIGURE 3 | AUC obtained with MS-EEGNet trained with the WS and TL-WS strategies for datasets 1–3 (panels A–C, respectively). Top plot in each panel: The AUC

obtained in WS (white bars) is reported as a function of the percentage of training examples (reported on the x-axis), while the AUC obtained in TL-WS is reported also

as a function of the number of participants (M) used to optimize the LOSO-M models (gray and hatched bars). The height of each bar represents the mean value of

the performance metric across the participants, while the error bar (black lines) represents the standard error of the mean. Bottom plot in each panel: The AUC

difference between the TL-WS and WS strategies (i.e., 1AUC = AUCTL−WS − AUCWS) using the same percentage of training examples is reported using markers, and

a red line denotes the mean value. For each percentage, a Wilcoxon signed-rank test was performed (see section Statistics-iii) to compare TL-WS vs. WS strategy,

and the statistical significance is reported (*p < 0.05, **p < 0.01, ***p < 0.001, corrected for multiple tests) on top of each plot.
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FIGURE 4 | Grand average spatio-temporal representations. The top panels (A–C) show the grand average spatio-temporal representation of MS-EEGNet trained

with the LOSO strategy using signals from datasets 1–3. Positive gradients are shown in red, while negative gradients are shown in blue. The bottom panels (D–F)

show the grand average ERP for the deviant (black lines) and standard (dashed black lines) stimuli associated with the most relevant electrode (the one with the

largest gradient values) for datasets 1–3.

In the case of dataset 1, P4 appeared as the most important
electrode, in particular from 300 to 550ms. Three main peaks
can be identified: two positives at 350 and 510ms, and a negative
at ∼410ms (Figure 4A). These peaks correspond to the peaks in
the grand average ERP of the deviant stimulus at approximately
the same times (Figure 4D). In the cases of datasets 2 and 3, the
most important sites were Pz from 300 to 400ms and CP1 from
350 to 400ms, respectively. In these cases, a single positive peak
occurred in the spatio-temporal maps at about 350 and 390ms,
respectively (Figures 4B,C) and was associated with the peak in
the grand average ERP of the deviant stimuli at approximately the
same time (Figures 4E,F).

In the following sections, the interpretation of the relevant
input features driving the MS-EEGNet P300 decision is analyzed
separately in the temporal and spatial domains.

Absolute Temporal Representations
Figure 5 displays the grand average absolute temporal
representations of MS-EEGNet trained with the LOSO
strategy using signals from datasets 1–3 (Figures 5A–C).
These patterns highlight, by means of local and global peaks,
the more class-discriminative time samples for the P300
class across all spatial sites. These waveforms confirm the
highest importance of time samples approximately between
300 and 550ms in all the cases, with the peak at about 410,
350, and 390ms for datasets 1–3, in agreement with the
results shown in Figure 4. Interestingly, these waveforms
synthetically highlight how the network learns different temporal

profiles of sample relevance depending on the dataset, e.g.,
more regular waveforms in the cases of datasets 2 and 3 (but
more spiking in the case of dataset 3) and more irregular
waveforms in the case of dataset 1 (with several local maxima,
two in particular just next to the global one, i.e., at 350 and
510ms). These differences may be linked to the different
sensory modalities involved (visual vs. auditory), different
participants (healthy vs. pathological), or different paradigms
used to elicit P300 (oddball paradigm vs. flashing the object
under fixation).

Absolute Spatial Representations
Besides the investigation of the more P300-discriminative
temporal features, it is also interesting to evidence themore P300-
discriminative spatial features. To this aim, Figure 6 shows the
grand average absolute spatial representations of MS-EEGNet
trained with the LOSO strategy using signals from datasets 1–
3 (Figures 6A–C), emphasizing the different spatial profiles of
sample relevance.

The three more class-discriminative electrode sites across
all the time samples were (in increasing order of relevance)
Pz, P3, and P4 when the CNN was trained on dataset 1; C3,
Cz, and Pz when the CNN was trained on dataset 2; and
Cz, CP2, and CP1 when the CNN was trained on dataset 3.
Again, these differences can be associated with differences in
sensory modality, participants, and paradigms adopted across the
three datasets.
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FIGURE 5 | Grand average absolute temporal representations of MS-EEGNet trained with the LOSO strategy using signals from datasets 1–3 (A–C); the mean value

(black line) ± standard deviation (gray shaded areas) across participants are represented.

