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Until recently, human behavioral data from reading has mainly been of interest

to researchers to understand human cognition. However, these human language

processing signals can also be beneficial in machine learning-based natural language

processing tasks. Using EEG brain activity for this purpose is largely unexplored as of

yet. In this paper, we present the first large-scale study of systematically analyzing the

potential of EEG brain activity data for improving natural language processing tasks,

with a special focus on which features of the signal are most beneficial. We present

a multi-modal machine learning architecture that learns jointly from textual input as

well as from EEG features. We find that filtering the EEG signals into frequency bands

is more beneficial than using the broadband signal. Moreover, for a range of word

embedding types, EEG data improves binary and ternary sentiment classification and

outperforms multiple baselines. For more complex tasks such as relation detection,

only the contextualized BERT embeddings outperform the baselines in our experiments,

which raises the need for further research. Finally, EEG data shows to be particularly

promising when limited training data is available.

Keywords: EEG, natural language processing, frequency bands, brain activity, machine learning, multi-modal

learning, physiological data, neural network

1. INTRODUCTION

Recordings of brain activity play an important role in furthering our understanding of how
human language works (Murphy et al., 2018; Ling et al., 2019). The appeal and added value of
using brain activity signals in linguistic research are intelligible (Stemmer and Connolly, 2012).
Computational language processing models still struggle with basic linguistic phenomena that
humans perform effortlessly (Ettinger, 2020). Combining insights from neuroscience and artificial
intelligence will take us closer to human-level language understanding (McClelland et al., 2020).
Moreover, numerous datasets of cognitive processing signals in naturalistic experiment paradigms
with real-world language understanding tasks are becoming available (Alday, 2019; Kandylaki and
Bornkessel-Schlesewsky, 2019).

Linzen (2020) advocates for the grounding of NLP models in multi-modal settings to compare
the generalization abilities of the models to human language learning. Multi-modal learning in
machine learning refers to algorithms learning from multiple input modalities encompassing
various aspects of communication. Developing models that learn from such multi-modal inputs
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FIGURE 1 | (Left) Label distribution of the 11 relation types in the relation detection dataset. (Right) Number of relation types per sentence in the relation detection

dataset.

for instance, learning speech reconstruction from silent videos
(Ephrat et al., 2017), or for text classification using images
(Kiela et al., 2018). Tsai et al. (2019) train a multi-modal
sentiment analysis model from natural language, facial gestures,
and acoustic behaviors.

Hence, we adopted the late fusion strategy in our work. We
present multi-modal models for various NLP tasks, combining
the learned representations of all input types (i.e., text and
EEG features) in a late fusion mechanism before conducting the
final classification. Purposefully, this enables the model to learn
independent decoders for each modality before fusing the hidden
representations together. In the present study, we investigate
the proposed multi-modal machine learning architecture, which
learns simultaneously from text and from cognitive data such as
eye tracking and EEG signals.

In the following, we first describe the uni-modal and multi-
modal baseline models we use to evaluate the results. Thereafter,
we present the multi-modal NLP models that jointly learn from
text and brain activity data.

2.3.1. Uni-Modal Text Baselines
For each of the tasks presented above, we train uni-modal
models on textual features only. To represent the word
numerically, we use word embeddings. Word embeddings are
vector representations of words, computed so that words with
similar meaning have a similar representation. To analyze the
interplay between various types of word embeddings and EEG
data, we use the following three embedding types typically used in
practice: (1) randomly initialized embeddings trained at run time
on the sentences provided, (2) GloVe pre-trained embeddings
based on word co-occurrence statistics (Pennington et al., 2014)4,
and (3) BERT pre-trained contextual embeddings (Devlin et al.,
2019).5

The randomly initialized word representations define word
embeddings as n-by-d matrices, where n is the vocabulary size,
i.e., the number of unique words in our dataset, and d is the

4https://nlp.stanford.edu/projects/glove/
5https://huggingface.co/bert-base-uncased

embedding dimension. Each value in that matrix is randomly
initialized and will then be trained together with the neural
network parameters. We set d = 32. This type of embeddings
does not benefit from pre-training on large text collections
and hence is known to perform worse than GloVe or BERT
embeddings. We include them in our study to better isolate the
impact of the EEG features and to limit the learning of the model
on the text it is trained on. Non-contextual word embeddings
such as GloVe encode each word in a fixed vocabulary as a
vector. The purpose of these vectors is to encode semantic
information about a word, such that similar words result in
similar embedding vectors. We use the GloVe embeddings of
d = 300 dimensions that are trained on 6 billion words. The
contextualized BERT embeddings were pre-trained on multiple
layers of transformer models with self-attention (Vaswani et al.,
2017). Given a sentence, BERT encodes each word into a feature
vector of dimension d = 768, which incorporates information
from the word’s context in the sentence.

