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In this study, the information bottleneck method is proposed as an optimisation method

for steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI).

The information bottleneck is an information-theoretic optimisation method for solving

problems with a trade-off between preserving meaningful information and compression.

Its main practical application in machine learning is in representation learning or feature

extraction. In this study, we use the information bottleneck to find optimal classification

rule for a BCI. This is a novel application for the information bottleneck. This approach

is particularly suitable for BCIs since the information bottleneck optimises the amount

of information transferred by the BCI. Steady-state visual evoked potential-based BCIs

often classify targets using very simple rules like choosing the class corresponding

to the largest feature value. We call this classifier the arg max classifier. It is unlikely

that this approach is optimal, and in this study, we propose a classification method

specifically designed to optimise the performance measure of BCIs. This approach gives

an advantage over standard machine learning methods, which aim to optimise different

measures. The performance of the proposed algorithm is tested on two publicly available

datasets in offline experiments. We use the standard power spectral density analysis

(PSDA) and canonical correlation analysis (CCA) feature extraction methods on one

dataset and show that the current approach outperforms most of the related studies

on this dataset. On the second dataset, we use the task-related component analysis

(TRCA) method and demonstrate that the proposed method outperforms the standard

argmax classification rule in terms of information transfer rate when using a small number

of classes. To our knowledge, this is the first time the information bottleneck is used in

the context of SSVEP-based BCIs. The approach is unique in the sense that optimisation

is done over the space of classification functions. It potentially improves the performance

of BCIs and makes it easier to calibrate the system for different subjects.

Keywords: brain-computer interface, steady-state visual evoked potential, information bottleneck, mutual

information, optimisation

1. INTRODUCTION

Brain-computer interface (BCI) is a nonmuscular communication channel that can be used, for
example, by people with severe motor disabilities to control a computer or another external
device. Steady-state visual evoked potential (SSVEP)-based BCIs, in particular, have received much
attention over the past few decades due to their ease of use and high information transfer rate
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(ITR) (Vialatte et al., 2010; Gao et al., 2014). However, the
performance in terms of ITR is still considered a key obstacle
to real-life applications (Nakanishi et al., 2014, 2018; Chen
et al., 2015b). In this study, a method for finding an optimal
classification rule for SSVEP-based BCIs is proposed. This
method potentially improves the performance of BCIs andmakes
it easier to calibrate the system for different subjects.

The classification of targets in an SSVEP-based BCI is often
done using very simple rules (Cheng et al., 2002; Friman et al.,
2007; Lin et al., 2007; Zhang et al., 2014a; Nakanishi et al., 2018;
Zerafa et al., 2018; Lee and Choi, 2021), such as checking whether
extracted feature exceeds a certain threshold or choosing the
target corresponding to themaximum feature value. In this study,
we propose using the information bottleneck method (Tishby
et al., 1999) to find optimal classification rule automatically.
We will also compare the original information bottleneck
with the more recently introduced deterministic information
bottleneck (Strouse and Schwab, 2017). To our knowledge, the
information bottleneck has not been used in the context of
SSVEP-based BCIs before.

The information bottleneck introduced by Tishby et al.
(1999), is an information-theoretic method for solving a specific
optimisation task. In this task, two random variables are
considered. The goal is to find a third random variable that
is a compressed version of the first variable but still has
much information about the second variable. The method
aims to find the best trade-off between compressing the
representation and preserving meaningful information. The
information bottleneck provides a rich framework for discussing
problems in signal processing and learning (Tishby et al.,
1999), with applications in representation learning or feature
extraction in machine learning (Bengio et al., 2013; Shwartz-Ziv
and Tishby, 2017; Mukherjee, 2019; Goldfeld and Polyanskiy,
2020; Zaidi et al., 2020). In this study, however, we do not
apply the information bottleneck for feature extraction. We
use the information bottleneck to find an optimal classification
rule. In a broad sense, instead of compressing data into
features, we compress features into a classification rule. To our
knowledge, the information bottleneck has not been used this
way before and, thus, we introduced a new application for the
information bottleneck. This approach is particularly suitable
for BCIs since the performance measure is related to mutual
information (Thompson et al., 2014; Ingel et al., 2018), which is
exactly what the information bottleneck maximises.

There are various feature extraction methods available for
SSVEP-based BCIs, while classification methods have received
less attention. Cheng et al. (2002) introduced the power spectral
density analysis (PSDA) method, which extracts features using
fast Fourier transform (FFT). Zhang et al. (2010) use the
continuous wavelet transform instead of FFT. These methods
extract features separately for different channels. Spatial filtering
methods allow extracting information from multiple channels;
two such methods were introduced by Friman et al. (2007). Lin
et al. (2007) introduced the widely used canonical correlation
analysis (CCA) method, which also extracts features from
multiple channels. The CCA method was later improved by
optimising reference signals by Zhang et al. (2011, 2014b). The

likelihood ratio test method introduced by Zhang et al. (2014a)
achieved slightly better performance than the standard CCA.
Nakanishi et al. (2018) introduced the task-related component
analysis (TRCA) method to SSVEP-based BCIs, outperforming
other existing methods. Lee and Choi (2021) proposed an
improved strategy for decoding SSVEPs to overcome some
limitations of the TRCA method. Zerafa et al. (2018) give an
overview of available methods and compare methods that require
training with those that do not. Thus, much research has been
done in the context of feature extraction methods, and methods
specifically for SSVEP-based BCIs have been introduced.

Classification rules for SSVEP-based BCIs have received
less attention. Often classification is done using simple rules
including predicting the class corresponding tomaximum feature
value; we will call this classification rule the argmax classifier.
In some studies, standard machine learning methods have been
applied for classification. Carvalho et al. (2015) compare linear
discriminant analysis (LDA), support vector machine (SVM),
and extreme learning machine as classification rules. They obtain
the best results with LDA. SVM was also used by Zhang et al.
(2010), Anindya et al. (2016), Jukiewicz and Cysewska-Sobusiak
(2015), Velchev et al. (2016), while LDA was used by Yehia
et al. (2015). Oikonomou et al. (2017) used multiple linear
regression under the sparse Bayesian learning framework and
showed that their approach outperforms SVM when a small
number of channels are used. Du et al. (2020) use a convolutional
neural network and show that in terms of accuracy, their
approach outperforms some CCA based methods and a previous
neural-network-based classifier. Ingel et al. (2018) introduce a
classifier specific to BCIs and show that it outperforms a random
forest classifier.