Progressive Changes in Spatio-Temporal Sample

Relevance While Increasing Training Examples
Lastly, the absolute temporal and spatial representations
were also used to analyze the progressive change in the
importance of the spatio-temporal samples while increasing the
percentage of training examples included when training MS-
EEGNet with the TL-WS and WS strategies. For the TL-WS
condition, only CNNs initialized from LOSO models with the
largest number of participants were considered. The absolute

temporal and spatial representations are reported in Figure 7,
in case of a representative participant and session belonging
to dataset 1.

In particular, Figures 7A,B report the absolute temporal
and spatial representations as obtained in the LOSO strategy.
Figures 7C–G show the effects of the TL-WS strategy, as the
percentage of training examples from the held back participant
increased. While transferring the knowledge from the other
participants and sessions, the CNN inherited the importance
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FIGURE 6 | Grand average absolute spatial representations of MS-EEGNet trained with the LOSO strategy using signals from datasets 1–3 (A–C).

profile from the pre-trained condition. Thus, for each percentage
of training examples (Figures 7C–G), the temporal and spatial
profiles did not change substantially their shape from the LOSO
condition, since the importance in the temporal and spatial
domains was already learned in the LOSO training. Nevertheless,
the amplitude increased both in the temporal and spatial
domains while increasing the percentage of training examples,
indicating progressive accumulation of the importance.
Conversely, adopting the WS strategy (Figures 7H–L), the
CNN was randomly initialized and, therefore, had to learn
from scratch the more class-discriminative spatio-temporal
samples. Thus, the temporal and spatial profiles changed more
with respect to TL-WS as the percentage of training examples
increased. In particular, temporal profiles changed from a nearly
flat profile (e.g., 15% in Figure 7H) to profiles more focused
on time samples in the range of 300–550ms (e.g., 45, 60% in
Figure 7H) peaking at approximately 410ms. Furthermore,
the spatial profiles changed from a diffused distribution
(Figure 7I) to distributions more focused on parietal electrodes
(in particular P3, Pz, and P4 in Figures 7J–L). However, the
absolute gradients resulted lower than in the TL-WS condition,

in particular in correspondence of the more class-discriminative
temporal (i.e., 350, 410, 510ms) and spatial (P3, Pz,
and P4) samples.

DISCUSSION

In this study, a lightweight multi-scale CNN design for EEG
decoding named MS-EEGNet was proposed and applied to
decode the P300 event from three different datasets. This
CNN merges the multi-scale temporal learning proposed by
Farahat et al. (2019) with lightweight characteristics originally
proposed in EEGNet (Lawhern et al., 2018), operating even a
further decrease in the number of trainable parameters while
learning multi-scale features. MS-EEGNet was compared with
many SOA algorithms, such as CNNs (EEGNet, BranchedNet,
OCLNN) and a traditional ML pipeline (xDAWN+RG). To
better analyze the multi-scale feature learning as operated
by MS-EEGNet, we performed a post-hoc analysis on the
hyper-parameters. In addition, MS-EEGNet was extensively
evaluated under four training conditions, each one reflecting
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FIGURE 7 | Grand average temporal and spatial absolute representations of MS-EEGNet trained on dataset 1 for a representative participant and session, adopting

the LOSO, TL-WS, and WS strategies. In particular, the representations obtained using the LOSO strategy in the temporal and spatial domains are reported in (A,B),

respectively. The representations obtained using the TL-WS strategy in the temporal and spatial domains are reported in (C) (colored lines) and (D–G), as the

percentage of training examples of the new participant increased (15, 30, 45, 60%, from D–G). The representations obtained using the WS strategy in the temporal

and spatial domains are reported in (H) (colored lines) and (I–L), as the percentage of training examples of the participant increased (15, 30, 45, 60%, from I–L). Note

that in order to maintain the same scale across the strategies in the spatial absolute representations, in (D–G), the maximum gradient value represented (2.0e−1) was

below the real maximum gradient value (3.3e−1), saturating the value in particular around P4.