The uni-modal text baseline model consists of a first layer
taking the embeddings as an input, followed by a bidirectional
Long-Short Term Memory network (LSTM; Hochreiter and
Schmidhuber, 1997), then two fully-connected dense layers with
dropout between them, and finally a prediction layer using
softmax activation. This corresponds to a single component of
themulti-modal architecture, i.e., the top component in Figure 2.
Following best practices (e.g., Sun et al., 2019), we set the weights
of BERT to be trainable similarly to the randomly initialized
embeddings. This process of adjusting the initialized weights
of a pre-trained feature extractor during the training process,
in our case BERT, is commonly known as fine-tuning in the
literature (Howard and Ruder, 2018). In contrast, the parameters
of the GloVe embeddings are fixed to the pre-trained weights and
thus do not change during training.

2.3.2. Multi-Modal Baselines
To analyze the effectiveness of our multi-modal architecture
with EEG signals properly, we not only compare it to uni-
modal text baselines, but also to multi-modal baselines using
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FIGURE 2 | The multi-modal machine learning architecture for the EEG-augmented models. Word embeddings of dimension d are the input for the textual

component (yellow); EEG features of dimension e for the cognitive component (blue). The text component consists of recurrent layers followed by two dense layers

with dropout. We test multiple architectures for the EEG component (see Figure 3). Finally, the hidden states of both components are concatenated and followed by a

final dense layer with softmax activation for classification (green).

the same architecture described in the next section for the EEG
models, but replacing the features of the second modality with
the following alternatives: (1) We implement a gaze-augmented
baseline, where the five eye tracking features described in section
2.1.4.2 are combined with the word embeddings by adding them
to the multi-modal model in the same manner as the EEG
features, as vectors with dimension = 5. The purpose of this
baseline is to allow a comparison of multi-modal models learning
from two different types of physiological features. Since the
benefits of eye tracking data in ML models are well-established
(Barrett and Hollenstein, 2020; Mathias et al., 2020), this is a
strong baseline. (2) We further implement a random noise-
augmented baseline, where we add uniformly sampled vectors
of random numbers as the second input data type to the multi-
modal model. These random vectors are of the same dimension
as the EEG vectors (i.e., d = 105). It is well-known that the
addition of noise to the input data of a neural network during
training can lead to improvements in generalization performance
as a form of regularization (Bishop, 1995). Thus, this baseline is
relevant because we want to analyze whether the improvements
from the EEG signals on the NLP tasks are due to its capability
of extracting linguistic information and not merely due to
additional noise.

2.3.3. EEG Models
To fully understand the impact of the EEG data on the NLP
models, we build a model that is able to deal with multiple
inputs and mixed data. We present a multi-modal model with
late decision-level fusion to learn joint representations of textual
and cognitive input features. We test both a recurrent and a
convolutional neural architecture for decoding the EEG signals.
Figure 2 depicts the main structure of our model and we describe
the individual components below.

All input sentences are padded to the maximum sentence
length to provide fixed-length text inputs to the model. Word

embeddings of dimension d are the input for the textual
component, where d ∈ {32, 300, 768} for randomly initialized
embeddings, GloVe embeddings and BERT embeddings,
respectively. EEG features of dimension e are the input for
the cognitive component, where e = 105. As described,
the text component consists of bidirectional LSTM layers
followed by two dense layers with dropout. Text and EEG
features are given as independent inputs to their own respective
component of the network. The hidden representations of
these are then concatenated before being fed to a final dense
classification layer.We also experimented with different merging
mechanisms to join the text and EEG layers of our two-tower
model (concatenation, addition, subtraction, maximum).
Concatenation overall achieved the best results, so we report
only these. Although the goal of each network is to learn feature
transformations for their own modality, the relevant extracted
information should be complementary. This is achieved, as
commonly done in deep learning, through alternatively running
inference and back-propagation of the data through the entire
network enabling information to flow from the component
responsible for one input modality to the other via the fully
connected output layers. To learn a non-linear transformation
function for each component, we employ the rectified linear
units (ReLu) as activation functions after each hidden layer.

For the EEG component, we test a recurrent and a
convolutional architecture since both have proven useful in
learning features from time series data for language processing
(e.g., Lipton et al., 2015; Yin et al., 2017; Fawaz et al., 2020). For
the recurrent architecture (Figure 3, left), the model component
is analogous to the text component: it consists of bidirectional
LSTM layers followed by two dense layers with dropout and
ReLu activation functions. For the convolutional architecture
(Figure 3, right), we build a model component based on the
Inception module first introduced by Szegedy et al. (2015). An
inception module is an ensemble of convolutions that applies
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FIGURE 3 | EEG decoding components: (Left) The recurrent model component is analogous to the text component and consists of recurrent layers followed by two

dense layers with dropout. (Right) The convolutional inception component consists of an ensemble of convolution filters of varying lengths which are concatenated

and flattened before the subsequent dense layers.

multiple filters of varying lengths simultaneously to an input time
series. This allows the network to automatically extract relevant
features from both long and short time series. As suggested
by Schirrmeister et al. (2017) we used exponential linear unit
activations (ELUs; Clevert et al., 2015) in the convolutional EEG
decoding model component.

For binary and ternary sentiment analysis, the final dense
layer has a softmax activation in order to use the maximal
output for the classification. For the multi-label classification
case of relation detection, we replace the softmax function in
the last dense layer of the model with a sigmoid activation to
produce independent scores for each class. If the score for any
class surpasses a certain threshold, the sentence is labeled to
contain that relation type (opposite to simply taking the max
score as the label of the sentence). The threshold is tuned as an
additional hyper-parameter.