A drawback of using standard machine learning methods as
a BCI classifier is that these methods are not optimising ITR,
which is the primary performance measure for BCIs (Wolpaw
et al., 1998; Mowla et al., 2018), but often these methods aim
to optimise accuracy. If the classifier is allowed to leave samples
unclassified, optimising only the accuracy can lead to unwanted
results, such as a very slow but accurate BCI. Allowing the
classifier to leave samples unclassified is beneficial because then
the classifier can avoid making errors when it is not confident
enough in the prediction (Ingel et al., 2018). Using classifiers that
optimise mutual information instead of accuracy, as in this study,
has benefits also in other contexts (Hu, 2014).

There is a relationship between accuracy and ITR, but if the
assumptions of ITR (Wolpaw et al., 1998) are not met, which is
often the case in practice (Yuan et al., 2013; Thompson et al.,
2014), then ITR can give incorrect estimate of the amount of
information transferred by the system (Ingel et al., 2018). How
good the estimate is, depends on how seriously the assumptions
are violated. For these reasons and following suggestions by
Thompson et al. (2014), we use mutual information to estimate
the amount of information transferred by the system. The
standard ITR is a special case of the mutual-information-based
performance measure (Ingel et al., 2018, Appendix E) under the
assumptions of ITR (Wolpaw et al., 1998; Thompson et al., 2014).

In this study, we propose a classification method specifically
designed for BCIs. It provides more flexibility than the argmax

Frontiers in Human Neuroscience | www.frontiersin.org 2 September 2021 | Volume 15 | Article 675091

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Ingel and Vicente Information Bottleneck in SSVEP BCI

classifier, and unlike standard machine learning methods, it is
designed to maximise the amount of information transferred by
the BCI. The proposed method uses training on subject-specific
data. As shown from the development of feature extraction
methods, switching from methods that do not require training
to methods that use subject-specific training has improved the
performance, refer to review by Zerafa et al. (2018). This study
is shown as a step toward similar advancement in classification
rules for BCIs.

We evaluate the performance of the proposed method on two
publicly available datasets (Bakardjian et al., 2010; Wang et al.,
2017). The dataset by Bakardjian et al. (2010) is a smaller dataset
containing data for four subjects and three target frequencies.
This dataset has been used in several works. From these works,
Ingel et al. (2018) report the highest average ITR of 35 bits/min
averaged over subjects and ITR of 62 bits/min for Subject 1
while using PSDA and CCA feature extraction and classification
rule specifically designed for BCIs. The argmax classifier is
used by Demir et al. (2016) (bio-inspired filter banks feature
extraction, ITR up to 12 bits/min), Demir et al. (2019) (bio-
inspired filter banks feature extraction, classification also uses
logistic regression, ITR up to 22.29 bits/min), Karnati et al. (2014)
(feature extraction based on fit sine curve amplitudes, accuracies
of 0.83–0.92 with window length 0.5 while using two trials of two
subjects), Jukiewicz et al. (2018) (CCA feature extraction with
blind source separation, ITR up to 18.26 bits/min), Jukiewicz
et al. (2019) (modification of CCA feature extraction using
genetic algorithms, accuracies around 0.55–0.83 with 1-s window
length while using two classes). A threshold-based classifier is
used by Saidi et al. (2017); they introduced feature extraction and
classification method based on Ramanujan periodicity transform
and reported an accuracy of 0.79 with a time window of
1.125 s while using two classes. Standard machine learning
methods are used by Velchev et al. (2016) (multiple signal
classification feature extraction, SVM classifier, average ITR of
17 bits/min), Jukiewicz and Cysewska-Sobusiak (2015) (PSDA
feature extraction, bilinear separation classifier, average ITR of
about 10 bits/min), Yehia et al. (2015) (PSDA feature extraction
with principal component analysis, LDA classifier, accuracy
averaged over subjects and different time windows of 89.5%),
Anindya et al. (2016) (PSDA feature extraction, SVM classifier).
Thus, most of the works report ITR up to 22 bits/min, while
Ingel et al. (2018) achieve an average ITR of 35 bits/min with
classification rule specifically designed for BCIs.

The dataset byWang et al. (2017) is a larger dataset containing
data for 35 subjects and 40 target frequencies. Since this dataset
has more classes than the dataset by Bakardjian et al. (2010), the
achieved ITR is also considerably larger. For example, this dataset
has been used by Zhang et al. (2018b), Zhang et al. (2018a), Jiang
et al. (2018), Nakanishi et al. (2018), Wong et al. (2020), and they
report average ITRs up to 230 bits/min.

Ingel et al. (2018) proposed an algorithm for finding optimal
rule from a fixed set of threshold-based classification rules. In
particular, they use a threshold-based classification rule which
has a threshold for each feature. A sample is classified into
a class in their approach if the feature value is above the
threshold for this class, and for all the other classes, the feature

value is below their corresponding thresholds. If this condition
is not met, the sample is left unclassified. They optimise the
thresholds by representing ITR as a function of thresholds.
Thus choosing the classification rule is reduced to optimising
a multivariable function that calculates ITR on the training
data given the classification thresholds. This approach seems to
outperform other results on the same dataset in terms of ITR,
probably because the algorithm directly maximises ITR. We use
a similar approach in this study, but we do not have to restrict
the approach to threshold-based classifiers thanks to using the
information bottleneck. Thus, the set of considered classifiers is
much more diverse. Furthermore, Ingel et al. (2018) assume that
a larger feature value means that the corresponding class is more
likely the correct class. This assumption is not needed in the
current approach.

2. METHODS

2.1. Datasets
2.1.1. Dataset 1

The dataset by Bakardjian et al. (2010) contains EEG recordings
of four healthy subjects with normal or corrected-to-normal
vision. All subjects were naive to the SSVEP-based BCI. There
are three targets with frequencies 8, 14, and 28 Hz. The visual
stimuli were displayed on a 21” CRT computer monitor with a
170 Hz refresh rate, placed approximately 90 cm away from the
eyes of the subject. SSVEP stimulation was achieved using small
reversing black and white checkerboards with 6 × 6 checks. For
each subject, there are five trials for each target frequency. Each
trial consists of 25 s of EEG data, and the first 5 s and last 5 s are
without visual stimulation. Dataset was recorded using BIOSEMI
EEG (Biosemi Inc., Amsterdam) system with 128 channels and
2,048 Hz sampling rate and downsampled to 256 Hz.