a different practical scenario: (i) using participant-specific
signals of single recording sessions (WS); (ii) using participant-
specific signals of multiple recording sessions (CS); (iii) using
signals from the other participants (LOSO); and (iv) using
a fraction of participant-specific signals from a pre-trained
cross-participant CNN (TL-WS). Lastly, we exploited the
saliency maps to obtain representations aimed to explain the
MS-EEGNet decision by visualizing the relevant samples in

the input domain. Both the proposed architecture and the
performed analyses represent significant expansion compared
with the previous study (Borra et al., 2020a), limited to the
application of a design based on EEGNet to solve the P300 task
proposed by the IFMBE 2019 scientific challenge (corresponding
to dataset 1 here). In the following, the performance of
MS-EEGNet and the results of the performed analyses are
critically discussed.
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Performance of MS-EEGNet and
Comparison With State-of-the-Art
Algorithms
The performance of MS-EEGNet using the WS strategy was
above 80% for all the datasets, reaching higher values for datasets
2 and 3 compared with dataset 1 (Table 3). This difference
could depend on several factors, such as different paradigms,
stimuli, and populations (ASD vs. healthy), possibly leading to
different P300 responses, e.g., with lower or higher amplitude.
Regarding this, Figures 4D–F show that the P300 response to the
deviant stimulus in dataset 1 was indeed characterized by a lower
amplitude, perhaps increasing the difficulty in discriminating
between standard/deviant stimuli. Other contributing factors
could be the lower proportion between training and test
examples, and the lower number of electrodes in dataset 1 vs.
datasets 2 and 3. It is worth noticing that this same difference
in the WS performance across the datasets was notable in the
other algorithms, too. Using the CS strategy, the performance
improved compared with the WS strategy for all the algorithms,
and this result is in line with Simões et al. (2020). When
comparing MS-EEGNet to the other algorithms, the design
exhibited the highest performance on each dataset, adopting the
WS and CS strategies. Interestingly, among the tested CNNs,
OCLNN (which uses a mixed spatio-temporal convolution)
and BranchedNet (which performs a spatial convolution first)
performed generally lower thanMS-EEGNet and EEGNet (which
perform temporal convolution first). This is in line with Simões
et al. (2020), where the previous design adapted from EEGNet
outperformed significantly a CNN design inspired by Manor
and Geva (2015) that used a first spatial convolutional layer.
Therefore, these results suggest that a CNN design trained on
participant-specific signals and based on a first temporal filtering
of EEG signals leads to higher P300 decoding performance than
other solutions that use first mixed spatio-temporal or first spatial
filtering of the input signals. Hence, higher performance could
be achieved learning temporal features directly from raw EEG
signals (exploiting useful raw temporal information related to
the P300 event) instead from signals with a higher level of
abstraction. Overall, among the tested SOA CNNs, EEGNet
is the one exhibiting the closest performance to MS-EEGNet;
and this can be explained by the derivation of MS-EEGNet
from EEGNet with the addition of multi-scale temporal feature
learning and compressed representation learning. However, the
results denote that the changes included in MS-EEGNet can
significantly improve the high performance already achieved by
EEGNet, especially using session-specific (WS) and participant-
specific (CS) input distributions, see datasets 1 (p = 2e−3
and p = 3e−3 with the WS and CS strategies, respectively)
and 3 (p = 4e−2) in Table 3, using a lower number of
trainable parameters.

As expected, adopting the LOSO strategy caused an overall
drop of the performance metric across all the tested approaches,
with respect to the WS and CS strategies; and the different
approaches generally provided similar performance (MS-
EEGNet only performed significantly better than xDAWN+RG
and OCLNN in dataset 1).