This multi-modal model with separate components learned
for each input data type has several advantages: It allows for
separate pre-processing of each type of data. For instance, it
is able to deal with differing tokenization strategies, which is
useful in our case since it is challenging to map linguistic
tokenization to the word boundaries presented to participants
during the recordings of eye tracking and brain activity.
Moreover, this approach is scalable to any number of input
types. The generalizability of our model enables the integration
ofmultiple data representations, e.g., learning from brain activity,
eye movements, and other cognitive modalities simultaneously.

2.3.4. Training Setup
To assess the impact of the EEG signals under fair modeling
conditions, the hyper-parameters are tuned individually for all
baselinemodels as well as for all eye tracking and EEG augmented
models. The ranges of the hyper-parameters are presented in
Table 3. All results are reported as means over five independent
runs with different random seeds. In each run, five-fold cross-
validation is performed on a 80% training and 20% test split.
The best parameters were selected according to the model’s
accuracy on the validation set (10% of the training set) across

TABLE 3 | Tested value ranges included in the hyper-parameter search for our

multi-modal machine learning architecture.

Parameter Range

LSTM layer dimension 64, 128, 256, 512

Number of LSTM layers 1, 2, 3, 4

CNN filters 14, 16, 18

CNN kernel sizes [1,4,7]

CNN pool sizes 3, 5, 7

Dense layer dimension 8, 16, 32, 64, 128, 256, 512

Dropout 0.1, 0.3, 0.5

Batch size 20, 40, 60

Learning rate 10−1, 10−2, 10−3, 10−4, 10−5

Random seeds 13, 22, 42, 66, 78

Threshold 0.3, 0.5, 0.7

Threshold only applies to relation detection.

all five-folds. We implemented early stopping with a patience of
80 epochs and a minimum difference in validation accuracy of
10−7. The validation set is used for both parameter tuning and
early stopping.

3. RESULTS

In this study, we assess the potential of EEG brain activity data to
enhance NLP tasks in a multi-modal architecture. We present the
results of all augmented models compared to the baseline results.
As described above, we select the hyper-parameters based on the
best validation accuracy achieved for each setting.

The performance of our models is evaluated based on the
comparison between the predicted labels (i.e., positive, neutral
or negative sentiment for a sentence; or the relation type(s) in
a sentence) and the true labels of the test set resulting in the
number of true positives (TP), true negatives (TN), false positives
(FP), and false negatives (FN) across the classified samples. The
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TABLE 4 | Binary sentiment analysis results of the multi-modal model using the recurrent EEG decoding component.

Randomly initialized GloVe BERT

Model P R F1 (std) P R F1 (std) P R F1 (std)

Baseline 0.572 0.573 0.552 (0.07) 0.751 0.738 0.728 (0.08) 0.900 0.899 0.893 (0.04)

+ noise 0.599 0.574 0.541 (0.08) 0.721 0.715 0.709 (0.09) 0.914 0.916 0.913 (0.03)

+ ET 0.615 0.605 0.586 (0.06) 0.795 0.786 0.781 (0.06) 0.913 0.907 0.904 (0.05)

+ EEG full 0.540 0.538 0.525 (0.06) 0.738 0.729 0.725 (0.07) 0.913 0.909 0.906 (0.04)

+ EEG θ 0.602 0.599 0.584* (0.08) 0.789 0.785 0.783+ (0.05) 0.917 0.916 0.913* (0.04)

+ EEG α 0.610 0.590 0.565 (0.05) 0.763 0.758 0.753 (0.05) 0.912 0.908 0.906 (0.03)

+ EEG β 0.587 0.578 0.555 (0.07) 0.781 0.777 0.774+ (0.06) 0.911 0.911 0.907* (0.04)

+ EEG γ 0.614 0.591 0.553 (0.08) 0.777 0.773 0.769* (0.07) 0.917 0.917 0.915* (0.04)

+θ + α + β + γ 0.597 0.597 0.569 (0.08) 0.766 0.764 0.760* (0.07) 0.913 0.913 0.911* (0.04)

We report precision (P), recall (R), F1-score and the standard deviation (std) between five runs. The best results per column are marked in bold. Significance is indicated on the F1-score

with asterisks: * denotes p<0.05 (uncorrected), + denotes p<0.003 (Bonferroni corrected p-value).

TABLE 5 | Ternary sentiment analysis results of the multi-modal model using the recurrent EEG decoding component.