2.1.2. Dataset 2

The dataset by Wang et al. (2017) contains EEG recordings of
35 healthy subjects with normal or corrected-to-normal vision.
Eight of the subjects had previous experience of using their
SSVEP speller. The remaining 27 subjects were naive to the
SSVEP-based BCI. There are 40 targets, and frequencies range
from 8 to 15.8 Hz with an interval of 0.2 Hz. The visual stimuli
were presented on a 23.6” LCD monitor with a 1920 × 1080
resolution at 60 Hz. The monitor was placed approximately
70 cm away from the subject. SSVEP stimulation was achieved
using white squares on black background. Each square had a
letter, digit, or some other symbol on it. For each subject, there
are six trials for each target frequency. Each trial consists of
6 s of EEG data; the first 0.5 s and the last 0.5 s is without
the visual stimulation. Dataset was recorded using Synamps2
EEG system (Neuroscan, Inc.) with 64 channels and 1,000 Hz
sampling frequency and downsampled to 250 Hz. Refer to Wang
et al. (2017) for more details.

2.2. Feature Extraction
2.2.1. Feature Extraction Method for Dataset 1

For feature extraction on Dataset 1, we mainly follow the
approach used by Ingel et al. (2018) as they report the highest
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average ITR on this dataset. The only difference from Ingel et al.
(2018) is that we have an additional pre-processing step. In
particular, we subtract the Cz channel signal from the O1 and
O2 channels as the first step. The rest of the feature extraction
is identical to Ingel et al. (2018). In particular, we use channels
O1 and O2 from the dataset, and we use PSDA (Cheng et al.,
2002) and CCA (Lin et al., 2007) feature extraction methods. For
each trial, the first and last 5 s are discarded because there was no
visual stimulation. A sliding window with a window length of 1
s is used on the remaining data, and features are extracted after
every 0.125 s time step. In the PSDA method, the powers of the
first three harmonics and their sum were used as features. In the
CCA method, the set of reference signals consisted of standard
cosine and sine reference signals for the first three harmonics
of the target frequency. Multiple features were combined using
an LDA dimensionality reduction. The final features were the
distances to LDA decision borders. Refer to Ingel et al. (2018) for
more details.

2.2.2. Feature Extraction Method for Dataset 2

For feature extraction on Dataset 2, we follow the approach by
Nakanishi et al. (2018) and use the implementation available
at a Github repository1. In particular, we use data of channels
Pz, PO5, PO3, POz, PO4, PO6, O1, Oz, and O2 from the
dataset. The first and last 0.5 s of each trial is discarded since
there was no visual stimulation. The first 0.134 s of data were
discarded from the remaining data since this approximately
corresponds to latency delay in the visual pathway. We apply
filter bank analysis (Chen et al., 2015a) on the remaining
data to decompose EEG data to sub-band components. Then
TRCA (Tanaka et al., 2013) is applied, which results in feature
values used in classification. Refer to Nakanishi et al. (2018) for
more details.

The only difference from Nakanishi et al. (2018) is that we
use a sliding window with a window length of 0.5 s in feature
extraction and extract features after every 0.125 s time step,
similarly as we did for Dataset 1. In this study, we retrain
TRCA for every time step. Using a sliding window is required
because the proposed algorithm uses feature values as training
data, and a single prediction on each trial does not give enough
training samples.

2.3. Information-Theoretic Quantities
This section gives the definitions of basic information-theoretic
quantities needed to introduce the performance measure and the
information bottleneck. Let Y denote a random variable with a
finite number of possible values y1, . . . , yn. Then entropy of Y is
defined as

H(Y) = −
n

∑

i=1

P(Y = yi) log2(P(Y = yi)) (1)

where 0 log2 0 is defined to be equal to 0 and P is a probability
measure. Let Z denote another random variable with a finite

1https://github.com/mnakanishi/TRCA-SSVEP (accessed November 8, 2020).

number of possible values. The conditional entropy of Y given
Z is defined as

H(Y | Z) = H(Y ,Z)−H(Z) (2)

whereH(Y ,Z) is the entropy of the random vector (Y ,Z). Finally,
we define mutual information between Y and Z as

I(Y;Z) = H(Y)−H(Y | Z). (3)

In the following, if Y is a random variable and i is its possible
value, then, we denote the event that the value of Y is i as Yi.

2.4. Information Transfer Rate
A commonly used performance measure for SSVEP-based BCIs
is ITR (Wolpaw et al., 1998; Mowla et al., 2018). The number of
targets is denoted by N and the accuracy of the BCI is denoted by
a. ITR for a single prediction is defined as given in Equation (4):

ITRs = log2 N + a log2 a+ (1− a) log2

(

1− a

N − 1

)

. (4)

This formula is a special case of mutual information between
the true target and the predicted target, obtained by assuming
that the channel is doubly symmetric (Wolpaw et al., 1998;
da Silva Costa et al., 2020). Since the proposed approach does not
take into account this assumption and often this assumption is
not met in practice (Yuan et al., 2013; Thompson et al., 2014), we
use mutual information between the predicted class and correct
class as the performancemeasure as suggested by Thompson et al.
(2014).

In more detail, the set of classes is denoted as {1, 2, 3, . . . ,N}.
The random variables modelling the predicted class and the true
class are denoted as P and C, respectively. The events of the
predicted class being i and the true class being j are denoted as
Pi and Cj, respectively. Then, I(P;C), as defined in (3), shows the
amount of information transferred with a single prediction.

To calculate mean detection time (MDT), we follow the
approach of Ingel et al. (2018). In particular, we estimate MDT
as follows:

MDT = w+





1

P
(

⋃N
i=1 Pi

) − 1



 · s (5)

where w is the window length and s is the time step between
consecutive feature extractions. In this formula, s is multiplied by
the expected number of failed classifications before a successful
one. Mean detection time is estimated this way due to the
overlapping sliding window used in feature extraction.