Hence, overall, MS-EEGNet performed better than the other
SOA algorithms in the WS and CS strategies and behaved
similarly with the other SOA algorithms in the LOSO strategy.
This becomes more relevant considering that MS-EEGNet is the
lightest CNN among the tested ones, as EEGNet, BranchedNet,
andOCLNN introducedmore trainable parameters (seeTable 2).
Indeed, this is particularly important, as in practice it is
common to deal with small EEG datasets. Thus, keeping
limited the number of trainable parameters is crucial when
designing CNNs for EEG decoding in order to avoid overfitting.
Likely, the lightweight design of MS-EEGNet may explain the
absence of higher performance in the LOSO strategy due to
the peculiarities of the LOSO training. In this case, class-
discriminative features are learned from input distributions with
very large variability, involving different participants and possibly
different sessions (e.g., with dataset 1). Thus, the CNN, besides
needing more training examples, may need more capacity (i.e.,
more layers/more parameters) to solve the task with higher
performance. Considering that the CNN is the lightest among the
tested ones (seeTable 2), obtaining performance similar with that
of the other CNNs should not be surprising (and rather can be
still considered a satisfactory result). In the LOSO strategy, MS-
EEGNet significantly outperformed the traditional ML approach
only for dataset 1. This may indicate that in the LOSO strategy
MS-EEGNet can learn more relevant cross-participant features,
leading to significant higher performance, than an ML pipeline
when a larger dataset is used, as in the case of dataset 1. Lastly,
besides performance and parameters to fit, considerations about
the training time are relevant for practical usage. The multi-scale
SOACNN (BranchedNet) was slower to train with respect toMS-
EEGNet, while single-scale SOA CNNs (EEGNet and OCLNN)
were faster to train. Overall, compared with SOA CNNs, MS-
EEGNet represented a good compromise between performance,
model size and computational time.

Performance of MS-EEGNet: post-hoc
Hyper-Parameter Evaluation
We performed a post-hoc hyper-parameter evaluation of eight
variant design choices of MS-EEGNet by varying four different
hyper-parameters of the multi-scale temporal block (Figure 2).
Using a single-scale variant (Nb = 1) that includes only the
large or the short scale, a reduction in trainable parameters
and in training time was observed with respect to the baseline
MS-EEGNet (see Table 2). At the same time, the performance
significantly worsened in both cases, indicating the benefit of
the multi-scale temporal feature learning with respect to single-
scale feature learning for P300 decoding, at the expense of an
increased number of trainable parameters and computational
time. In addition, the different impact on the performance
observed in the design Nb = 1 (large) and Nb = 1 (short)
suggests that the temporal features learned in the large-scale
branch were more class-discriminative. Interestingly, using an
additional intermediate timescale (three-branched variant Nb =

3), a non-significant difference in performance was observed
compared with the baseline MS-EEGNet, while more parameters
and training time were required (see Table 2). These results
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about the number of branches of MS-EEGNet suggest that the
dual-branched design represented good compromise between
performance, model size, and training time.

Furthermore, alternative ratio rMST = 1
2 between the two

timescales obtained with F0
MST0 = (1, 9) (corresponding to

learning summaries of about 500 and 250ms), resulted in a
small, not significant (p = 0.06) increase in performance with
respect to the baseline MS-EEGNet (rMST = 1

4 ), requiring
few more parameters and training time. In addition, variants
learning more feature maps (K1

MST = 8 and K1
MST =

16), with respect to the compressed representation exploited
in the baseline MS-EEGNet (K1

MST = 2) not only required
more parameters to fit and were slower (see Table 2) but
worsened the performance significantly. This suggests that
learning compressed representations could be beneficial in
terms of performance, model size, and training time for P300
decoding. Remarkably, the variant architecture including the
most extreme compressed representation (K1

MST = 1), i.e.,
learning only a feature map for each timescale, scored similar
performance as the baseline MS-EEGNet while lightly reducing
the model size and requiring the same training time (see
Table 2), suggesting that future architectures could also exploit
this design to further reduce the model size without hampering
the performance. Lastly, increasing the depth of the MST block
did not provide any significant improvement in performance,
introduced more parameters to fit, and required more training
time (seeTable 2). Thus, these last results suggest that a shallower
and lightweight MST design, as provided in the baseline MS-
EEGNet, is preferable for P300 decoding.

Performance of MS-EEGNet: Transfer
Learning Strategy and Variable Number of
Training Trials
MS-EEGNet was capable to deal with a reduced number
of training trials when trained from scratch (WS), although
not at the smallest percentage of training trials (Figure 3).
The performance increased in TL-WS. Indeed, transferring
knowledge using the smallest percentage of training examples
of the held back participant (i.e., 15%) resulted in a beneficial
effect, compared with WS across all the datasets and regardless
of the number of participants from whom the knowledge
was transferred (Figure 3). This beneficial effect of the TL-WS
strategy was also found when using more training examples
(30, 45, and 60%) of the held back participant on datasets
1 and 3. As expected, the worst performance was obtained
when transferring knowledge from the LOSO models trained
on the smallest subset of participants (M = 2) for all
datasets and percentages. However, this condition produced a
significant increase in performance compared with randomly
initialized models especially when using a small number of
signals belonging to the new user (i.e., 15%). Therefore, pre-
trained models do not necessarily need to be optimized on a
large set of participants in order to significantly outperform
randomly initialized models, especially when using a small
amount of data during transfer learning (see also section 3 in

Supplementary Materials for comparison between TL-WS and
WS with 100% of training trials).