Randomly initialized GloVe BERT

Model P R F1 (std) P R F1 (std) P R F1 (std)

Baseline 0.408 0.384 0.351 (0.07) 0.510 0.507 0.496 (0.06) 0.722 0.714 0.710 (0.05)

+ noise 0.373 0.399 0.344 (0.10) 0.531 0.519 0.504 (0.04) 0.711 0.706 0.700 (0.06)

+ ET 0.424 0.413 0.388 (0.06) 0.539 0.528 0.513 (0.04) 0.728 0.717 0.714 (0.05)

+ EEG full 0.391 0.387 0.353 (0.07) 0.505 0.505 0.488 (0.07) 0.724 0.715 0.711 (0.06)

+ EEG θ 0.397 0.409 0.360 (0.07) 0.516 0.510 0.498 (0.06) 0.715 0.708 0.704 (0.05)

+ EEG α 0.390 0.390 0.347 (0.08) 0.520 0.516 0.506 (0.05) 0.720 0.712 0.707 (0.05)

+ EEG β 0.350 0.370 0.302 (0.09) 0.523 0.519 0.509 (0.05) 0.732 0.720 0.717 (0.07)

+ EEG γ 0.409 0.397 0.359 (0.07) 0.517. 0.513 0.502 (0.04) 0.709 0.705 0.697 (0.06)

+θ + α + β + γ 0.401 0.400 0.368 (0.06) 0.522 0.516 0.505 (0.05) 0.722 0.717 0.713 (0.05)

We report precision (P), recall (R), F1-score and the standard deviation (std) between five runs. The best results per column are marked in bold.

terms positive and negative refer to the classifier’s prediction,
and the terms true and false refer to whether that prediction
corresponds to the ground truth label. The following decoding
performance metrics were computed:

Precision is the fraction of relevant instances among the
retrieved instances, and is defined as

Precision =
TP

TP + FP
(1)

Recall is the fraction of the relevant instances that are
successfully retrieved:

Recall =
TP

TP + FN
(2)

The F1-score is the harmonic mean combining precision
and recall:

F1 score = 2 ·
Precision · Recall

Precision+ Recall
(3)

For analyzing the results, we report macro-averaged precision
(P), recall (R), and F1-score, i.e., the metrics are calculated for
each label to counteract the label imbalance in the datasets.

The results for the multi-modal architecture using the
recurrent EEG decoding component are presented in Table 4

for binary sentiment analysis, Table 5 for ternary sentiment
analysis, and Table 6 for relation detection. The first three rows
in each table represent the uni-modal text baseline, the multi-
modal noise and eye-tracking baselines. This is followed by
the multi-modal models augmented with the full broadband
EEG signals and each of the four frequency bands. Finally,
in the last row, we also present the results of a multi-modal
model with five components, where text and each frequency
band extractors are learned separately and concatenated at the
end. In both sentiment tasks, the EEG data yields modest but
consistent improvements over the text baseline for all word
embeddings types. However, in the case of relation detection,
the addition of either eye tracking or brain activity data is not
helpful for randomly initialized embeddings and only beneficial
in some settings using GloVe embeddings. Nevertheless, the
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TABLE 6 | Relation detection results of the multi-modal model using the recurrent EEG decoding component.

Randomly initialized GloVe BERT

Model P R F1 (std) P R F1 (std) P R F1 (std)

Baseline 0.404 0.525 0.452 (0.04) 0.501 0.609 0.539 (0.05) 0.522 0.788 0.623 (0.05)

+ noise 0.420 0.424 0.408 (0.07) 0.577 0.497 0.532 (0.03) 0.675 0.585 0.625 (0.03)

+ ET 0.421 0.404 0.402 (0.06) 0.547 0.476 0.506 (0.04) 0.661 0.631 0.644 (0.03)

+ EEG full 0.345 0.343 0.334 (0.05) 0.511 0.387 0.432 (0.09) 0.652 0.690 0.668* (0.10)

+ EEG θ 0.430 0.421 0.414 (0.07) 0.582 0.508 0.539 (0.07) 0.646 0.736 0.684* (0.08)

+ EEG α 0.368 0.373 0.358 (0.12) 0.582 0.515 0.542 (0.06) 0.652 0.715 0.679* (0.07)

+ EEG β 0.349 0.340 0.329 (0.09) 0.581 0.497 0.532 (0.10) 0.674 0.726 0.696+ (0.06)

+ EEG γ 0.410 0.399 0.397 (0.05) 0.554 0.488 0.514 (0.09) 0.666. 0.715 0.686* (0.07)

+θ + α + β + γ 0.370 0.376 0.363 (0.09) 0.554 0.488 0.514 (0.09) 0.675 0.646 0.659 (0.04)

We report precision (P), recall (R), F1-score and the standard deviation (std) between five runs. The best results per column are marked in bold. Significance is indicated on the F1-score

with asterisks: * denotes p< 0.05 (uncorrected), + denotes p <0.003 (Bonferroni corrected p-value).

TABLE 7 | Binary sentiment analysis results of the multi-modal model using the convolutional EEG decoding component.