To get a more accurate estimate of MDT, we would have
to include gaze shifting time to MDT, which is considered
to be about 0.5 s (Chen et al., 2015b; Nakanishi et al., 2018;
Liang et al., 2020). We add this constant for experiments on
Dataset 2 but not for experiments on Dataset 1 to have a
straightforward comparison to previous results on these datasets.
All the probabilities in the previous two formulas are estimated
from the confusion matrix of the classifier.
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Finally, the performance measure we use is defined as
the following:

ITRmi = I(P;C)
60

MDT
(6)

and we also report the standard performance measure defined as

ITR = ITRs
60

MDT
. (7)

Both of these are in units of bits per minute.

2.5. Discretising Feature Values
Since the information bottleneck algorithm we use requires
discrete random variables, we discretise random variables which
model the feature values. We explore two different methods for
discretising. The first method we consider for discretising the
features is simply binning the values.We calculate bins separately
for each feature. The random variable modelling unbinned
feature value for class i is denoted as Fi and binned feature value is
denoted as Bi. The relationship between Fi and Bi is that if [l, h) is
one of the bins, then Fi ∈ [l, h) happens if and only if Bi = [l, h).

After feature extraction on the training dataset, we obtain a
collection of realisations of Fi given Cj for all i, j. For each i, we
find the smallest and largest value of Fi and take these as the start
of the first bin and end of the last bin, respectively. The number
of bins is calculated using different estimators for Dataset 1 and
Dataset 2 since Dataset 1 has more samples for each subject. For
Dataset 1, we use Freedman Diaconis estimator (Freedman and
Diaconis, 1981), which is defined as

2 ·
IQR
3
√
n
, (8)

where n is the number of training samples and IQR is
the interquartile range. For Dataset 2, we use Sturges’
estimator (Sturges, 1926), which is defined as

⌈log2 n⌉ + 1, (9)

where n is again the number of training samples and ⌈·⌉ denotes
the ceiling function.

We calculate the number of bins for conditional distributions
of Fi given Cj for each class j and take the mean of these, rounded
to the nearest integer, as the number of bins for feature Fi. Then
binning feature values to the bins gives a histogram that estimates
the probabilities P(Bi = bi | Ck) for all i, k, and bin bi.

The second method, we consider, for discretising the
features is fitting skew-normal distribution to the conditional
distributions of Fi given Cj for all i, j and calculating the
probability from cumulative distribution function, similarly to
Ingel et al. (2018). We still calculate the bin edges the same way as
in the previous method, but now the probabilities are calculated
for a given bin [l, h) by using Equation (10):

P(Bi = [l, h) | Ck) = FFi|Ck
(h)− FFi|Ck

(l) (10)

where FFi|Ck
is the cumulative distribution function of

conditional distribution of Fi given Ck.

2.6. Input to the Information Bottleneck
To use the information bottleneck, we need a single random
variable combining all the feature values. Thus, let X denote
a random variable defined as X = (B1,B2, . . . ,BN), where
B1,B2, . . . ,BN denote the binned feature values as in section 2.5.
For any class k, we assume that the random variables
B1,B2, . . . ,BN are conditionally independent, conditioned on Ck.
Similar assumption was made by Ingel et al. (2018) for features.
This assumption allows us to use the formula

P(X = (b1, b2, . . . , bN) | Ck) =
N

∏

i=1

P(Bi = bi | Ck) (11)

to calculate input distribution for the information bottleneck.
Probabilities on the right hand side are estimated from the
histogram or with the skew-normal distribution as discussed in
the section 2.5. As before, we denote the event that X = k for
suitable value of k as Xk.

2.7. Information Bottleneck
This section describes the information bottleneck (Tishby et al.,
1999) and the deterministic information bottleneck (Strouse
and Schwab, 2017). We continue using the notation defined in
previous sections. In particular, we use random variables C and P
for true class and predicted class as in section 2.4, and we use X
as the vector of bins as in section 2.6.

The information bottleneck introduced by Tishby et al.
(1999) is an information-theoretic optimisation problem that,
given probabilities P(Xk,Cj), finds a solution for the following
optimisation problem:

argmin[I(P;X)− βI(P;C)] (12)

where minimisation is over conditional distributions of P given
X, β is a non-negative parameter that we can choose, and
minimisation is done subject to Markov constraint C → X → P,
which means that

P(Pi | Cj,Xk) = P(Pi | Xk) (13)

for all possible values of i, j, k. Minimisation over conditional
distributions means that we are looking for values P(Pi | Xk) for
all i, k that minimise the objective function. In the optimisation
problem, we have the mutual information I(P;C), which we want
to maximise as this increases the performance measure (6). The
term I(P;X) characterises compression.

The deterministic information bottleneck introduced by
Strouse and Schwab (2017) is an optimisation problem
that differs from the original problem by using a different
objective function

argmin[H(P)− βI(P;C)]. (14)

Term H(P) characterises the representational cost of P.
The deterministic information bottleneck gets its name from

the fact that its solution is actually a function (Strouse and
Schwab, 2017), meaning that the conditional distribution always
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has all its probability mass on one value. Thus, it gives a function
from feature values to classes and hence can be used as a classifier
for the BCI.

Strouse and Schwab (2017) actually introduced amore general
notion than deterministic information bottleneck. They used the
optimisation problem

argmin[H(P)− αH(P | X)− βI(P;C)]. (15)

The optimisation problem (15) is equivalent to original
information bottleneck if α = 1. Solution to the deterministic
information bottleneck is actually found as a limit of the solutions
for (15) in the process α → 0. Values between 0 and 1
interpolate between the original information bottleneck and the
deterministic information bottleneck.

2.8. Classification Rules
First, the training process is discussed. The input probabilities
P(Xk,Cj) for all k, j are calculated as discussed in section 2.6.
Then, the information bottleneck method outputs the
probabilities P(Pi | Xk) for all i, k. However, the information
bottleneck algorithm filters out some of the feature values
from the input distribution if their probability is close to zero.
Samples with these features are left unclassified in the algorithm.
Implementation of this algorithm can be found in a Github
repository2.

The first classifier (Classifier 1) is defined as follows. Recall that
the feature vector is a vector of bins, as discussed in section 2.6.
The input to the classifier is a feature vector k, and the classifier
outputs class i for which

P(Pi | Xk) = 1 (16)

if there exists such a class. If there is no such class, the sample
is left unclassified. Not classifying all the samples means that the
classifier can achieve higher accuracy at the expense of MDT.