Overall, these results suggest that the proposed approach
could be used to accurately decode the P300 event even with
a reduced number of standard/deviant stimuli presented to the
user during the calibration stage.

Explaining P300 Decision
The proposed approach achieved high performance,
outperforming the SOA algorithms. As stated by Montavon et al.
(2018), in practice it is also crucial to verify that the decoding
performance results from a proper problem representation and
not from the exploitation of artifacts in the input data. Therefore,
in this study, we explained the MS-EEGNet decision for P300
decoding via the saliency maps, providing GA spatio-temporal,
GA absolute temporal, and GA absolute spatial representations
of the relevance of the input samples.

The GA spatio-temporal representations of MS-EEGNet
(Figures 4A–C) evidenced higher values (both positive and
negative) of the gradients, corresponding to more class-
discriminative input samples, within time intervals (roughly
between 300 and 550ms) matching the P300 temporal
occurrence for all the datasets. The positive/negative peaks
in these gradient patterns corresponded to peaks in the GA
ERPs of the deviant stimulus (Figures 4D–F). Indicating with
i and j are the row and column indices, respectively; and the
positive and negative gradients in the (i, j) location shown in
Figures 4A–C represent the direction in which change in the (i,j)
input feature increased the P300 class score and, consequently,
the CNN decision toward the P300 class. Thus, for example,
analyzing the gradients related to P4 obtained from dataset 1
(Figure 4A), two positive peaks and a negative peak were found.
As the P4 input signal of a deviant trial increased its value at
the two positive peaks (at about 350 and 510ms), the deviant
condition differed more than the standard condition, resulting
in the deviant class being easier to distinguish and providing a
higher score to it. Therefore, these peaks in the deviant GA ERP
were associated with positive gradient peaks. Conversely, as the
P4 input signal of a deviant trial reduced its value at the local
minimum (at ∼410ms), the negative peak resulted more distant
from the standard condition, leading to a higher score for the
deviant class (negative gradient peak). This consideration can
be extended to datasets 2 and 3, by analyzing the Pz and CP1
electrodes. Therefore, as already obtained in Farahat et al. (2019),
higher differences in the ERP between deviant and standard
stimuli are reflected onto the saliency maps by means of positive
and negative gradients.

When computing the absolute value of the saliency maps, the
absolute gradient at the spatio-temporal sample (i,j) reflects how
much a change in this sample affects the P300 class score. We
analyzed the absolute saliency maps separately in the time and
spatial domains (Figures 5, 6) in order to evidence the more
discriminative temporal samples and electrodes independently
on the direction (positive or negative) they contributed to
the decoding result. The GA temporal absolute profile for
each dataset peaked approximately in correspondence with
the peak of the P300 response. Interestingly, the absolute
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temporal representations exhibit different patterns for the three
datasets, evidencing that they are able to detect differences
embedded in the P300 response across the three datasets.
Lastly, the GA absolute spatial distributions represented in a
topological map allowed a direct analysis of the more P300
discriminative electrodes of MS-EEGNet. These were mainly
distributed in the parietal and centro-parietal areas. This may
provide practical hints to reduce the number of electrodes
in the design of P300-BCIs. Overall, the various gradient-
based representations (Figures 4–6) matched the P300 spatio-
temporal distribution, confirming that MS-EEGNet was able
to capture meaningful task-related features, without exploiting
artifactual/noisy input sources.