Randomly initialized GloVe BERT

Model P R F1 (std) P R F1 (std) P R F1 (std)

Baseline 0.572 0.573 0.552 (0.07) 0.751 0.738 0.728 (0.08) 0.900 0.899 0.893 (0.04)

+ noise 0.558 0.584 0.528 (0.11) 0.780 0.767 0.762 (0.06) 0.895 0.887 0.883 (0.05)

+ ET 0.617 0.623 0.610 (0.07) 0.790 0.790 0.783 (0.06) 0.896 0.887 0.881 (0.05)

+ EEG full 0.588 0.583 0.572 (0.04) 0.778 0.774 0.772+ (0.05) 0.928 0.927 0.926* 0.03

+ EEG θ 0.564 0.569 0.535 (0.08) 0.805 0.792 0.791+ (0.04) 0.922 0.919 0.917* (0.03)

+ EEG α 0.596 0.593 0.563 (0.08) 0.775 0.781 0.772* (0.08) 0.920 0.917 0.916* (0.03)

+ EEG β 0.605 0.597 0.580 (0.08) 0.802 0.797 0.792+ (0.05) 0.920 0.914 0.914* (0.04)

+ EEG γ 0.640 0.625 0.611+ (0.09) 0.787 0.780 0.776+ (0.05) 0.905 0.905 0.901 (0.04)

+θ + α + β + γ 0.599 0.579 0.558 (0.07) 0.800 0.794 0.786+ (0.05) 0.909 0.910 0.907 (0.04)

We report precision (P), recall (R), F1-score and the standard deviation (std) between five runs. The best results per column are marked in bold. Significance is indicated on the F1-score

with asterisks: * denotes p< 0.05 (uncorrected), + denotes p <0.003 (Bonferroni corrected p-value).

combination of BERT embeddings and EEG data does improve
the relation detection models. Generally, the results show a
decreasing maximal performance per task with increasing task
complexity measured in terms of the number of classes (see
section 4.5 for a detailed analysis).

Furthermore, the results for the multi-modal architecture
using the convolutional EEG decoding component are presented
in Table 7 for binary sentiment analysis, Table 8 for ternary
sentiment analysis, and Table 9 for relation detection. The results
of this model architecture yield higher overall results, whereas the
trend across tasks is similar to the models using the recurrent
EEG decoding component, i.e., considerable improvements for
both sentiment analysis tasks, but for relation detection the most
notable improvements are achieved with the BERT embeddings.
This validates the popular choice of convolutional neural
networks for EEG classification tasks (Schirrmeister et al., 2017;
Craik et al., 2019). While recurrent neural networks are often

used in NLP and linguistic modeling (due to the left-to-right
processing mechanism), CNNs have shown better performance
at learning feature weights from noisy data (e.g., Kvist and
Lockvall Rhodin, 2019). Hence, our convolutional EEG decoding
component is able to better extract the task-relevant linguistic
processing information from the input data.

To assess the results, we perform statistical significance testing
with respect to the text baseline in a bootstrap test as described
in Dror et al. (2018) over the F1-scores of the five runs of
all tasks. We compare the results of the multi-modal models
using text and EEG data to the uni-modal text baseline. In
addition, we apply the Bonferroni correction to counteract the
problem of multiple comparisons. We choose this conservative
correction because of the dependencies between the datasets
used (Dror et al., 2017). Under the Bonferroni correction, the
global null hypothesis is rejected if p < α/N, where N is the
number of hypotheses (Bonferroni, 1936). In our setting, α =
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TABLE 8 | Ternary sentiment analysis results of the multi-modal model using the convolutional EEG decoding component.

Randomly initialized GloVe BERT

Model P R F1 (std) P R F1 (std) P R F1 (std)

Baseline 0.408 0.384 0.351 (0.07) 0.510 0.507 0.496 (0.06) 0.722 0.714 0.710 (0.05)

+ noise 0.359 0.388 0.334 (0.09) 0.494 0.484 0.476 (0.07) 0.715 0.683 0.684 (0.05)

+ ET 0.417 0.399 0.372 (0.05) 0.509 0.512 0.500 (0.07) 0.721 0.687 0.670 (0.05)

+ EEG full 0.365 0.384 0.333 (0.08) 0.488 0.484 0.476 (0.06) 0.738 0.724 0.723+ (0.04)

+ EEG θ 0.389 0.372 0.330 (0.06) 0.511 0.495 0.477 (0.06) 0.727 0.718 0.716+ (0.05)

+ EEG α 0.357 0.382 0.331 (0.11) 0.534 0.525 0.515+ (0.06) 0.732 0.715 0.713+ (0.04)

+ EEG β 0.425 0.418 0.378 (0.08) 0.534 0.529 0.520+ (0.05) 0.727 0.717 0.715 (0.04)

+ EEG γ 0.404 0.406 0.360 (0.08) 0.539 0.521 0.514 (0.06) 0.733 0.725 0.721+ (0.04)

+θ + α + β + γ 0.384 0.402 0.354 (0.10) 0.517 0.504 0.488 (0.05) 0.733 0.717 0.715 (0.06)

We report precision (P), recall (R), F1-score and the standard deviation (std) between five runs. The best results per column are marked in bold. Significance is indicated on the F1-score

with asterisks: * denotes p< 0.05 (uncorrected), + denotes p< 0.003 (Bonferroni corrected p-value).

TABLE 9 | Relation detection results of the multi-modal model using the convolutional EEG decoding component.