An alternative classification rule that could be used is
argmaxi P(Pi | Xk). This rule is equivalent to (16) in the
case of deterministic information bottleneck but (16) can
leave more samples unclassified when using the original
information bottleneck.

Also, note that the values of P are chosen arbitrarily by the
information bottleneck algorithm, and thus, we have to find a
mapping from values of P to the true classes. We did this by
calculating accuracy for each possible mapping and chose the
mapping which gives the highest accuracy on the training set. The
flowchart of the algorithm is shown in Figure 1.

The idea behind the second classifier (Classifier 2) is that
instead of making the classification based on one point in the
feature space, the classifier also considers the neighbouring points
of the current sample. A prediction is made only if there are
enough points classified in the sameway among the neighbouring
points. Otherwise, the algorithm is considered not confident
enough, and no prediction is made. Formally, the bin edges are

2https://github.com/antiingel/information-bottleneck-BCI (accessed November

26, 2020).

FIGURE 1 | Flowchart of the proposed method. Here P denotes the predicted

class, C denotes the correct class, B denotes the bin corresponding to the

feature value, and X denotes the vector of bins, as defined in sections 2.4–2.6.

The upper diagram shows the training process; the lower diagram shows the

testing or real-time use.

denoted as bi1, . . . , b
i
mi

for each feature i, and where mi − 1
is the number of bins for that feature. Assume that these bin
edges are in an increasing order and suppose the current sample
is corresponded to bins ([b1j1 , b

1
j1+1), . . . , [b

N
jN
, bNjN+1)). Let n and

t denote non-negative integers corresponding to the number
of neighbouring points to consider and classification threshold,
respectively. Then, the algorithm counts the number of values of
s1, . . . , sN ∈ {−n,−n+ 1, . . . , n− 1, n} for which the equation

P
(

Pi | X = ([b1j1+s1
, b1j1+1+s1

), . . . , [bNjN+sN
, bNjN+1+sN

))
)

= 1

(17)
holds. The number of values of s1, . . . , sN is counted separately
for each i. If the number of values is larger than t for some i, then,
i is taken as the predicted class. Threshold t is chosen high enough
so that only one class can satisfy the condition.

3. RESULTS

To test our approach, we use two publicly available datasets and
follow the feature extraction methods by Ingel et al. (2018) and
Nakanishi et al. (2018) (details in Methods Section). First, we
describe the initial experiments, which motivate the definition
of Classifier 2, and motivate the choice of parameters for the
following experiments. Then, we evaluate the performance of the
proposed classifier on Dataset 1 and Dataset 2.

3.1. Initial Experiments
The following analysis is done on Dataset 1. For solving the
information bottleneck problems discussed in section 2.7, we
used implementation by Strouse and Schwab (2019)3. We set the
maximum number of values for random variable P to 3 as this
matched the number of classes in this BCI and ran the algorithm
for different values of β . The standard approach to choosing β is
to plot H(P) and I(P;C), in the case α = 0, and plot I(P;X) and

3https://github.com/djstrouse/information-bottleneck (accessed August 9, 2020).
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TABLE 1 | Information-theoretic quantities for the results of the information bottleneck algorithm.

Subject
α = 0 α = 1

I(P;C) H(P) H(P | X) I(P;C) I(P;X) H(P | X)

1 0.947± 0.000 1.580± 0.000 0 0.977± 0.000 1.575± 0.006 0.004± 0.005

2 0.851± 0.020 1.551± 0.112 0 0.845± 0.027 1.511± 0.127 0.020± 0.027

3 1.069± 0.000 1.582± 0.000 0 1.069± 0.000 1.575± 0.008 0.007± 0.008

4 0.287± 0.015 1.449± 0.163 0 0.293± 0.003 1.495± 0.086 0.063± 0.071

The algorithm was trained using all but the second trial of each subject in Dataset 1. Probabilities are estimated using the skew-normal distribution. Reported values are mean ± SD over

β values 10, 20, 30, . . . , 150 and rounded to three decimal places. Features are the combination of the PSDA and the CCA features. Random variables P, C, and X are the predicted

class, the true class, and the feature values (more precisely, the vector of bins), respectively.

TABLE 2 | Information-theoretic quantities for the results of the information bottleneck algorithm using different features.

Subject

CCA+PSDA CCA PSDA

I(P;C) I(X;C) I(P;C) I(X;C) I(P;C) I(X;C)

α = 0 α = 1 α = 0 α = 1 α = 0 α = 1

1 0.947± 0.000 0.977± 0.000 1.128 0.921± 0.000 0.921± 0.000 1.106 0.583± 0.000 0.582± 0.001 0.760

2 0.851± 0.020 0.845± 0.027 0.989 0.869± 0.022 0.864± 0.026 0.982 0.637± 0.001 0.636± 0.002 0.760

3 1.069± 0.000 1.069± 0.000 1.187 1.052± 0.000 1.051± 0.000 1.178 0.762± 0.030 0.766± 0.029 0.920

4 0.287± 0.015 0.293± 0.003 0.418 0.327± 0.021 0.334± 0.002 0.396 0.188± 0.017 0.196± 0.003 0.272

The algorithm was trained using all but the second trial of each subject in Dataset 1. Probabilities are estimated using the skew-normal distribution. Reported values are mean ± SD

over β values 10, 20, 30, . . . , 150 and rounded to three decimal places. Random variables P, C, and X are the predicted class, the true class, and the feature values (more precisely,

the vector of bins), respectively. Bold values correspond to the highest average mutual information between the predicted class and the correct class for each subject.

I(P;C), in the case α = 1, for different values of β and analyse
the plot (Strouse and Schwab, 2019).

In these experiments, we observed that the exact value of
β has a very small effect on the solution if it is chosen from
an appropriate range. For too small values of β , the algorithm
often converges to two or even one value for the random
variable P, which is undesirable since we want to discriminate
between three classes. For very large values of β , the algorithm
runs into numerical problems. We calculated the information
bottleneck for values of β in {10, 20, 30, . . . , 150} and observed
that the variability of the values of H(P), I(P;C), and I(P;X)
was very small. Results are given in Table 1. For the next
experiments, we set β = 100 as having a larger weight
on the term appearing in the performance measure (6) was
deemed beneficial.