Interestingly, using a representative example, we show that
while transferring knowledge the importance of temporal and
spatial samples gradually increased from the LOSO condition
(Figures 7A,B) as the percentage of training examples increased.
In particular, it appears that the more task-relevant temporal
and spatial samples were already learned in the LOSO strategy.
However, during transfer learning (Figures 7C–G), the LOSO
temporal and spatial profiles (template profiles) were modeled
on the new participant- and session-specific training distribution,
giving progressively more importance to particular temporal
intervals/electrode sites starting from the template profiles. The
availability of these template profiles allowed rapid learning of the
relevant participant-specific and session-specific input samples
(i.e., needing a low number of training examples of the new
participant). Conversely, when training CNNs from scratch with
theWS strategy, the profile distribution rapidly changed its shape
both in the temporal (Figure 7H) and spatial (Figures 7I–L)
domains but reached lower importance values compared with
the TL-WS strategy. When transferring knowledge, the profile
was more focused on interval 300–550ms with three distinct
main peaks and on sites P4 > P3 > Pz already at the lowest
percentage (15%, Figures 7C,D); while at the same percentage,
theWS strategy was characterized bymore flat and homogeneous
distributions (Figures 7H,I). These considerations could explain
the performance improvement obtained in the TL-WS strategy
(Figure 3): the parameters learned using the LOSO strategy
overall represented a better initialization point in the parameter
space compared with a random one.

CONCLUDING REMARKS

In conclusion, we wish to stress that this study aims to contribute
to uncovering the enormous potentialities of deep learning
via CNNs for EEG decoding and to their exploitation in
practice adopting different training strategies, reflecting different
scenarios. The multi-scale design was the most lightweight and
at the same time outperformed many SOA algorithms when
using three different P300 datasets, indicating that care has to
be taken to design CNNs for EEG decoding, keeping limited
the parameters to fit, especially when handling small datasets
(not as large as the ones adopted in the computer vision field,
e.g., > 100K of examples). In addition, the hyper-parameter
post-hoc analysis confirmed that the innovative aspects of the
architecture, i.e., the design of a lightweight multi-scale temporal

block implemented via separable convolutions and the use of
compressed representation learning were beneficial. Crucially,
the capability of MS-EEGNet to transfer knowledge with high
performance even with a small number of training examples
could be highly useful in practice to reduce the calibration time
of P300-based BCIs on a new user.

Saliency maps confirmed their utility to explain the neural
network decision in P300 decoding tasks; the derived spatial
and temporal representations resulted to match the P300
spatio-temporal distribution. However, the utility of these
representations is not limited to provide an additional validation
of the algorithm. Indeed, the CNN ability to learn automatically
the most meaningful features to perform classification gives
the possibility to use these algorithms as data-driven EEG
analysis tools. Then, the use of the saliency maps (or
similar representations) allows the interpretation of the CNN
decision, and it is possible to take advantage of these
interpretations for increasing the comprehension of brain
dynamics underlying decoded events (e.g., P300 response).
For example, representations derived from saliency maps (in
the time and/or spatial domain) could be used to study the
variability between participants (i.e., which features of the
input samples are more/less consistent across participants) and
within-participant (i.e., by comparing representations associated
with early and late trials, e.g., to investigate the effects of
training or treatment). Furthermore, the analysis of between-
participants and within-participant variabilities could be useful,
in perspective, to develop biomarkers to diagnose and monitor
neurological or psychiatric disorders (Farahat et al., 2019),
e.g., P300 amplitude, latency, and topographical alterations in
mild cognitive impairment (Medvidovic et al., 2013), dementia
(Vecchio andMäättä, 2011), and schizophrenia (Jeon and Polich,
2003). In addition, identifying the more class-discriminative
temporal and spatial input features can also have a relevant
practical impact on the design of BCIs. For example, the
identification of a small subset of more relevant electrodes (as
we found here) may drive the definition of BCI systems with
a very small electrode montage, increasing the comfort of a
participant and reducing preparation time. It is worth noticing
that by performing this analysis on within-participant CNNs,
the optimal electrode montage could also be identified on an
individual basis.

Overall, this study, by specifically addressing the aspects
of lightweight design, transfer learning, and interpretability
of the proposed CNN, can contribute to advance the
development of deep learning-based decoders for P300-
BCIs. Future developments include the application of the
proposed architecture to other ERP decoding tasks, and
the adoption of interpretable and more lightweight layers,
such as the sinc-convolutional layer, to perform band-pass
filtering (Ravanelli and Bengio, 2018; Borra et al., 2020b,c).
In addition, automatic hyper-parameter search (Snoek et al.,
2012) will be exploited to further improve the MS-EEGNet
design and other explanation techniques, such as layer-wise
relevance propagation, will be investigated, carefully analyzing
the effect of different propagation rules and parameters for
EEG decoding.
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