Randomly initialized GloVe BERT

Model P R F1 (std) P R F1 (std) P R F1 (std)

Baseline 0.404 0.525 0.452 (0.04) 0.501 0.609 0.539 (0.05) 0.522 0.788 0.623 (0.05)

+ noise 0.424 0.299 0.342 (0.06) 0.547 0.441 0.486 (0.06) 0.532 0.493 0.511 (0.07)

+ ET 0.415 0.307 0.345 (0.08) 0.447 0.413. 0.428 (0.07) 0.558 0.665 0.593 (0.13)

+ EEG full 0.225 0.225 0.225 (0.06) 0.548 0.408 0.464 (0.07) 0.647 0.664 0.650 (0.09)

+ EEG θ 0.437 0.380 0.400 (0.05) 0.620 0.493 0.547 (0.05) 0.721 0.698 0.707+ (0.03)

+ EEG α 0.372 0.366 0.352 (0.12) 0.509 0.433 0.461 (0.12) 0.661 0.697 0.675+ (0.08)

+ EEG β 0.394 0.328 0.338 (0.09) 0.627 0.479 0.541 (0.05) 0.643 0.646 0.640 (0.11)

+ EEG γ 0.405 0.363 0.366 (0.09) 0.646 0.490 0.555 (0.04) 0.667 0.699 0.679+ (0.06)

+θ + α + β + γ 0.324 0.227 0.257 (0.11) 0.460 0.436 0.437 (0.14) 0.610 0.562 0.584 (0.05)

We report precision (P), recall (R), F1-score and the standard deviation (std) between five runs. The best results per column are marked in bold. Significance is indicated on the F1-score

with asterisks: * denotes p< 0.05 (uncorrected), + denotes p <0.003 (Bonferroni corrected p-value).

0.05 and N = 18, accounting for the combination of the 3
embedding types and 6 EEG feature sets, namely broadband
EEG; θ , α, β , and γ frequency bands; and all four frequency
bands jointly. For instance, in Table 7 the improvements in 6
configurations out of 18 are also still statistically significant under
the Bonferroni correction (i.e., p < 0.003), showing that EEG
signals bring significant improvements in the sentiment analysis
task. In the results tables, we mark significant results under both
the uncorrected and the Bonferroni corrected p-value.

4. DISCUSSION

The results show consistent improvements on both sentiment
analysis tasks, whereas the benefits of using EEG data are only
visible in specific settings for the relation detection task. EEG
performs better than, or at least comparable to, eye tracking in
many scenarios. This study shows the potential of decoding EEG
for NLP and provides a good basis for future studies. Despite

the limited amount of data, these results suggest that augmenting
NLP systems with EEG features is a generalizable approach.

In the following sections, we discuss these results from
different angles. We contrast the performance of different EEG
features, we compare the EEG results to the text baseline
and multi-modal baselines (as described in section 2.3.2),
and we analyze the effect of different word embedding types.
Additionally, we explore the impact of varying training set sizes
in a data ablation study. Finally, we investigate the possible
reasons for the decrease in performance for the relation detection
task, which we associate with the task complexity. We run
all analyses with both the recurrent and the convolutional
EEG components.

4.1. EEG Feature Analysis
We start by investigating the impact of the various EEG features
included in our multi-modal models. Different neurocognitive
aspects of language processing during reading are associated with
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brain oscillations at various frequencies. We first give a short
overview of the cognitive functions related to EEG frequency
bands that are found in literature before discussing the insights
of our results.

Theta activity reflects cognitive control and working memory
(Williams et al., 2019), and increases when processing semantic
anomalies (Prystauka and Lewis, 2019). Moreover, Bastiaansen
et al. (2002) showed a frequency-specific increase in theta power
as a sentence unfolds, possibly related to the formation of
an episodic memory trace, or to incremental verbal working
memory load. High theta power is also prominent during the
effective semantic processing of language (Bastiaansen et al.,
2005). Alpha activity has been related to attentiveness (Klimesch,
2012). Both theta and alpha ranges are sensitive to the lexical-
semantic processes involved in language translation (Grabner
et al., 2007). Beta activity has been involved in higher-order
linguistic functions such as the discrimination of word categories
and the retrieval of action semantics as well as semantic memory,
and syntactic processes, which support meaning construction
during sentence processing. There is evidence that suggests that
beta frequencies are important for linking past and present
inputs and the detection of novelty of stimuli, which are
essential processes for language perception as well as production
(Weiss and Mueller, 2012). Beta frequencies also affect decisions
regarding relevance (Eugster et al., 2014). In reading, a stronger
power-decrease in lower beta frequencies has been found for
neutral compared to negative words (Scaltritti et al., 2020).
Contrarily, emotional processing of pictures enhances gamma
band power (Müller et al., 1999). Gamma-band activity has been
used to detect emotions (Li and Lu, 2009), and increases during
syntactic and semantic structure building (Prystauka and Lewis,
2019). In the gamma frequency band, a power increase was
observed during the processing of correct sentences in multiple
languages, but this effect was absent following semantic violations
(Hald et al., 2006; Penolazzi et al., 2009). Frequency band features
have often been used in deep learning methods for decoding
EEG in other domains, such as mental workload and sleep stage
classification (Craik et al., 2019).