From Table 1, we also see that even if we are using the original
information bottleneck, that is α = 1, we still get an almost
deterministic solution in most of the cases since the conditional
entropy H(P | X) is very close to zero. Similar results were
obtained in case we used only CCA features or only PSDA
features. The main difference was that I(X;C) was smaller in
these cases (Refer to Table 2).

Visualising the classifications made by Classifier 1 on Dataset
1, we observed that if the data is less noisy, for example, for
Subject 3, the classifier divides the feature space clearly into three
distinct clusters. This provided motivation for the definition of
Classifier 2. Refer to Figure 2 for visualisation.

FIGURE 2 | Visualisation of classification results of Classifier 1. This figure

shows results for Subject 3 of Dataset 1. All trials but the first were used in

training, and features were the combination of canonical correlation analysis

(CCA) and power spectral density analysis (PSDA). The information bottleneck

parameters were set to α = 1 and β = 100. Probabilities were estimated using

the skew-normal distribution. Classification results on training data divide the

feature space into three regions based on which the testing data is classified.

Classes 1, 2, and 3 correspond to frequencies of 8, 14, and 28 Hz,

respectively.

3.2. Results on Dataset 1
We evaluated the classification rules introduced in section 2.8
on Dataset 1 using 5-fold cross-validation. In each iteration, four
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FIGURE 3 | ITR (6) calculated on Dataset 1 for Classifier 2 with n ∈ {1, 2, 3, 4} and t values as in formula (18). The histogram method and the skew-normal method

refer to the methods of estimating probabilities as described in section 2.5.

trials were used as a training set, and the remaining trial was used
as a test set. In all the experiments, MDT is estimated from the
testing data.

For Classifier 2, there are multiple possible values for n and t.
We evaluated Classifier 2 with n ∈ {1, 2, 3, 4} and for values of t
satisfying the Equation (18):

(2n+ 1)3/2 < t ≤ (2n+ 1)3. (18)

The lowest value of t means that more than half of the
neighbouring points have to be classified the same way, and
the highest value of t means that all of the neighbouring points

have to be classified the same way. The results are visualised
in Figure 3. This figure shows that there is, in most cases,
steady increase in ITR with respect to t until a peak value
of ITR and then a sudden drop. Thus, the best value of t
is most likely right before the sudden drop. The best results
for Classifier 2 are given in Table 3, where it is shown that it
outperforms Classifier 1. Table 4 shows the results for Classifier
2 for n = 4 and t = 600. As shown, Classifier 2 has higher
average ITR compared with the best-performing methods from
the related studies.

We performed a paired t-test using the average ITR of each
subject to check if the differences are statistically significant.
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TABLE 3 | ITRs (6) of Classifier 1 and 2 resulting from 5-fold cross-validation.

Subject

Classifier 1 Classifier 2

Histogram Skew-normal Histogram Skew-normal

α = 0 α = 1 α = 0 α = 1 α = 0 α = 1 α = 0 α = 1

1 45.46 46.32 45.19 45.47 64.67 64.64 65.70 66.13

2 32.20 34.68 32.66 36.70 51.70 50.02 52.48 51.82

3 53.54 54.14 53.14 54.56 69.35 68.76 69.91 69.60

4 11.03 13.74 11.60 13.95 21.20 22.72 20.68 20.16

For Classifier 2, these values are the highest ITRs (6) over n and t values. Note that in these results, MDT does not include gaze shift time, and it is estimated from the testing data. Bold

values correspond to the highest ITRs (6) of each subject for both classifiers.

TABLE 4 | Classifier 2 compared the related studies.

Subject
Classifier 2 Ingel et al. (2018) Demir et al. (2019)

ITRmi ITR Accuracy MDT No. pred. ITRmi ITR ITR

1 64.84 61.79 0.92 1.09 199 64.62 62.33 17.61

2 46.64 53.48 0.91 1.22 130 53.73 48.31 17.13

3 69.27 67.35 0.94 1.08 212 33.19 27.61 22.29

4 16.42 16.90 0.68 1.50 82 5.65 1.74 11.55

Avg 49.29 49.88 0.86 1.22 156 39.30 35.00 17.15

Here n = 4, t = 600, α = 1, and β = 100. The reported values are means resulting from 5-fold cross-validation. Note that in these results, MDT does not include gaze shift time, and it

is estimated from testing data. Probabilities are estimated using the skew-normal distribution. No. pred. stands for the number of predictions. Similarly to Classifier 2, Demir et al. (2019)

and Ingel et al. (2018) allowed samples to be left unclassified. Bold values correspond to the highest ITR (7) of each subject.

The null hypothesis was that the ITR of Classifier 2 is less
than or equal to that of Demir et al. (2019), and the alternative
hypothesis was that Classifier 2 has higher ITR. We obtained
a p-value of p = 0.02 and a t-statistic of 3.51. Therefore,
under the assumption that the differences in ITR are normally
distributed, the better performance of Classifier 2 is statistically
significant. The same comparison between Classifier 2 and the
approach of Ingel et al. (2018) did not show statistical significance
(p = 0.097).

We also evaluated the classifier of Ingel et al. (2018) with
the added pre-processing step of subtracting Cz channel
from O1 and O2 channels, and we replaced their original
gradient descent algorithm with a more stable basin-
hopping algorithm (Wales and Doye, 1997). This improved
the performance of Subject 3 and Subject 4, giving ITRs
similar to the current approach. The obtained ITRs (7)
were 60.56, 50.57, 64.08, 21.82 for subjects 1, 2, 3, and 4,
respectively. Other related studies mentioned in the introduction
either did not report results separately for each subject so
that ITR can be obtained, or the reported performance was
considerably lower.

3.3. Results on Dataset 2
For the experiments on Dataset 2, we set information bottleneck
parameters to α = 1, β = 100, and we used the skew-normal
distribution method to estimate the required probabilities. We
used 6-fold cross-validation to evaluate the performance, each
fold corresponding to one trial.

We performed the experiments on subsets of available classes
since the exact information bottleneck has high computational
complexity in the number of classes. First, we tested the training
times of the algorithm in Python programming language on a
personal computer with Intel i5-6600 3.30 GHz processor and
8 GB of RAM. Training times for Classifier 2 for 1-fold of
the cross-validation were approximately 0.35 s, 7.5 s, 2 min,
and 33 min for 2, 3, 4, and 5 classes, respectively. These times
were obtained using data of first classes of Subject 1; refer to
next paragraph for the order of classes in the dataset. We also
evaluated the prediction times using the trained classifier. The
prediction times for a single prediction were 60 µs, 100 µs, 1 ms,
75 ms for 2, 3, 4, and 5 classes, respectively. We compared the
performance to the argmax classifier, that is, the classifier that
predicts the class corresponding to the highest feature value; refer
to Nakanishi et al. (2018), for example. The argmax classifier does
not require training, and prediction time is around 6 µs for up to
5 classes.

The classes are ordered in the dataset as follows. The first
frequencies are from 8 Hz to 15 Hz with a 1 Hz interval. The
remaining frequencies are ordered analogically from 8.2 to 15.2,
from 8.4 to 15.4, from 8.6 to 15.6, and finally, from 8.8 to 15.8.
For simplicity, we refer to the classes according to their order
in the dataset. In the following experiments, we calculated the
performancemeasures using consecutive non-overlapping sets of
classes. In the case of three classes, we used classes 1, 2, 3, then
classes 4, 5, 6, and similarly up to 37, 38, 39, giving 13 different
sets of classes in total.
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TABLE 5 | Classifier 2 compared with the arg max classifier using three classes.

Subject
Classifier 2 argmax classifier

ITRmi ITR Acc MDT No. pred. ITRmi ITR Acc

1 90.2 89.4 0.990 1.02 58 87.2 84.2 0.970

2 92.2 92.2 0.997 1.02 59 87.8 85.3 0.974

3 90.5 88.7 0.983 1.01 61 86.1 83.5 0.970

4 91.2 90.7 0.990 1.01 61 90.1 88.3 0.980

5 92.8 92.9 0.992 1.01 63 93.5 92.8 0.995

6 89.7 89.3 0.992 1.03 55 83.8 80.7 0.963

7 88.9 88.1 0.989 1.03 55 82.4 78.8 0.957

8 84.6 83.8 0.982 1.05 47 74.0 69.3 0.927

9 80.0 78.6 0.970 1.07 44 65.6 60.5 0.891

10 86.0 85.0 0.982 1.04 51 75.5 70.9 0.929

11 72.5 69.5 0.948 1.11 37 54.2 48.6 0.839

12 91.8 91.6 0.994 1.01 60 87.6 84.9 0.971

13 87.7 86.9 0.987 1.03 53 82.3 78.3 0.953

14 91.8 91.4 0.993 1.01 61 89.3 87.3 0.980

15 78.0 76.2 0.964 1.09 41 64.9 59.7 0.886

16 73.8 71.3 0.948 1.09 41 59.0 54.3 0.862

17 80.4 79.7 0.971 1.06 45 69.6 63.9 0.904

18 75.9 72.8 0.949 1.07 44 60.8 55.4 0.866

19 41.9 36.2 0.815 1.30 21 23.9 20.3 0.660

20 88.3 87.4 0.989 1.03 53 82.2 79.0 0.958

21 76.4 74.5 0.947 1.08 43 66.4 60.8 0.886

22 93.3 93.1 0.998 1.01 62 90.2 88.7 0.983

23 82.9 81.8 0.971 1.04 51 71.4 66.4 0.908

24 88.9 88.7 0.990 1.03 55 82.8 79.1 0.955

25 91.8 91.4 0.994 1.01 60 89.4 87.6 0.981

26 92.1 91.8 0.994 1.01 61 90.8 89.2 0.983

27 92.8 92.6 0.996 1.01 61 90.0 88.2 0.982

28 89.6 88.4 0.988 1.02 58 84.6 81.3 0.963

29 78.1 75.8 0.964 1.08 42 60.0 55.0 0.868

30 84.4 82.7 0.976 1.04 50 76.0 71.5 0.931

31 94.4 94.6 1.000 1.00 65 94.2 93.9 0.996

32 93.7 93.8 0.999 1.01 62 91.6 90.4 0.989

33 35.7 31.0 0.741 1.48 18 28.2 19.5 0.628

34 91.6 91.6 0.996 1.02 58 88.7 86.5 0.978

35 84.7 84.2 0.985 1.06 46 73.3 69.2 0.923

Avg 84.0 82.8 0.970 1.06 52 76.5 72.9 0.925

Table entries are averages over the sets of three classes of Dataset 2. Here α = 1,

β = 100, n = 1, and t = 25, probabilities are estimated with the skew-normal distribution.

No. pred. stands for the number of predictions. The number of predictions for the argmax

classifier is 66 and MDT is 1 s for each subject. MDT is estimated from test data, and it

includes gaze shift time. Bold values correspond to the highest ITR (6) of each subject.

We performed a sign test (Dixon andMood, 1946) for each set
of classes with the null hypothesis that the ITR of Classifier 2 is
less than or equal to that of argmax and the alternative hypothesis
is that Classifier 2 has a larger ITR. In each case, we obtained a
p-value less than 0.00002. The results averaged over all the sets
of classes is shown in Table 5. An analogical experiment with
four classes resulted in a p-value less than 0.009 for each set of
classes. Thus, the better performance of Classifier 2 is statistically
significant. The results averaged over all the sets of four classes is

TABLE 6 | Classifier 2 compared with the arg max classifier using four classes.