The results show that our multi-modal models yield better
results with filtered EEG frequency bands than using the
broadband EEG signal on almost all tasks and embedding
types, as well as on both EEG decoding components. Although
all frequency band features show promising results on some
embedding types and tasks (e.g., BERT embeddings and gamma
features for binary sentiment analysis reported in Table 4),
the results show no clear sign of a single frequency band
outperforming the others (neither across tasks for a fixed
embedding type, nor for a fixed task and across all embedding
types). For the sentiment analysis tasks, where both EEG
decoding components achieve significant improvements, theta
and beta features most often achieve the highest results. As
described above, brain activity in each frequency band reflects
specific cognitive functions. The positive results achieved using
theta band EEG features might be explained by the importance
of this frequency band for successful semantic processing. Theta
power is expected to rise with increasing language processing
activity (Kosch et al., 2020). Various studies have shown that theta

oscillations are related to semantic memory retrieval and can be
task-specific (e.g., Bastiaansen et al., 2005; Giraud and Poeppel,
2012; Marko et al., 2019). Overall, previous research shows
how theta correlates with the cognitive processing involved in
encoding and retrieving verbal stimuli (see Kahana, 2006 for
a review), which supports our results. The good performance
of the beta EEG features might on one hand be explained by
the effect of the emotional connotation of words on the beta
response (Scaltritti et al., 2020). On the other hand, the role of
beta oscillations in syntactic and semantic unification operations
during language comprehension (Bastiaansen andHagoort, 2006;
Meyer, 2018) is also supportive of our results.

Based on the complexity and extent of our results, it is unclear
at this point whether a single frequency band is more informative
for solving NLP tasks. Data-driven methods can help us to
tease more information from the recordings by allowing us to
test broader theories and task-specific language representations
(Murphy et al., 2018), but our results also clearly show that
restricting the EEG signal to a given frequency band is beneficial.
More research is required in this area to specifically isolate the
linguistic processing from the filtered EEG signals.

4.2. Comparison to Multi-Modal Baselines
The multi-modal EEG models often outperform the text
baselines (at least for the sentiment analysis tasks). We now
analyze how the EEG models compare to the two augmented
baselines described in section 2.3.2 (i.e., eye tracking and models
augmented with random noise). We find that EEG always
performs better than or equal to the multi-modal text + eye
tracking models. This shows how promising EEG is as a data
source for multi-modal cognitive NLP. Although eye tracking
requires less recording efforts, these results corroborate that EEG
data contain more information about the cognitive processes
occurring in the brain during language understanding.

As expected, the baselines augmented with random noise
perform worse than the pure text baselines in all cases except for
binary sentiment analysis with BERT embeddings. This model
seems to deal exceptionally well with added noise. In the case
of relation detection, when no improvement is achieved (e.g.,
for randomly initialized embeddings), the added noise harms the
models similarly to adding EEG signals. It becomes clear for this
task that adding the full broadband EEG features is worse than
adding random noise (except with BERT embeddings), but some
of the frequency band features clearly outperform the augmented
noise baseline.

4.3. Comparison of Embedding Types
Our baseline results show that contextual embeddings
outperform the non-contextual methods across all tasks.
Arora et al. (2020) also compared randomly initialized, GloVe
and BERT embeddings and found that with smaller training sets,
the difference in performance between these three embedding
types is larger. This is in accordance with our results, which
show that the type of embedding has a large impact on the
baseline performance on all three tasks. The improvements of
adding EEG data in all three tasks are especially noteworthy
when using BERT embeddings. In combination with the EEG
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FIGURE 4 | Data ablation for all three word embedding types for the binary sentiment analysis task using the recurrent EEG decoding component. The shaded areas

represent the standard deviations.

FIGURE 5 | Data ablation for all three word embedding types for the binary sentiment analysis task using the convolutional EEG decoding component. The shaded

areas represent the standard deviations.

data, these embeddings achieve improvements across all settings,
including the full EEG broadband data as well as all individual
and combined frequency bands. This shows that state-of-the-art
contextualized word representations such as BERT are able to
interact positively with human language processing data in a
multi-modal learning scenario.

Augmenting our baseline with EEG data on the binary
sentiment analysis tasks results in approximately +3% F1-
score across all the different embeddings with the recurrent
EEG component. The gain is slightly lower at +1% for all
the embeddings in the ternary sentiment classification task.
While there is no significant gain for relation detection with
random and GloVe embeddings, the improvements with BERT
embeddings reach up to +7%. This shows that the improvements
gained by adding EEG signals are not only dependent on the task,
but also on the embedding type. In foresight, this finding might
be useful in the future, when new embeddings will improve the
baseline performance even further while possibly also increasing
the gain from the EEG signals.

4.4. Data Ablation
One of the challenges of NLP is to learn as much as possible
from limited resources. Unlike most machine learning models,
one of themost striking aspects of human learning is the ability to
learn new words or concepts from limited numbers of examples
(Lake et al., 2015). Using cognitive language processing data may
allow us to take a step toward meta-learning, the process of
discovering the cognitive processes that are used to tackle a task

in the human brain (Griffiths et al., 2019), and in turn be able
to improve the generalization abilities of NLP models. Humans
can learn from very few examples, while machines, particularly
deep learning models, typically need many examples. Perhaps
this advantage in humans is due to their multi-modal learning
mechanisms (Linzen, 2020).