Subject
Classifier 2 argmax classifier

ITRmi ITR Acc MDT No. pred. ITRmi ITR Acc

1 113.1 110.2 0.978 1.02 78 108.8 104.1 0.961

2 114.4 111.6 0.981 1.01 80 110.8 106.7 0.969

3 112.4 108.1 0.971 1.01 80 107.7 103.3 0.959

4 109.4 105.5 0.957 1.02 79 113.4 111.1 0.975

5 118.1 117.2 0.994 1.01 84 117.4 116.0 0.992

6 111.8 108.5 0.976 1.02 74 105.1 99.9 0.952

7 109.5 104.2 0.963 1.02 75 103.3 97.5 0.944

8 104.2 100.2 0.964 1.05 63 91.5 83.7 0.902

9 98.8 95.4 0.956 1.07 58 81.5 73.3 0.858

10 106.0 102.4 0.965 1.04 68 94.9 87.3 0.909

11 89.1 82.5 0.919 1.11 50 67.2 59.0 0.798

12 114.2 111.7 0.981 1.01 81 110.8 106.5 0.966

13 108.7 105.4 0.973 1.04 69 102.5 95.9 0.937

14 114.4 110.8 0.976 1.01 81 112.8 109.7 0.976

15 97.3 92.5 0.948 1.08 55 82.2 73.5 0.861

16 92.7 87.2 0.930 1.08 55 73.3 65.2 0.825

17 101.2 97.1 0.955 1.06 61 86.5 77.2 0.871

18 94.8 88.1 0.928 1.07 59 77.1 67.9 0.836

19 50.9 39.1 0.750 1.29 28 28.5 22.0 0.580

20 111.6 109.5 0.984 1.03 73 103.0 97.4 0.945

21 95.7 90.9 0.938 1.07 58 82.6 73.1 0.853

22 116.1 114.5 0.987 1.01 82 113.6 110.7 0.978

23 103.0 98.7 0.955 1.04 67 90.5 82.6 0.889

24 109.7 105.3 0.966 1.02 75 104.4 98.6 0.944

25 113.2 109.2 0.973 1.02 79 110.6 107.2 0.966

26 116.0 114.2 0.987 1.01 82 114.1 111.1 0.978

27 114.3 110.1 0.971 1.01 82 113.4 110.4 0.977

28 111.6 107.8 0.975 1.02 78 105.8 100.2 0.952

29 92.7 87.4 0.934 1.09 55 71.9 64.0 0.820

30 104.0 99.3 0.954 1.05 66 94.3 87.1 0.909

31 112.6 110.0 0.967 1.01 84 119.0 118.4 0.995

32 116.1 113.6 0.983 1.01 83 116.0 114.2 0.987

33 46.7 31.8 0.674 1.39 24 37.8 22.0 0.562

34 112.0 107.0 0.966 1.02 78 111.5 107.7 0.970

35 103.1 98.4 0.956 1.05 63 92.2 85.4 0.905

Avg 104.0 99.6 0.950 1.05 69 95.9 90.0 0.906

Table entries are averages over the sets of four classes of Dataset 2. Here α = 1, β = 100,

n = 1, and t = 70, probabilities are estimated with the skew-normal distribution. No. pred.

stands for the number of predictions. The number of predictions for the argmax classifier

is 88 and MDT is 1 s for each subject. MDT is estimated from test data, and it includes

gaze shift time. Bold values correspond to the highest ITR (6) of each subject.

shown in Table 6. In both cases, Classifier 2 has approximately 10
bits/min higher ITR on average.

4. DISCUSSION

The results in Table 3 suggest that using the skew-normal
distributions to estimate the probabilities gives slightly better
results than simply using the histogram. We assume that this is
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because fitting skew-normal distribution to the data essentially
reduces noise in the probability estimates.

Table 3 shows that the original information bottleneck slightly
outperforms the deterministic information bottleneck when
using Classifier 1. This most likely happens because the original
information bottleneck leaves more samples unclassified, in
particular, those for which (16) does not hold for any i.

Table 2 shows that only the PSDA features and only the CCA
features contain less information about the true class (shown by
I(X;C)) than their combination. The predicted class can never
contain more information about the true class than the features
which are used to make the prediction. This is due to the data
processing inequality (Cover and Thomas, 2006)

I(P;C) ≤ I(X;C). (19)

Therefore, using information theory tools, one can evaluate how
much information about the true class is lost by different feature
extraction methods or in different parts of the BCI pipeline. This
can help decide which methods to include in the pipeline without
evaluating the final performance.

As shown in section 3.2, the results obtained in this study
are similar to the results of Ingel et al. (2018), because we
use the same dataset, same feature extraction method, and the
classification algorithm in both cases optimises ITR (6). Since two
different optimisation methods give similar results, it suggests
that these values are close to optimal. However, the current
approach has theoretical advantages over Ingel et al. (2018)
because fewer assumptions are needed, and optimisation is done
over a more diverse set of classifiers.

Tables 3–6 show that for some subjects (Subject 4 in Dataset
1 and Subject 33 in Dataset 2), the performance measures
were considerably lower than other subjects. Since this happens
with multiple classification methods, we assume that the poor
performance is caused by a non-optimal feature extraction
method or noisy data for these subjects. This is supported by
results in Table 2, which shows that features for Subject 4 contain
less information about the true class than for other subjects.

Table 5 shows that Classifier 2 gives better results than the
argmax classifier. This is expected since the proposed method
finds a classification rule that maximises ITR; thus, it can take
into account possible differences between subjects. However,
larger ITR can partly be caused by the fact that Classifier 2 can
leave samples unclassified when it is not confident enough while
the argmax rule classifies all the samples.

With the exact information bottleneck algorithm and low
computational power, the method is only applicable in BCIs
with a small number of classes as the computational complexity
is high in the number of classes. To use this approach with
many classes, a more efficient exact information bottleneck
algorithm must be used, or the exact information bottleneck
algorithm has to be replaced by an approximate one. For an
example of an approximate method in deep learning, refer to

the approach of Alemi et al. (2017). An overview of currently
available information bottleneck approaches is given by Zaidi
et al. (2020).

Tables 4–6 show that in some cases, the proposed algorithm
is outperformed by the argmax classifier and by the algorithm
described by Ingel et al. (2018). We assume this is because
the choice of bins was not optimal. Even though the used
estimators give bins such that the histogram approximates
well the underlying distribution, there might be better choices
of bins for the proposed algorithm. Given the best possible
choice of bins, the proposed algorithm should outperform
the argmax classifier and the algorithm by Ingel et al.
(2018) since optimisation is done over a more diverse set of
classification rules.

5. CONCLUSION

In this study, using the information bottleneck to find optimal
classification rule in SSVEP-based BCIs was proposed. The
algorithm was evaluated on publicly available SSVEP datasets.
We showed that with the TRCA feature extraction method and
a small number of classes, the proposed method outperforms
the standard argmax classification rule, achieving 10 bits/min
higher average ITR. To use this method with more classes,
some approximate information bottleneck algorithm, or a more
efficient exact one, must be used. We conclude that using
the information bottleneck can make it easier to optimise
BCI for different users and improve the performance of
the BCI.
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