Therefore, we analyze the impact of adding EEG features to
our NLP models with less training data. We performed data
ablation experiments for all three tasks. The most conclusive
results were achieved on binary sentiment analysis. Randomly
initialized embeddings unsurprisingly suffer a lot when reducing
training data. The results are shown in Figures 4, 5, for both
EEG decoding components. We present the results for the best-
performing frequency bands only. The largest gain from EEG
data is obtained with only 50% of the training data with GloVe
and BERT embeddings, which is as little as 105 training sentences.
These experiments emphasize the potential of EEG signals for
NLP especially when dealing with very small amounts of training
data and using popular word embedding types.

4.5. Task Complexity Ablation
From the previously described results, one hypothesis on the
reason why augmenting the baseline with EEG data lowers
the performance in the relation detection task with randomly
initialized and GloVe embeddings lies in the complexity of the
task. More concretely, we measure the complexity by counting
the number of classes the model needs to learn. Generally, more
complex tasks (in terms of number of classes) require more data
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TABLE 10 | Binary relation detection results for both EEG decoding components for the relation types Job Title and Visited using GloVe embeddings.

Recurrent EEG decoding Convolutional EEG decoding

Job title vs. None Precision Recall F1-score Precision Recall F1-score

GloVe 0.789 0.776 0.767 (0.05) 0.789 0.776 0.767 (0.05)

GloVe + EEG full 0.792 0.782 0.773 (0.06) 0.796 0.793 0.789 (0.05)

GloVe + EEG γ 0.780 0.788 0.774 (0.1) 0.817 0.811 0.808 (0.03)

Visited vs. None Precision Recall F1-score Precision Recall F1-score

GloVe 0.762 0.756 0.734 (0.1) 0.762 0.756 0.734 (0.1)

GloVe + EEG full 0.756 0.759 0.745 (0.1) 0.766 0.758 0.750 (0.09)

GloVe + EEG γ 0.773 0.768 0.754 (0.1) 0.819 0.795 0.795 (0.09)

The best result in each column is marked in bold.

to generalize (see for instance Li et al., 2018). Therefore, it is clear
that with a fixed amount of data, the impact of augmenting the
feature space with additional information (in this case EEG data)
is also less visible for themore complex tasks.We see a decrease in
performance with increasing complexity over the three evaluated
tasks with all embeddings except for BERT. Therefore, we validate
this hypothesis by simplifying the relation detection task by
reducing the number of classes from 11 to 2. We create binary
relation detection tasks for the two most frequent relation types
Job Title andVisited (see Figure 1). For example, we classify all the
samples containing the relation Job Title (184 samples) against all
samples with no relation (219 samples).

We train these additional models with GloVe embeddings,
since these did not show any significant improvements when
augmented with EEG data on the full relation detection task.
The results for the full broadband EEG features and the best
frequency band from the previous convolutional results (gamma)
are shown in Table 10. It is evident that with the simplification
of the relation detection task into binary classification tasks,
EEG signals are able to boost the performance of the non-
contextualized Glove embeddings and achieve considerable
improvements over the text baseline. The gains are similar as for
binary sentiment analysis for both EEG decoding components.
This confirms our hypothesis that the EEG features tested yield
good results on simple tasks, but more research is needed to
achieve improvements on more complex tasks. Note that, as
mentioned previously, this is not the case for BERT embeddings,
which outperform the baselines on all NLP tasks.

4.6. Conclusion
We presented a large-scale study about leveraging electrical brain
activity signals during reading comprehension for augmenting
machine learning models of semantic language understanding
tasks, namely, sentiment analysis and relation detection. We
analyzed the effects of different EEG features and compared
the multi-modal models to multiple baselines. Moreover, we
compared the improvements gained from the EEG signals
on three different types of word embeddings. Not only
did we test the effect of varying training set sizes, but
also tasks of various difficulty levels (in terms of number
of classes).

We achieve consistent improvements with EEG across
all three embedding types. The models trained with BERT
embeddings yield significant performance increases on all
NLP tasks. However, for randomly initialized and GloVe
embeddings the improvement magnitude decreases for
more difficult tasks. For these two types of embedding, the
improvement for the binary and ternary sentiment analysis
tasks ranges between 1 and 4% F1-score. For relation detection,
a multi-class and multi-label sequence classification task,
it was not possible to achieve any improvements unless
the task complexity is substantially reduced. Therefore, our
experiments show that state-of-the-art contextualized word
embeddings combined with careful EEG feature selection
achieve good results in multi-modal learning. Moreover, we
find that in the tasks where the multi-modal architecture
does achieve considerable improvements, the convolutional
EEG decoding component yields even higher results than the
recurrent component.

To sum up, we capitalize on the advantages of
electroencephalography data to examine if and which EEG
features can serve to augment language understanding models.
While our results show that there is linguistic information in the
EEG signal complementing the text features, more research is
needed to isolate language-specific brain activity features. More
generally, this work paves the way for more in-depth EEG-based
NLP studies.
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